1
|
Feng Y, Zhang Y, Huang K, Li S, Cao H, Zhang P, Wang M, Sun Z, Guan X. Rice bran protein fibril and chitin nanofiber complexes as a new material for fat substitution and saltiness enhancement. Food Chem 2025; 479:143804. [PMID: 40086387 DOI: 10.1016/j.foodchem.2025.143804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/19/2025] [Accepted: 03/06/2025] [Indexed: 03/16/2025]
Abstract
Rice bran protein fibrils (RBPFs) and chitin nanofibers (CNFs) have great untapped application potential in fat and salt reduction. The present study aims to prepare RBPF-CNF complexes at the optimum conditions and investigate their structures and physicochemical properties. RBPFs and CNFs formed better fiber structures with the higher viscosity and saltiness when heated for 10 h and ultrasound treated for 40 min, respectively. Transmission electron microscopy results suggested that the structure of RBPFs gradually degraded with increasing pH, and the addition of CNFs improved their stability. Analysis of zeta potential, free sulfhydryl, secondary and tertiary structures, surface hydrophobicity and chemical forces confirmed that CNFs increased β-sheet contents in RBPFs, and that electrostatic interactions, hydrophobic interactions and hydrogen bonds dominated between RBPFs and CNFs. Rheological and emulsification showed that the CNFs increased the viscosity, storage modulus (G'), loss modulus (G"), emulsifying activity index and emulsifying stability index of RBPF solution, especially at pH = 5 and RBPF/CNF ratio of 2:1. At this pH and ratio, the release of sodium in vitro, saltiness sensory evaluation and electronic tongue analysis showed that the complex had the highest release content and rate of sodium and strongest saltiness, capable of increasing saltiness by at least 2-fold. Principal component analysis and correlation analysis verified the consistency of sensory evaluation and electronic tongue detection in saltiness analysis. Overall, CNFs improved the structural stability, physicochemical and functional properties of RBPFs. The RBPF-CNF complexes can be used as a novel thickener, emulsifier and saltiness-enhancer to further prepare low-fat and low-salt food.
Collapse
Affiliation(s)
- Yao Feng
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, PR China
| | - Yu Zhang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, PR China; National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, University of Shanghai for Science and Technology, Shanghai, PR China
| | - Kai Huang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, PR China; National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, University of Shanghai for Science and Technology, Shanghai, PR China
| | - Sen Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, PR China; National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, University of Shanghai for Science and Technology, Shanghai, PR China
| | - Hongwei Cao
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, PR China; National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, University of Shanghai for Science and Technology, Shanghai, PR China
| | - Pengxiao Zhang
- Joint Center for Translational Medicine, Southern Medical University Affiliated Fengxian Hospital, Shanghai 201499, PR China
| | - Man Wang
- Joint Center for Translational Medicine, Southern Medical University Affiliated Fengxian Hospital, Shanghai 201499, PR China
| | - Zhenliang Sun
- Joint Center for Translational Medicine, Southern Medical University Affiliated Fengxian Hospital, Shanghai 201499, PR China.
| | - Xiao Guan
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, PR China; National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, University of Shanghai for Science and Technology, Shanghai, PR China.
| |
Collapse
|
2
|
Feng Y, Zhang Y, Huang K, Li S, Cao H, Guan X. Application of fat replacers in low-fat starch-based foods: Type, formulation and action mechanism on food quality. Int J Biol Macromol 2025; 309:142855. [PMID: 40216144 DOI: 10.1016/j.ijbiomac.2025.142855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 03/11/2025] [Accepted: 04/03/2025] [Indexed: 04/17/2025]
Abstract
Fat is an essential component in the processing of starch-based products. However, excessive fat intake is not beneficial to human health. Therefore, the development of fat replacers (FRs) and healthy and delicious low-fat starch-based products has become a research focus. The regulation mechanisms of fat on the quality of starch-based products, and types and formulations of FRs used in starch-based products were summarized. Based on the interaction with starch, the regulation mechanism of FRs on the quality of starch-based products and main quality evaluation parameters of low-fat starch-based products formed by these FRs were discussed. Oil-free systems (particles, polymers, hydrocolloids) and oil-containing systems (emulsions, emulsion gels, oleogels) are the main FRs used in starch-based foods. Their formulations depend mainly on the interaction between the components (polysaccharides, proteins and fats). Regulation mechanisms of FRs on the quality of starch-based products are mainly due to that their addition changes the structure, physicochemical and functional properties of starch. Microstructure, textural, rheological and tribological properties, sensory evaluation, fat digestion and calories, and nutrition are main elements of quality evaluation of low-fat starch-based products containing FRs. Next, it is necessary to systematically explore the regulation mechanism of FRs with different structures and properties on the quality of starch-based products based on molecular simulation and machine learning. More interdisciplinary collaborations, such as molecular chemistry, nutrition and nanotechnology, need to be used to guide the design of FRs and the development of low-fat starch-based products.
Collapse
Affiliation(s)
- Yao Feng
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, PR China
| | - Yu Zhang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, PR China; National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, University of Shanghai for Science and Technology, Shanghai, PR China.
| | - Kai Huang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, PR China; National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, University of Shanghai for Science and Technology, Shanghai, PR China
| | - Sen Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, PR China; National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, University of Shanghai for Science and Technology, Shanghai, PR China
| | - Hongwei Cao
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, PR China; National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, University of Shanghai for Science and Technology, Shanghai, PR China
| | - Xiao Guan
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, PR China; National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, University of Shanghai for Science and Technology, Shanghai, PR China.
| |
Collapse
|
3
|
Kong S, Ma X, Zhen S, Liu Y, Sun F, Yang N. Elucidating the effect of chitosan microgel characteristics on the large amplitude oscillatory shear (LAOS) behavior of their stabilized high internal phase emulsions using the sequence of physical processes (SPP) approach and comparison with mayonnaise. Int J Biol Macromol 2025; 296:139650. [PMID: 39793837 DOI: 10.1016/j.ijbiomac.2025.139650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/26/2024] [Accepted: 01/07/2025] [Indexed: 01/13/2025]
Abstract
Chitosan microgels (h-CSMs) were prepared by cross-linking hydrophobically modified chitosan with sodium phytate (SP). Emulsions stabilized by h-CSMs with different inter-phase fraction, microgel concentration and cross-linking density were studied of their microstructural and rheological properties. In particular, the large amplitude oscillatory shear (LAOS) of the high internal phase emulsions (HIPEs) stabilized by h-CSMs were systematically analyzed using the Fourier transform with Chebyshev polynomials (FTC) and sequence of physical processes (SPP) methods to explore their nonlinear rheological properties. It was found that the HIPEs showed Type III LOAS response with weak strain overshoot depending on the emulsion parameters and microgel characteristics. The FTC method enabled the extraction of nonlinearity measures at limiting conditions (γ → 0, γ → γmax) showing intracycle strain-hardening and intracycle shear thinning of the HIPEs under LOAS. By providing a detailed process of the emulsion microstructure transformation in each oscillation cycle, the SPP analysis showed that the HIPEs underwent a 3-step gradual sequence of physical processes, and magnified the influence of microgel characteristics on the rheology of the HIPEs. Comparing with commercially available traditional and low-fat mayonnaise samples, the h-CSM stabilized HIPEs exhibited higher flow compliance but stronger thixotropic recovery ability.
Collapse
Affiliation(s)
- Songmei Kong
- Glyn O. Phillips Hydrocolloid Research Centre, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Industrial Microbiology in Hubei, Key Laboratory of Fermentation Engineering (Ministry of Education), School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, China
| | - Xuxi Ma
- Glyn O. Phillips Hydrocolloid Research Centre, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Industrial Microbiology in Hubei, Key Laboratory of Fermentation Engineering (Ministry of Education), School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, China
| | - Shiyu Zhen
- Glyn O. Phillips Hydrocolloid Research Centre, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Industrial Microbiology in Hubei, Key Laboratory of Fermentation Engineering (Ministry of Education), School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, China
| | - Yantao Liu
- Glyn O. Phillips Hydrocolloid Research Centre, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Industrial Microbiology in Hubei, Key Laboratory of Fermentation Engineering (Ministry of Education), School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, China; Food Hydrocolloid International Science and Technology Cooperation Base of Hubei Province, Wuhan 430068, China
| | - Fusheng Sun
- Glyn O. Phillips Hydrocolloid Research Centre, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Industrial Microbiology in Hubei, Key Laboratory of Fermentation Engineering (Ministry of Education), School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, China; Food Hydrocolloid International Science and Technology Cooperation Base of Hubei Province, Wuhan 430068, China
| | - Nan Yang
- Glyn O. Phillips Hydrocolloid Research Centre, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Industrial Microbiology in Hubei, Key Laboratory of Fermentation Engineering (Ministry of Education), School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, China; Food Hydrocolloid International Science and Technology Cooperation Base of Hubei Province, Wuhan 430068, China.
| |
Collapse
|
4
|
Aina M, Kuznyetsova D, Baillon F, Sescousse R, Sanchez-Ballester NM, Begu S, Soulairol I, Sauceau M. Impact of disintegrants on rheological properties and printability in SSE 3D printing of immediate-release formulations. Eur J Pharm Sci 2025; 206:107017. [PMID: 39848411 DOI: 10.1016/j.ejps.2025.107017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/12/2024] [Accepted: 01/15/2025] [Indexed: 01/25/2025]
Abstract
This study investigates the effects of disintegrants sodium starch glycolate (SSG) and crospovidone (CP) on the printability, rheological properties, and disintegration time of agar and hydroxypropyl methylcellulose (HPMC)-based formulations designed for semi-solid extrusion. Printability was assessed by measuring the dimensional accuracy of manually extruded filaments. Rheological analysis was performed using oscillatory measurements. Principal component analysis (PCA) and Spearman correlation analysis identified three key components (phase angle, critical strain, and elastic modulus) that explained the total variance in the rheological dataset. A 2 × 32 factorial design was employed to evaluate the impact of CP, SSG, and HPMC on these rheological parameters, as well as on printability and disintegration time. Results indicated that formulations containing HPMC and SSG generally exhibited better printability. Formulations containing CP achieved satisfactory printability only when SSG or HPMC was included. The optimal printability and rheological properties were achieved with formulations containing 5 % CP and 10 % SSG. Linear regression models correlated geometric volumes of the model and pycnometric volumes of printed objects, with validation showing that predicted masses were within a 95 % confidence interval of measured values for various shapes. All formulations demonstrated immediate-release properties, confirming the successful fabrication of personalised immediate-release dosage forms using semi-solid extrusion technology.
Collapse
Affiliation(s)
- Morenikeji Aina
- RAPSODEE, IMT Mines Albi, CNRS, University of Toulouse, 81013 Albi, France.
| | - Darya Kuznyetsova
- RAPSODEE, IMT Mines Albi, CNRS, University of Toulouse, 81013 Albi, France
| | - Fabien Baillon
- RAPSODEE, IMT Mines Albi, CNRS, University of Toulouse, 81013 Albi, France
| | - Romain Sescousse
- RAPSODEE, IMT Mines Albi, CNRS, University of Toulouse, 81013 Albi, France
| | - Noelia M Sanchez-Ballester
- ICGM, University of Montpellier, CNRS, ENSCM, Montpellier, France; Department of Pharmacy, Nîmes University Hospital, Nîmes, France
| | - Sylvie Begu
- ICGM, University of Montpellier, CNRS, ENSCM, Montpellier, France
| | - Ian Soulairol
- ICGM, University of Montpellier, CNRS, ENSCM, Montpellier, France; Department of Pharmacy, Nîmes University Hospital, Nîmes, France
| | - Martial Sauceau
- RAPSODEE, IMT Mines Albi, CNRS, University of Toulouse, 81013 Albi, France
| |
Collapse
|
5
|
Martins AJ, Perdigão L, Gonçalves C, Amado IR, Abreu CS, Vicente AA, Cunha RL, Pastrana LM, Cerqueira MA. Beta-carotene-loaded Oleogels: Morphological analysis, cytotoxicity assessment, in vitro digestion and intestinal permeability. Food Chem 2025; 465:142085. [PMID: 39571441 DOI: 10.1016/j.foodchem.2024.142085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/20/2024] [Accepted: 11/14/2024] [Indexed: 12/18/2024]
Abstract
Composition and structure of oleogels significantly influence their digestive behaviour, impacting triacylglycerol breakdown and the bioavailability of incorporated compounds. Texture profile analysis showed that sterol-based oleogels (STOs) exhibited 20 times higher hardness than beeswax-based oleogels (BWOs), which showed stronger cohesion due to elasticity sustained by adhesive forces. Tribological assessments revealed similar initial coefficients of friction (COF) for both oleogels. However, fluctuations were observed in BWOs and a gradual decrease in STOs over time, enhancing lubrication, while BWOs recorded higher adhesion. These findings provide insights into their distinct digestive behaviour, with both oleogels undergoing structural disintegration and STOs displaying a higher lipolysis degree. Non-cytotoxicity was confirmed under Caco-2 cells. β-carotene bioaccessibility was influenced by the oleogels' structural modification and values of 4.0 ± 0.7 % for STOs and 2.6 ± 1.1 % for BWOs were recorded. Results highlight the need to optimize formulations to improve bioactive's bioavailability, emphasizing the role of structured gels in modulating digestion dynamics.
Collapse
Affiliation(s)
- Artur J Martins
- International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, 4715-330 Braga, Portugal.
| | - Lara Perdigão
- International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, 4715-330 Braga, Portugal; Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Catarina Gonçalves
- International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, 4715-330 Braga, Portugal
| | - Isabel R Amado
- International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, 4715-330 Braga, Portugal
| | - Cristiano S Abreu
- Center for Microelectromechanical Systems (CMEMS-UMinho), University of Minho, Guimarães, Portugal; Physics Department, Porto Superior Engineering Institute, ISEP, Porto 4200-072, Portugal
| | - António A Vicente
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Rosiane L Cunha
- Department of Food Engineering, Faculty of Food Engineering, University of Campinas, UNICAMP, CEP: 13083-862 Campinas, SP, Brazil
| | - Lorenzo M Pastrana
- International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, 4715-330 Braga, Portugal
| | - Miguel A Cerqueira
- International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, 4715-330 Braga, Portugal
| |
Collapse
|
6
|
Zhang R, Liu J, Zheng Z, Cao S, Yan Z, Zhang Y, Zhang T, Liu X. Double network emulsion gel prepared with different polyphenol modified egg white protein: A promising fat substitute for oral processing and fatty taste supplement. Food Chem 2025; 465:142082. [PMID: 39571440 DOI: 10.1016/j.foodchem.2024.142082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/04/2024] [Accepted: 11/14/2024] [Indexed: 12/18/2024]
Abstract
This study investigated the effects of differential modification of the structural flexibility of egg white protein (EWP) by different polyphenols, which in turn enhanced the oral processing properties and fat perception of EWP-based double network emulsion gel (DNEG). After modification with polyphenols, the skeleton of gel became more delicate, which improved the hardness and cohesion of DNEG. This transformation was attributed to the shift from hydrophobic interactions to hydrogen and covalent bonds. Notably, proanthocyanidins (PC) effect was better, which resulted in a 58.5 % increase in oral wettability and a more appropriate oral tribological performance (0.53). Besides, DNEG increased fatty taste perception via the "ball bearing" effect as a fat substitute in sausage. In summary, this study could enhance the refined design of gels and provide ideas for improving the fatty taste of low-fat, healthy foods.
Collapse
Affiliation(s)
- Renzhao Zhang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food and College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Jingbo Liu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food and College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Zhiyuan Zheng
- Jilin Provincial Key Laboratory of Nutrition and Functional Food and College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Sijia Cao
- Jilin Provincial Key Laboratory of Nutrition and Functional Food and College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Zhaohui Yan
- Jilin Provincial Key Laboratory of Nutrition and Functional Food and College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Yudan Zhang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food and College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Ting Zhang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food and College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Xuanting Liu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food and College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| |
Collapse
|
7
|
Du L, Li S, Lan Y, Meng Z. Structure-property relationship of pea protein microgels as fat analogues in Pickering oil-in-water emulsions: effect of salt addition. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:1672-1682. [PMID: 39373186 DOI: 10.1002/jsfa.13945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 09/19/2024] [Accepted: 09/24/2024] [Indexed: 10/08/2024]
Abstract
BACKGROUND The design of plant-based microgels provides a platform for food ingredients to enhance palatability and functionality. This work aimed to explore the modifying effect of salt addition (KCl) on the structure of pea protein microgel particles (PPI MPs), on the interfacial adsorption and characteristics of formed emulsions as fat analogues. RESULTS Salt addition (0-200 mmol L-1) promoted a structural transformation from α-helix to β-sheet, increased the surface hydrophobicity (from 1160.8 to 2280.7), and increased the contact angle (from 56.73° to 96.47°) of PPI MPs. The electrostatic shielding effect led to the tighter packing of MPs with irregular structures and lowered the adsorption energy barrier. Notably, salt-treated PPI MPs could adjust their adsorption state at the interface. The discernible adsorption of PPI MPs with 200 mmol L-1 salt addition that possessed enhanced anti-deformation ability dominated the interfacial stabilization, whereas a relatively rougher stretched continuous interfacial film formed after spreading and deformation of 0 mmol L-1 MPs. A tribological test suggested that emulsion stabilized by MPs at 0 (0.0053) and 80 mmol L-1 (0.0068) had similar friction coefficients to commercial mayonnaise (0.0058), whereas a higher salt concentration (200 mmol L-1) lowered its oral sensation due to the adsorption layer and enhanced the resistance to droplet coalescence during oral processing. CONCLUSION Salt could be a modifier to tune the structure of microgels, and further promote the formation and attributes of emulsions. This study would improve application attributes of PPI MPs in the design of realistic fat analogues. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Liyang Du
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Shaoyang Li
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Yaqi Lan
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Zong Meng
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| |
Collapse
|
8
|
Dong Y, Lan T, Liu Z, Xu Z, Jiang L, Zhang Y, Sui X. Shear, extensional rheology, and tribology of polysaccharide-thickened soy protein-based liquid systems for dysphagia management. Food Chem 2025; 463:141145. [PMID: 39260176 DOI: 10.1016/j.foodchem.2024.141145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/27/2024] [Accepted: 09/03/2024] [Indexed: 09/13/2024]
Abstract
Modifying food texture is a valuable approach to enhancing the quality of life for patients with dysphagia. Incorporating thickened soy protein-based liquid systems (SPLS) into their diet not only improves protein intake but also promotes safer swallowing. However, the properties of thickened SPLS are crucial for safe swallowing, may vary depending on the conformation of the thickened polysaccharides used. In this study, SPLS with different levels of thickening were prepared using xanthan gum, pectin and guar gum. The influence of polysaccharide conformation on the rheological (shear and extensional) and tribological properties of thickened SPLS was investigated. The results revealed that xanthan gum-thickened SPLS exhibiting the highest shear viscosity (110.073 Pa.s) and extensional viscosity (7.405 Pa.s), which increased with polysaccharide concentration. Meanwhile, xanthan gum possessed the strongest lubricating properties. These results shed light on the development of plant protein-based solutions for dysphagia management.
Collapse
Affiliation(s)
- Yabo Dong
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Tian Lan
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Ziyi Liu
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Zejian Xu
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Lianzhou Jiang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Yan Zhang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Xiaonan Sui
- College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
9
|
Yan HY, Zhang SB. Preparation and Characterization of Ultrasonically Modified Peanut Protein-Guar Gum Composite Emulsion Gels for 3D Printing. Gels 2024; 10:828. [PMID: 39727585 DOI: 10.3390/gels10120828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/06/2024] [Accepted: 12/11/2024] [Indexed: 12/28/2024] Open
Abstract
This study aimed to prepare ultrasonically modified peanut protein-guar gum composite emulsion gels for 3D printing. The composition of the composite emulsion gels was determined in single-factor and orthogonal experiments. The results revealed that the optimal composite emulsion gels consisted of 6% peanut protein, 50% oil and 0.2% guar gum. After crushing pretreatment for 45 s, the printing deviation of the composite emulsion gels was reduced to 8.58 ± 0.20%. Moreover, after ultrasonic treatment (200 W for 20 min) of peanut proteins, the obtained composite emulsion gels presented the highest yield stress, hardness and G' values, as well as a denser and more homogeneous microstructure. After protein ultrasonic modification (200 W or 600 W for 20 min), the printing accuracy and self-supporting properties of the composite emulsion gels for printing complex shapes significantly improved, which was attributed to their stronger textural and rheological properties; however, ultrasonically modified peanut protein-guar gum composite emulsion gels were not suitable for printing products with smooth surfaces.
Collapse
Affiliation(s)
- Hong-Yan Yan
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Shao-Bing Zhang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| |
Collapse
|
10
|
Wang Y, Wang X, Guo J, Dong X, Chang X, Wang Z, Xu B, Xu F. Developing animal fat substitute in low-fat meatballs: A strategy to use high internal phase emulsions stabilized by Prinsepia utilis Royle protein. Food Chem 2024; 460:140386. [PMID: 39029367 DOI: 10.1016/j.foodchem.2024.140386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/31/2024] [Accepted: 07/05/2024] [Indexed: 07/21/2024]
Abstract
In promoting healthy diet, developing animal fat substitutes for meat products has been a prominent trend in food science. In this study, Prinsepia utilis Royle protein (PuRP) with amphiphilic property was extracted from waste oil pomace. High internal phase emulsions (HIPEs) were prepared with a 75% oil phase and stabilized with 2% (w/v) PuRP due to their excellent elastic-gel property. Furthermore, the PuRP-HIPEs were used to substitute animal fat in low-fat meatballs. Below 100 mM ionic strength, the uniformly distributed PuRP-HIPEs exhibited an approximate Gaussian size distribution with an average particle size of about 100 μm. The PuRP-HIPEs exhibited good thermodynamic stability and improved the texture of meatballs. Additionally, the PuRP-HIPEs significantly increased the mobile water content in steamed meatballs, resulting in better water retention and distribution than the free-fat and lard-added meatballs. Overall, the PuRP-HIPEs could substitute 100% animal fat in meatballs and maintain their cooking characteristics.
Collapse
Affiliation(s)
- Yu Wang
- School of Food and Biological Engineering, Key Laboratory of Animal Source of Anhui Province, Hefei University of Technology, Hefei 230601, Anhui, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, Anhui, China
| | - Xuefeng Wang
- College of Food Science & Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Jie Guo
- School of Food and Biological Engineering, Key Laboratory of Animal Source of Anhui Province, Hefei University of Technology, Hefei 230601, Anhui, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, Anhui, China
| | - Xinran Dong
- School of Food and Biological Engineering, Key Laboratory of Animal Source of Anhui Province, Hefei University of Technology, Hefei 230601, Anhui, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, Anhui, China
| | - Xianna Chang
- Anhui Qingsong Food Co., Ltd., Hefei 231299, Anhui, China
| | - Zhaoming Wang
- School of Food and Biological Engineering, Key Laboratory of Animal Source of Anhui Province, Hefei University of Technology, Hefei 230601, Anhui, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, Anhui, China
| | - Baocai Xu
- School of Food and Biological Engineering, Key Laboratory of Animal Source of Anhui Province, Hefei University of Technology, Hefei 230601, Anhui, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, Anhui, China
| | - Feiran Xu
- School of Food and Biological Engineering, Key Laboratory of Animal Source of Anhui Province, Hefei University of Technology, Hefei 230601, Anhui, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, Anhui, China.
| |
Collapse
|
11
|
Yang Y, Xu L, Zhang Q, Wang Y, Jiao A, Jin Z. Development and characterisation of a novel bigel based on pea protein hydrogel and rice bran wax oleogel: Enhancement of rheological properties and freeze-thaw stability. Int J Biol Macromol 2024; 282:136606. [PMID: 39414192 DOI: 10.1016/j.ijbiomac.2024.136606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/13/2024] [Accepted: 10/13/2024] [Indexed: 10/18/2024]
Abstract
In this study, a novel pea protein (PP)-based bigel was developed, featuring a high internal phase emulsion. The impact of gelling agent concentration on the gel properties and freeze-thaw stability of the bigel was investigated. The bigel was comprised of two distinct gel phases: an aqueous-phase gel with a covalent network formed by PP and transglutaminase (TGase), and an oil-phase gel with a crystal network structure of rice bran wax (RBW). Microstructural analysis revealed a bi-continuous network structure in the bigel, with network density increasing as TGase and RBW concentrations rose. Rheological analysis showed that storage modulus (G'), apparent viscosity, and structural recovery of the bigel increased with higher TGase and RBW concentrations. Temperature scanning experiments confirmed that the bigel maintained its elastic solid behavior even at elevated temperatures. Optimal sensory properties and low coefficient of friction were achieved at 0.4 % TGase and 7 % RBW concentrations. Additionally, the bigel exhibited notable freeze-thaw stability at TGase and RBW concentrations exceeding 0.2 % and 5 %, respectively. These findings highlight the excellent gelation properties and stability of the PP-RBW-based bigel, suggesting its potential as a fat substitute in the food industry.
Collapse
Affiliation(s)
- Yueyue Yang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Liangyun Xu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Qi Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yihui Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Aiquan Jiao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Zhengyu Jin
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
12
|
Zheng R, Liu HL, Cui NN, Zhou JZ, Sun X, Yin FW, Zhou DY. Cyanide content, nutrient composition, physicochemical properties and sensory quality of flaxseed oil bodies prepared from flaxseeds (Linum usitatissimum L.) treated with different heat treatment methods. Food Res Int 2024; 196:115116. [PMID: 39614580 DOI: 10.1016/j.foodres.2024.115116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 09/10/2024] [Accepted: 09/19/2024] [Indexed: 12/01/2024]
Abstract
Flaxseeds (Linum usitatissimum L.) were pre-treated with different heat treatment methods including steaming (100 °C for 10 min, 20 min or 30 min), roasting (120 °C for 10 min, 20 min or 30 min) and microwave (560 W for 1 min, 2 min or 3 min). Flaxseed oil bodies were prepared from the flaxseeds with and without heat treatment, and the cyanide content, yield rate, nutritional composition, physico properties, rheological behavior, and sensory characteristic were evaluated. These three types of heat treatment methods could effectively reduce the content (1.87-13.98 mg/kg) of toxic cyanide in flaxseed oil bodies. In addition, compared with the flaxseed oil bodies in steaming and roasting treated groups, the flaxseed oil bodies in microwave treated group exhibited higher yield rate (36.37-39.71 %), lower level of lipid oxidation (peroxide value, 6.10-7.10 mmol/kg lipid; thiobarbituric acid reactive substances, 1.99-2.20 mg MDA/kg lipid), higher content of polyunsaturated fatty acids (PUFAs, 63.33-64.22 %), better viscoelasticity, and better appearance color. Therefore, microwave treatment at 560 W with less than 3 min is a suitable preheating method of flaxseeds, thus improving the quality of the obtaind oil bodies.
Collapse
Affiliation(s)
- Rui Zheng
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Key Laboratory for Marine Food Science and Technology, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China.
| | - Hui-Lin Liu
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Key Laboratory for Marine Food Science and Technology, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Nan-Nan Cui
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Key Laboratory for Marine Food Science and Technology, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Jun-Zhuo Zhou
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Key Laboratory for Marine Food Science and Technology, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Xin Sun
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Key Laboratory for Marine Food Science and Technology, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Fa-Wen Yin
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Key Laboratory for Marine Food Science and Technology, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Da-Yong Zhou
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Key Laboratory for Marine Food Science and Technology, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
13
|
Chen D, Lee YY, Tan CP, Wang Y, Qiu C. Pickering Foam Stabilized by Diacylglycerol-Based Solid Lipid Nanoparticles: Effect of Protein Modification. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:19480-19493. [PMID: 39171455 DOI: 10.1021/acs.jafc.4c05495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Pickering foams have great potential for applications in aerated foods, but their foaming ability and physical stability are still far from satisfactory. Herein, solid lipid particles (SLNs) were fabricated by using diacylglycerol of varying acyl chain lengths with modification by a protein. The SLNs showed different crystal polymorphisms and air-water interfacial activity. C14-DAG SLN with a contact angle ∼ 79° formed aqueous foam with supreme stability and high plasticity. Whey protein isolate and sodium caseinate (0.1 wt %) considerably enhanced the foamability and interfacial activity of SLNs and promoted the packing of particles at the bubble surface. However, high protein concentration caused foam destruction due to the competitive adsorption effect. β-sheet increased in protein after adsorption and changed the polymorphism and thermodynamic properties of SLN. The foam collapsing behaviors varied in the presence of protein. The results gave insights into fabricating ultrastable aqueous foams by using high-melting DAG particles. The obtained foams demonstrated good temperature sensitivity and plasticity, which showed promising application prospects in the food and cosmetic fields.
Collapse
Affiliation(s)
- Dechu Chen
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Yee Ying Lee
- School of Science, Monash University Malaysia, 47500 Bandar Sunway, Selangor, Malaysia
| | - Chin Ping Tan
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43300 Serdang, Selangor, Malaysia
| | - Yong Wang
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Chaoying Qiu
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
| |
Collapse
|
14
|
Yu J, Yun M, Li J, Gao Y, Mao L. Development of Oleogel-in-Water High Internal Phase Emulsions with Improved Physicochemical Stability and Their Application in Mayonnaise. Foods 2024; 13:2738. [PMID: 39272503 PMCID: PMC11395701 DOI: 10.3390/foods13172738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/14/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024] Open
Abstract
Egg-free mayonnaise is receiving greater attention due to its potential health benefits. This study used whey protein isolate (WPI) as an emulsifier to develop high internal phase emulsions (HIPEs) based on beeswax (BW) oleogels through a simple one-step method. The effects of WPI, NaCl and sucrose on the physicochemical properties of HIPEs were investigated. A novel simulated mayonnaise was then prepared and characterized. Microstructural observation revealed that WPI enveloped oil droplets at the interface, forming a typical O/W emulsion. Increase in WPI content led to significantly enhanced stability of HIPEs, and HIPEs with 5% WPI had the smallest particle size (11.9 ± 0.18 μm). With the increase in NaCl concentration, particle size was increased and ζ-potential was decreased. Higher sucrose content led to reduced particle size and ζ-potential, and slightly improved stability. Rheological tests indicated solid-like properties and shear-thinning behaviors in all HIPEs. The addition of WPI and sucrose improved the structures and viscosity of HIPEs. Simulated mayonnaises (WE-0.3%, WE-1% and YE) were then prepared based on the above HIPEs. Compared to commercial mayonnaises, the mayonnaises based on HIPEs exhibited higher viscoelastic modulus and similar tribological characteristics, indicating the potential application feasibility of oleogel-based HIPEs in mayonnaise. These findings provided insights into the development of novel and healthier mayonnaise alternatives.
Collapse
Affiliation(s)
- Jingjing Yu
- Key Laboratory of Healthy Beverages, China National Light Industry, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Mingyue Yun
- Key Laboratory of Healthy Beverages, China National Light Industry, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Jia Li
- Key Laboratory of Healthy Beverages, China National Light Industry, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- CAU Sichuan Chengdu Advanced Agricultural Industrial Institute, Chengdu 611430, China
| | - Yanxiang Gao
- Key Laboratory of Healthy Beverages, China National Light Industry, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Like Mao
- Key Laboratory of Healthy Beverages, China National Light Industry, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- CAU Sichuan Chengdu Advanced Agricultural Industrial Institute, Chengdu 611430, China
| |
Collapse
|
15
|
Zhan S, He M, Wu Y, Ouyang J. Improved light and ultraviolet stability of curcumin encapsulated in emulsion gels prepared with corn starch, OSA-starch and whey protein isolate. Food Chem 2024; 446:138803. [PMID: 38412810 DOI: 10.1016/j.foodchem.2024.138803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 01/25/2024] [Accepted: 02/17/2024] [Indexed: 02/29/2024]
Abstract
The objective of this study was to enhance the bioavailability and stability of curcumin (Cur) by encapsulating it in corn starch (CS)/octenylsuccinic acid modified (OSA)-starch-whey protein isolate (WPI) emulsion gels (EGs). As the volume fraction of the oil phase increased, the droplet size and ζ- potential of the EGs decreased. The encapsulation efficiency and bioavailability of Cur in CS/OSA-starch-WPI EGs with a 60% oil ratio were 96.0% and 67.3%, respectively. The release rate of free fatty acid and the bioavailability of Cur from the EGs after digestion were significantly higher compared to Cur dissolved in oil. EGs with an oil phase volume fraction of 75% and 80% demonstrated greater protection against light irradiation but were less effective against UV irradiation compared to EGs with a 60% oil phase volume fraction. Encapsulation in EGs proved to be an effective method for enhancing the bioavailability and stability of Cur.
Collapse
Affiliation(s)
- Siyuan Zhan
- Department of Food Science and Engineering, College of Biological Sciences and Technology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China
| | - Mohe He
- Department of Food Science and Engineering, College of Biological Sciences and Technology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China
| | - Yanwen Wu
- Institute of Analysis and Testing, Beijing Academy of Science and Technology (Beijing Center for Physical and Chemical Analysis), Beijing 100089, China
| | - Jie Ouyang
- Department of Food Science and Engineering, College of Biological Sciences and Technology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
16
|
Lu Y, Zhang Y, Zhang R, Gao Y, Miao S, Mao L. Different interfaces for stabilizing liquid-liquid, liquid-gel and gel-gel emulsions: Design, comparison, and challenges. Food Res Int 2024; 187:114435. [PMID: 38763682 DOI: 10.1016/j.foodres.2024.114435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/23/2024] [Accepted: 04/27/2024] [Indexed: 05/21/2024]
Abstract
Interfaces play essential roles in the stability and functions of emulsion systems. The quick development of novel emulsion systems (e.g., water-water emulsions, water-oleogel emulsions, hydrogel-oleogel emulsions) has brought great progress in interfacial engineering. These new interfaces, which are different from the traditional water-oil interfaces, and are also different from each other, have widened the applications of food emulsions, and also brought in challenges to stabilize the emulsions. We presented a comprehensive summary of various structured interfaces (stabilized by mixed-layers, multilayers, particles, nanodroplets, microgels etc.), and their characteristics, and designing strategies. We also discussed the applicability of these interfaces in stabilizing liquid-liquid (water-oil, water-water, oil-oil, alcohol-oil, etc.), liquid-gel, and gel-gel emulsion systems. Challenges and future research aspects were also proposed regarding interfacial engineering for different emulsions. Emulsions are interface-dominated materials, and the interfaces have dynamic natures, as the compositions and structures are not constant. Biopolymers, particles, nanodroplets, and microgels differed in their capacity to get absorbed onto the interface, to adjust their structures at the interface, to lower interfacial tension, and to stabilize different emulsions. The interactions between the interface and the bulk phases not only affected the properties of the interface, but also the two phases, leading to different functions of the emulsions. These structured interfaces have been used individually or cooperatively to achieve effective stabilization or better applications of different emulsion systems. However, dynamic changes of the interface during digestion are only poorly understood, and it is still challenging to fully characterize the interfaces.
Collapse
Affiliation(s)
- Yao Lu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Food Colloids and Bioprocessing Group, School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK
| | - Yanhui Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Ruoning Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yanxiang Gao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Song Miao
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
| | - Like Mao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
17
|
Liu L, Wang W, Duan S, Liu J, Mo J, Cao Y, Xiao J. Novel Pickering bigels stabilized by whey protein microgels: Interfacial properties, oral sensation and gastrointestinal digestive profiles. Food Res Int 2024; 188:114352. [PMID: 38823826 DOI: 10.1016/j.foodres.2024.114352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/15/2024] [Accepted: 04/17/2024] [Indexed: 06/03/2024]
Abstract
In the ongoing quest to formulate sensory-rich, low-fat products that maintain structural integrity, this work investigated the potential of bigels, especially those created using innovative Pickering techniques. By harnessing the unique properties of whey protein isolate (WPI) and whey protein microgel (WPM) as interfacial stabilizers, WPM-based Pickering bigels exhibited a remarkable particle localization at the interface due to specific intermolecular interactions. The rise in protein concentration not only intensified particle coverage and interface stabilization but also amplified attributes like storage modulus, yield stress, and adhesiveness, owing to enhanced intermolecular forces and a compact gel matrix. Impressively, WPM-based Pickering bigels outshone in practical applications, showcasing exceptional oil retention during freeze-thaw cycles and extended flavor release-a promising indication for frozen food product applications. Furthermore, these bigels underwent a sensory evolution from a lubricious texture at lower concentrations to a stable plateau at higher ones, offering an enriched consumer experience. In a comparative digestibility assessment, WPM-based Pickering bigels demonstrated superior prowess in decelerating the release of free fatty acids, indicating slowed lipid digestion. This study demonstrates the potential to fine-tune oral sensations and digestive profiles in bigels by modulating Pickering particle concentrations.
Collapse
Affiliation(s)
- Lang Liu
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Wenbo Wang
- College of Electronic Engineering, South China Agricultural University, Guangzhou 510642, China
| | - Shenglin Duan
- Beijing key laboratory of the Innovative Development of Functional Staple and the Nutritional Intervention for Chronic Disease, China National Research Institute of Food and Fermentation Industries, Beijing, People's Republic of China
| | - Jia Liu
- Beijing key laboratory of the Innovative Development of Functional Staple and the Nutritional Intervention for Chronic Disease, China National Research Institute of Food and Fermentation Industries, Beijing, People's Republic of China
| | - Jiamei Mo
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Yong Cao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Jie Xiao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, Guangdong, China.
| |
Collapse
|
18
|
Xu L, Wang Y, Yang Y, Qiu C, Jiao A, Jin Z. Pea protein/carboxymethyl cellulose complexes prepared using a pH cycle strategy as stabilizers of high internal phase emulsions for 3D printing. Int J Biol Macromol 2024; 269:131967. [PMID: 38692528 DOI: 10.1016/j.ijbiomac.2024.131967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 04/26/2024] [Accepted: 04/27/2024] [Indexed: 05/03/2024]
Abstract
The development of food-grade high internal phase emulsions (HIPEs) for 3D printing and the replacement of animal fats have attracted considerable attention. In this study, in order to improve the rheological properties and stability of pea protein to prepare HIPE, pea protein/carboxymethyl cellulose (pH-PP/CMC) was prepared and subjected to pH cycle treatment to produce HIPEs. The results showed that pH cycle treatment and CMC significantly reduced the droplet size of HIPEs (from 143.33 to 12.10 μm). At higher CMC concentrations, the interfacial tension of the PP solution decreased from 12.84 to 11.71 mN/m without pH cycle treatment and to 10.79 mN/m with pH cycle treatment. The HIPEs with higher CMC concentrations subjected to pH cycle treatment showed shear thinning behavior and higher viscoelasticity and recovered their solid-like properties after being subjected to 50 % strain, indicating that they could be used for 3D printing. The 3D printing results showed that the pH-PP/CMC HIPE with 0.3 % CMC had the finest structure. Our work provides new insights into developing food-grade HIPEs and facilitating their use in 3D printing inks as nutrient delivery systems and animal fat substitutes.
Collapse
Affiliation(s)
- Liangyun Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province 214122, China
| | - Yihui Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province 214122, China
| | - Yueyue Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province 214122, China
| | - Chao Qiu
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province 214122, China
| | - Aiquan Jiao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China.
| | - Zhengyu Jin
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
19
|
Huang Z, Guo B, Zhang G. External factors affecting the linear and nonlinear rheological behavior of oleogel-based emulsions. Food Chem 2024; 439:138075. [PMID: 38029565 DOI: 10.1016/j.foodchem.2023.138075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/23/2023] [Accepted: 11/23/2023] [Indexed: 12/01/2023]
Abstract
This study reported oleogel-based emulsions (OGEs, W/O) stabilized by carnauba wax. The effects of different external factors (heating temperature, crystallization temperature, and shear application during crystallization) on the microstructure and linear/nonlinear rheological properties of OGEs were investigated. Microstructural observation suggested that the OGEs had a uniform droplet distribution, and the carnauba wax crystals trapped oil in the continuous phase. The gelatinized oil phase allowed the OGEs to have a solid appearance and typical yielding behavior. The small amplitude oscillation shear analysis showed that lower heating temperature, higher crystallization temperature, and suitable shear application resulted in a stronger, more stable, and tighter packed network structure and better resistance to deformation of the OGEs. For nonlinear behavior, the elastic dominant behavior of OGEs transformed into viscous dominant behavior at large strain amplitudes, accompanied by more energy dissipation, strain stiffening, and a transition from shear thickening to shear thinning.
Collapse
Affiliation(s)
- Zhaohua Huang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, Jiangxi, China
| | - Baozhong Guo
- Research Institute of Bird's Nest, Xiamen Yan Palace Seelong Food Co Ltd, Xiamen 361100, Fujian, China
| | - Guowen Zhang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, Jiangxi, China.
| |
Collapse
|
20
|
Yu Y, Li H, Song Y, Mao B, Huang S, Shao Z, Wang D, Yan K, Zhang S. Preparation of Fresh-Keeping Paper Using Clove Essential Oil through Pickering Emulsion and Maintaining the Quality of Postharvest Cherry Tomatoes. Foods 2024; 13:1331. [PMID: 38731701 PMCID: PMC11083675 DOI: 10.3390/foods13091331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
This study focused on developing a Pickering emulsion fresh-keeping paper that contained clove essential oil (CEO). Cherry tomatoes served as the test material for assessing the preservative efficacy of fresh-keeping paper. The results showed that Pickering emulsion had strong stability. Additionally, the fresh-keeping paper had a good antioxidant activity and sustained-release effect on CEO. In terms of the preservation effect, 0.75 wt% CEO Pickering emulsion paper reduced the decay incidence and weight loss of cherry tomatoes during 12-day storage. Fresh-keeping paper could also play a positive role in protecting the sensory index and color difference of tomatoes. It slowed the decline rate of soluble solid concentration (SSC) and titrable acid (TA). The vitamin C (Vc) and hardness of preserved tomatoes using fresh-keeping paper were maintained at a high level. The paper also inhibited the growth of microorganisms significantly. Therefore, 0.75 wt% CEO Pickering emulsion fresh-keeping paper displayed considerable potential for application in the preservation of postharvest fruits and vegetables. It is a novel fruit and vegetable preservation material worthy of development.
Collapse
Affiliation(s)
- Youwei Yu
- College of Food Science, Shanxi Normal University, Taiyuan 030031, China; (H.L.); (Y.S.); (B.M.); (S.H.); (Z.S.); (D.W.); (K.Y.); (S.Z.)
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Zhang Y, Pu Y, Jiang H, Chen L, Shen C, Zhang W, Cao J, Jiang W. Improved sustained-release properties of ginger essential oil in a Pickering emulsion system incorporated in sodium alginate film and delayed postharvest senescence of mango fruits. Food Chem 2024; 435:137534. [PMID: 37769562 DOI: 10.1016/j.foodchem.2023.137534] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/18/2023] [Accepted: 09/18/2023] [Indexed: 10/03/2023]
Abstract
The insufficient water vapor barrier and mechanical capacity of sodium alginate (SA) film limited its application in fruit preservation. Herein, cellulose nanocrystals (CNCs) were used to stabilize Pickering emulsion. Then, we prepared SA composite films. Ginger essential oil (GEO) was loaded as antimicrobials and antioxidants. Finally, the application on mangos were investigated. Compared to coarse emulsion, Pickering emulsion and its film-formation-solution showed more stable system and larger droplet size. The emulsion significantly changed the properties of SA film. Specifically, CNCs improved the thermal, tensile, and barrier properties of the film and GEO enhanced the ultraviolet-visible light barrier capacity. Additionally, the SA/CNC film possessed a homogeneous micromorphology which had a sustained-release effect on GEO, thus maintaining high postharvest quality and long-term bioavailability for mangos. In conclusion, the film prepared via Pickering emulsion showed satisfactory properties which had great potential in fruit preservation.
Collapse
Affiliation(s)
- Yiqin Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Yijing Pu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Haitao Jiang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Luyao Chen
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Chaoyu Shen
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China.
| | - Wanli Zhang
- College of Food Science and Engineering, Hainan University, Haikou 570228, PR China
| | - Jiankang Cao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China.
| | - Weibo Jiang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China.
| |
Collapse
|
22
|
Ren W, Liang H, Liu S, Li Y, Chen Y, Li B, Li J. Formulations and assessments of structure, physical properties, and sensory attributes of soy yogurts: Effect of carboxymethyl cellulose content and degree of substitution. Int J Biol Macromol 2024; 257:128661. [PMID: 38065460 DOI: 10.1016/j.ijbiomac.2023.128661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/28/2023] [Accepted: 12/05/2023] [Indexed: 01/27/2024]
Abstract
Soy yogurts present challenges, including absence of tender and slipperiness mouthfeel, and poor stability. This study aimed to investigate the impacts of carboxymethyl cellulose (CMC) with degrees of substitution of 0.7 (CMC0.7) and 1.2 (CMC1.2) at concentrations ranging from 0 % to 1.1 % on the stability, microstructure, rheology, tribology, and mouthfeel of soy yogurts. As the CMC concentration increased from 0 % to 0.3 %, soy yogurts displayed a coarser microstructure, decreased stability, and increased gel strength. As the concentration of CMC further increased from 0.5 % to 1.1 %, soy yogurts exhibited trends of a smoother microstructure, increased stability, and softer gel strength. Notably, soy yogurts with CMC0.7 demonstrated a superior water holding capacity (WHC) than soy yogurts with CMC1.2. Tribological measurements indicated that soy yogurts with CMC0.7 at a 0.7 % concentration had the lowest coefficient of friction (COF) value among most sliding speeds, showing a 23 % reduction compared to soy yogurts without CMC at a sliding speed of 10 mm/s. Moreover, sensory evaluation showed that soy yogurts with CMC0.7 at a 0.7 % concentration had the highest total score in mouthfeel evaluation. Therefore, the addition of CMC0.7 within the concentration range of 0.5 % to 1.1 % may produce stable and delicate yogurts.
Collapse
Affiliation(s)
- Weiwen Ren
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Hongshan Liang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Shilin Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yan Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yijie Chen
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Bin Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen 518000, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
| | - Jing Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen 518000, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China.
| |
Collapse
|
23
|
Fei S, Li Y, Liu K, Wang H, Abd El-Aty AM, Tan M. Salmon protein gel enhancement for dysphagia diets: Konjac glucomannan and composite emulsions as texture modifiers. Int J Biol Macromol 2024; 258:128805. [PMID: 38104682 DOI: 10.1016/j.ijbiomac.2023.128805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 11/28/2023] [Accepted: 12/12/2023] [Indexed: 12/19/2023]
Abstract
The growing prevalence of dysphagia among the aging population presents a significant challenge. Many highly nutritious foods, like salmon, are often unsuitable for the elderly due to their firm texture when heated. To address this concern, a combination of salmon myofibrillar protein (SMP), Konjac glucomannan (KGM), and different emulsion fillers-such as oil droplets, octenyl succinic anhydride (OSA)-modified potato starch emulsion, and high methoxylated pectin (HMP) emulsions-was selected to enhance the network of salmon protein gels with the aims to create potential applications as dysphagia-friendly foods. The International Dysphagia Dietary Standardization Initiative (IDDSI) test indicated that all gel samples were classified as level 5. The OSA-SMP-KGM gel exhibited notably higher cohesiveness (P < 0.05), reduced adhesion, and enhanced mouthfeel. The OSA-SMP-KGM gel exhibited a smooth surface and excellent water retention (92.4 %), rendering it suitable for individuals with swallowing difficulties, particularly those prone to experiencing dry mouth. The yield stress of OSA-SMP-KGM gel was 594.14 Pa and stable structure was maintained during chewing and swallowing (γe/γv = 62.5). This study serves as a valuable reference for developing salmon-based products that are not only highly nutritious but also fulfill the criteria for a desirable swallowing texture.
Collapse
Affiliation(s)
- Siyuan Fei
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan1, Ganjingzi District, Dalian 116034, Liaoning, China; State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Yu Li
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan1, Ganjingzi District, Dalian 116034, Liaoning, China; State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Kangjing Liu
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan1, Ganjingzi District, Dalian 116034, Liaoning, China; State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Haitao Wang
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan1, Ganjingzi District, Dalian 116034, Liaoning, China; State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - A M Abd El-Aty
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, 12211 Giza, Egypt; Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum 25240, Turkey.
| | - Mingqian Tan
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan1, Ganjingzi District, Dalian 116034, Liaoning, China; State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
24
|
Wei W, Wu M, Ren W, Yu H, Sun D. Preparation of crosslinked starches with enhanced and tunable gel properties by the cooperative crosslinking-extrusion combined modification. Carbohydr Polym 2024; 324:121473. [PMID: 37985039 DOI: 10.1016/j.carbpol.2023.121473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/06/2023] [Accepted: 10/08/2023] [Indexed: 11/22/2023]
Abstract
Due to its safety and palatability, the citric acid crosslinking modification is an excellent way to modify the properties of starch gels. However, the application of this method is restricted by the low degree of crosslinking of gels produced by this method in the hydrogel system. To produce citric acid-crosslinked starch with improved strength and tunable gel characteristics, a novel ion-esterification cooperative crosslinking-extrusion combined (CCEC) modification approach is presented in this study. The linear and nonlinear rheological characteristics of the samples were measured to evaluate the effectiveness of CCEC modification. Findings disclosed that at 0.1 % strain, the elastic modulus of the CCEC-modified starch (SC-0.5Zn2+, G' = 1522.29 ± 36.31) exhibited a significant rise of 387.27 % as compared to the elastic modulus of citric acid-crosslinked starch (SC, G' = 318.29 ± 11.62). Furthermore, changing the cation concentration allowed for efficient control of the gel's rheological characteristics. The samples were characterized by SEM, FTIR, XRD, and XPS. The CCEC-modified gels had a smaller pore size distribution and a denser honeycomb porous structure. The CCEC modification reaction involves ester bonds and electrostatic attraction. This research is essential to elucidate how coupled physicochemical modification techniques affect the manipulation of starch gel characteristics.
Collapse
Affiliation(s)
- Wenguang Wei
- College of Engineering, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Min Wu
- College of Engineering, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing 100083, China.
| | - Weike Ren
- College of Engineering, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Haoze Yu
- College of Engineering, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Dongyu Sun
- College of Engineering, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing 100083, China
| |
Collapse
|
25
|
Zhang Y, Zhang R, Lu Y, Gao Y, Mao L. Effect of simulated saliva on rheological and tribological properties of oleogel-in-water HIPEs during oral processing. J Colloid Interface Sci 2024; 653:1018-1027. [PMID: 37778151 DOI: 10.1016/j.jcis.2023.09.155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 09/11/2023] [Accepted: 09/24/2023] [Indexed: 10/03/2023]
Abstract
HYPOTHESIS High internal phase emulsions (HIPEs) have great potentials in the food industry to control fat consumption. Textural perception of HIPEs during oral processing is strongly influenced by saliva, which has not been systematically investigated. Therefore, we investigated the roles of saliva in the rheological and tribological properties of HIPEs during oral processing. EXPERIMENTS HIPEs (O/W) stabilized by oleogel and a protein were fabricated. Small (SAOS) and large (LAOS) amplitude oscillatory shearing measurements and tribological tests were performed, in combination with structural characterization of the emulsions. FINDINGS Particle size and CLSM observation indicated that saliva induced coalescence of droplets by weakening the interface and more EC resulted in faster clustering. SAOS tests revealed that emulsions mixed with saliva had weaker structural strength and lower resistance to deformation. Particularly in large deformation, the HIPEs mixed with saliva presented an acceleration in the droplet-droplet structure breakdown, which led to the pronounced strain-thinning behavior and energy dissipation. Tribological curves further revealed that the corporation of saliva contributed to the release of oil to reduce friction coefficient.
Collapse
Affiliation(s)
- Yanhui Zhang
- Key Laboratory of Healthy Beverages, China National Light Industry, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Ruoning Zhang
- Key Laboratory of Healthy Beverages, China National Light Industry, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yao Lu
- Key Laboratory of Healthy Beverages, China National Light Industry, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yanxiang Gao
- Key Laboratory of Healthy Beverages, China National Light Industry, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Like Mao
- Key Laboratory of Healthy Beverages, China National Light Industry, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
26
|
Ling M, Huang X, He C, Zhou Z. Tunable rheological properties of high internal phase emulsions stabilized by phosphorylated walnut protein/pectin complexes: The effects of pH conditions, mass ratios, and concentrations. Food Res Int 2024; 175:113670. [PMID: 38129023 DOI: 10.1016/j.foodres.2023.113670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 10/28/2023] [Accepted: 11/03/2023] [Indexed: 12/23/2023]
Abstract
The current study reported high internal phase emulsions (HIPEs) stabilized by phosphorylated walnut protein/pectin complexes (PWPI/Pec) and elucidated how their rheological properties were modulated by pH conditions, mass ratios, and concentrations of the complexes. At pH 3.0, the HIPEs stabilized by PWPI/Pec exhibited smaller oil droplet sizes, as well as higher storage modulus (G') and flow stress, in comparison to those stabilized by the complexes formed at pH 4.0-6.0. These observations can be directly linked to pH-dependent changes in particle size, surface hydrophobicity, and wettability of the PWPI/Pec complexes. Rheological analysis revealed that all generated HIPEs displayed weak strain overshoot behavior, irrespective of pH conditions. Notably, HIPEs stabilized by PWPI/Pec at mass ratios of 2:1 and 4:1 showed enlarged oil droplet sizes, lower G' and flow stress but higher flow strain with unaffected loss factor compared to those stabilized by PWPI/Pec 1:1. However, reducing the concentration of PWPI/Pec led to a simultaneous decrease in G', flow stress, and flow strain, along with a significant increase in the loss factor of the HIPEs. Furthermore, the HIPEs formed with 1% PWPI/Pec 1:1 at pH 3.0 demonstrated excellent stability against heat treatment and long-term storage. These results provide valuable insights into the modulation of rheological characteristics of HIPEs and offer guidance for the application of walnut protein-based stabilizers in HIPE systems.
Collapse
Affiliation(s)
- Min Ling
- School of Food Science and Bioengineering, Xihua University, Chengdu, Sichuan Province 610039, China
| | - Xuan Huang
- School of Food Science and Bioengineering, Xihua University, Chengdu, Sichuan Province 610039, China
| | - Changwei He
- School of Food Science and Bioengineering, Xihua University, Chengdu, Sichuan Province 610039, China
| | - Zheng Zhou
- School of Food Science and Bioengineering, Xihua University, Chengdu, Sichuan Province 610039, China.
| |
Collapse
|
27
|
Yu J, Zhang Y, Zhang R, Gao Y, Mao L. Stabilization of oil-in-water high internal phase emulsions with octenyl succinic acid starch and beeswax oleogel. Int J Biol Macromol 2024; 254:127815. [PMID: 37918613 DOI: 10.1016/j.ijbiomac.2023.127815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/21/2023] [Accepted: 10/30/2023] [Indexed: 11/04/2023]
Abstract
High internal phase emulsions (HIPEs) based on beeswax (BW) oleogels and octenyl succinic acid starch (OSA starch) were prepared by a facile one-step method. Effects of the oleogelation of internal phase on the formation, stability and functionality of the HIPEs were investigated. OSA starch absorbed at the interface allowed high surface charge (|ζ| > 25 mV) of the droplets, and small droplet size (d ≈ 5 m). Microstructural observation suggested that the HIPEs were of O/W type with droplets packed tightly. With the increase in BW content (0-4 %), the particle size (4-7 μm) and ζ-potential (-25 ~ -30 mV) of the HIPEs were first decreased and then increased. Stability analysis revealed that the addition of BW effectively improved emulsion stability against centrifugation, freeze-thawing, changes in pH and ionic strength, and the HIPE with 2 % BW presented the best stability. Rheological tests indicated that the HIPEs with higher content of BW exhibited higher storage modulus, solid-like properties, and shear thinning behaviors. Creep-recovery results implied that the oleogelation enhanced the structure of HIPEs and improved the deformation resistance of the systems. When subjected to light and heat, oleogel-in-water HIPEs showed advantages in protecting β-carotene from degradation, and β-carotene in the HIPEs with 2 % BW had the lowest degradation rate. These findings suggested that gelation of oil phase could improve the stability of HIPEs and the encapsulation capability, which would be meaningful for the development of novel healthy food.
Collapse
Affiliation(s)
- Jingjing Yu
- Key Laboratory of Healthy Beverages, China National Light Industry, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yanhui Zhang
- Key Laboratory of Healthy Beverages, China National Light Industry, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Ruoning Zhang
- Key Laboratory of Healthy Beverages, China National Light Industry, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yanxiang Gao
- Key Laboratory of Healthy Beverages, China National Light Industry, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Like Mao
- Key Laboratory of Healthy Beverages, China National Light Industry, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
28
|
Tian W, Huang Y, Song Z, Abdullah, Yu Y, Liu J, Cao Y, Xiao J. Flexible control of bigel microstructure for enhanced stability and flavor release during oral consumption. Food Res Int 2023; 174:113606. [PMID: 37986533 DOI: 10.1016/j.foodres.2023.113606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/15/2023] [Accepted: 10/16/2023] [Indexed: 11/22/2023]
Abstract
Edible delivery systems such as emulsions and gels that possess flexible oral flavor sensation and comprehensive stability under freeze-thaw processing are highly demanded in the frozen food industry. Bigels were fabricated via emulsification of stearic acid based oleogel with konjac glucomannan (KGM)-gelatin (G) based binary hydrogel. By varing the KGM/G mass ratio (γ) and oleogel/hydrogel volume ratio (φ) of bigels, modulation over the micromorphology, tribology, flavor sensation and cheese stick imitating capacity were achieved. Notably, as φ increased from O4:W6 to O5:W5, the microstructural transformation from oleogel-in-hydrogel to bicontinuous morphology emerged as a remarkable feature. The influence of γ was evident in bicontinuous bigels, significantly enhancing water holding capacity (WHC) by 3.38-fold as γ transitioned from 1KGM:5G to 6KGM:5G during freeze-thaw cycles. φ and γ both played pivotal roles in altering the microstructure and rheological properties of the bigels, enabling customizable release of bioactive components and flavor perception. Oleogel-in-hydrogel bigels effectively prevented bioactive compound leakage during freeze-thaw conditions, while bicontinuous bigels demonstrated sustained flavor release during oral mastication. Release behaviors were dual-controlled by φ and γ, reducing oil-soluble flavor release with increased φ and lowering hydrophilic volatile release with elevated γ. Moreover, bigel-based cheese sticks showcased lower viscosity, higher creep recovery rates, and enhanced mouthfeel during minimal oral chewing, suggesting their potential in mimicking the properties of commercial counterparts. These findings extend insights into bigel design for tailored flavor release and bioactive preservation in food products.
Collapse
Affiliation(s)
- Wenni Tian
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Yushu Huang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Zengliu Song
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Abdullah
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Yuanshan Yu
- Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Sericultural & Argi-Food Research Institute, Guangzhou 510610, China
| | - Jia Liu
- Beijing Key Laboratory of the Innovative Development of Functional Staple and the Nutritional Intervention for Chronic Disease, China National Research Institute of Food and Fermentation Industries, Beijing, China
| | - Yong Cao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Jie Xiao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
29
|
Huang X, Yan C, Xu Y, Ling M, He C, Zhou Z. High internal phase emulsions stabilized by alkaline-extracted walnut protein isolates and their application in food 3D printing. Food Res Int 2023; 169:112858. [PMID: 37254432 DOI: 10.1016/j.foodres.2023.112858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 03/25/2023] [Accepted: 04/17/2023] [Indexed: 06/01/2023]
Abstract
Alkaline-extracted walnut protein isolates showed relatively poor solubility and emulsifying properties in many previous studies. However, whether they can be used as potential emulsifiers to stabilize high internal phase emulsions (HIPEs) remains unknown. Herein, walnut protein isolates were prepared by alkaline extraction from walnut kernels with or without pellicles (named PAWPI and AWPI, respectively). PAWPI conjugated with pellicle polyphenols showed improved solubility and higher antioxidant capacity than AWPI. HIPEs were fabricated via a one-step method using AWPI or PAWPI as the sole protein emulsifier. HIPEs (oil fraction of 0.8, with 0.1% β-carotene) could be stabilized by PAWPI at a relatively low concentration of 0.2% (w/v), while at least 1% (w/v) AWPI was required to effectively stabilize HIPEs. HIPEs stabilized by PAWPI had smaller oil droplet sizes than those stabilized by AWPI. Rheological analysis indicated that PAWPI-stabilized HIPEs showed higher viscosity and better viscoelasticity than AWPI-stabilized HIPEs. Large-amplitude oscillation shearing analysis suggested that PAWPI-stabilized HIPEs were stiffer but more brittle than AWPI-stabilized HIPEs. Moreover, both PAWPI- and AWPI-stabilized HIPEs exhibited good storage stability and were relatively stable against heat treatment and ionic strength. PAWPI-stabilized HIPEs showed a higher protective capacity for encapsulated β-carotene than AWPI-stabilized HIPEs. In addition, PAWPI-stabilized HIPEs showed good 3D printability and could be used as a promising edible ink.
Collapse
Affiliation(s)
- Xuan Huang
- School of Food Science and Bioengineering, Xihua University, Chengdu 610039, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China
| | - Chunjun Yan
- School of Food Science and Bioengineering, Xihua University, Chengdu 610039, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China
| | - Yanfei Xu
- School of Food Science and Bioengineering, Xihua University, Chengdu 610039, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China
| | - Min Ling
- School of Food Science and Bioengineering, Xihua University, Chengdu 610039, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China
| | - Changwei He
- School of Food Science and Bioengineering, Xihua University, Chengdu 610039, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China
| | - Zheng Zhou
- School of Food Science and Bioengineering, Xihua University, Chengdu 610039, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China.
| |
Collapse
|
30
|
Effect of emulsifier HLB on aerated emulsions: Stability, interfacial behavior, and aeration properties. J FOOD ENG 2023. [DOI: 10.1016/j.jfoodeng.2023.111505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
|
31
|
Kuang Y, Zhao S, Liu P, Liu M, Wu K, Liu Y, Deng P, Li C, Jiang F. Schiff base type casein-konjac glucomannan conjugates with improved stability and emulsifying properties via mild covalent cross-linking. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
32
|
Zhang R, Zhang Y, Yu J, Gao Y, Mao L. Enhanced freeze-thawing stability of water-in-oil pickering emulsions stabilized by ethylcellulose nanoparticles and oleogels. Carbohydr Polym 2023; 312:120814. [PMID: 37059542 DOI: 10.1016/j.carbpol.2023.120814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/09/2023] [Accepted: 03/12/2023] [Indexed: 03/19/2023]
Abstract
This study developed water-in-oil (W/O) Pickering emulsions stabilized by ethylcellulose (EC) nanoparticles and EC oleogels, which presented significantly improved freeze-thawing (F/T) stability. Microstructural observation suggested EC nanoparticles were distributed at the interface and within the water droplets, and the EC oleogel trapped oil in the continuous phase. Freezing and melting temperatures of water in the emulsions with more EC nanoparticles were lowered and the corresponding enthalpy values were reduced. F/T led to lower water binding capacity but higher oil binding capacity of the emulsions, compared to the initial emulsions. Low field-nuclear magnetic resonance confirmed the increased mobility of water but decreased mobility of oil in the emulsions after F/T. Both linear and nonlinear rheological properties proved that emulsions exhibited higher strength and higher viscosity after F/T. The widened area of the elastic and viscous Lissajous plots with more nanoparticles suggested the viscosity and elasticity of emulsions were increased.
Collapse
Affiliation(s)
- Ruoning Zhang
- Key Laboratory of Healthy Beverages, China National Light Industry, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yanhui Zhang
- Key Laboratory of Healthy Beverages, China National Light Industry, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Jingjing Yu
- Key Laboratory of Healthy Beverages, China National Light Industry, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Yanxiang Gao
- Key Laboratory of Healthy Beverages, China National Light Industry, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Like Mao
- Key Laboratory of Healthy Beverages, China National Light Industry, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
33
|
Oral sensation and gastrointestinal digestive profiles of bigels tuned by the mass ratio of konjac glucomannan to gelatin in the binary hydrogel matrix. Carbohydr Polym 2023; 312:120765. [PMID: 37059518 DOI: 10.1016/j.carbpol.2023.120765] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 02/13/2023] [Accepted: 02/26/2023] [Indexed: 03/08/2023]
Abstract
Bigels with tunable oral sensation and controlled gastrointestinal digestive profiles are highly demanded in the food industry. A binary hydrogel consisting of different mass ratio of konjac glucomannan to gelatin (φ) was designed to fabricate bigels with stearic acid oleogel. The impacts of φ on the structural, rheological, tribological, flavor release, and delivery properties of bigels were investigated. Structural transition of bigels from hydrogel-in-oleogel to bi-continuous, and then to oleogel-in-hydrogel type, as φ increased from 0.6 to 0.8, and then to 1.0-1.2. Enhanced storage modulus and yield stress were achieved along with the increased φ, while the structure-recovery properties of bigel decreased with increased φ. Under all the tested φ, the viscoelastic modulus and viscosity decreased significantly at oral temperatures but maintained the gel state, and the friction coefficient increased along with the increased φ under high chewing degree. Flexible control over the swelling, the lipid digestion and the release of lipophilic cargos were also observed, with the total release of free fatty acids and quercetin significantly reduced with the increased φ. This study presents a novel manipulation strategy to control oral sensation and gastrointestinal digestive profiles of bigels via tuning the fraction of konjac glucomannan in the binary hydrogel.
Collapse
|
34
|
Novel high internal phase oleogels-in-water pickering emulsions stabilized solely by whey protein isolate for 3D printing and fucoxanthin delivery. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
35
|
Shu X, Wei Y, Luo X, Liu J, Mao L, Yuan F, Gao Y. κ-Carrageenan/konjac glucomannan composite hydrogel filled with rhamnolipid-stabilized nanostructured lipid carrier: Improvement of structure and properties. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
36
|
Oral bio-interfaces: Properties and functional roles of salivary multilayer in food oral processing. Trends Food Sci Technol 2023. [DOI: 10.1016/j.tifs.2023.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
37
|
Oleogels-Innovative Technological Solution for the Nutritional Improvement of Meat Products. Foods 2022; 12:foods12010131. [PMID: 36613347 PMCID: PMC9818335 DOI: 10.3390/foods12010131] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/12/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Food products contain important quantities of fats, which include saturated and/or unsaturated fatty acids. Because of a proven relationship between saturated fat consumption and the appearance of several diseases, an actual trend is to eliminate them from foodstuffs by finding solutions for integrating other healthier fats with high stability and solid-like structure. Polyunsaturated vegetable oils are healthier for the human diet, but their liquid consistency can lead to a weak texture or oil drain if directly introduced into foods during technological processes. Lately, the use of oleogels that are obtained through the solidification of liquid oils by using edible oleogelators, showed encouraging results as fat replacers in several types of foods. In particular, for meat products, studies regarding successful oleogel integration in burgers, meat batters, pâtés, frankfurters, fermented and bologna sausages have been noted, in order to improve their nutritional profile and make them healthier by substituting for animal fats. The present review aims to summarize the newest trends regarding the use of oleogels in meat products. However, further research on the compatibility between different oil-oleogelator formulations and meat product components is needed, as it is extremely important to obtain appropriate compositions with adequate behavior under the processing conditions.
Collapse
|
38
|
The Role of Starch in Shaping the Rheo-Mechanical Properties of Fat-in-Water Emulsions. POLYSACCHARIDES 2022. [DOI: 10.3390/polysaccharides3040047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The DMA technique was used to conduct experiments on the rheo-mechanical properties of emulsified bovine fat meat products stabilised with potato starch. Starch gels with starch concentrations corresponding to the concentration of starch in water in the emulsions under analysis were used as control systems. The research showed that the rheo-mechanical properties of starch gels and starch–fat gels result from the conformational changes occurring within the structural elements of their spatial network. In starch gels, segments formed by complex associations of amylose chains are structural elements, whereas in starch–fat gels (emulsions) these are additionally amylose–fat complexes. Changes occurring during progressive retrogradation increase the degree of cross-linking in them. In starch gels, they are conditioned by the starch concentration, whereas in emulsions they are conditioned by the concentration of starch and the presence of fat. The parameters obtained by adjusting the Avrami equation to the data obtained with the DMA method enabled the determination of three forms of organisation of the dispersion structure of starch–fat systems. Each of these forms of structure organisation is conditioned by the concentration of starch in the emulsion system.
Collapse
|
39
|
Gao H, Huang X, Xie Y, Fang S, Chen W, Zhang K, Chen X, Zou L, Liu W. Improving the gastrointestinal activity of probiotics through encapsulation within biphasic gel water-in-oil emulsions. Food Funct 2022; 13:11455-11466. [PMID: 36148831 DOI: 10.1039/d2fo01939f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The development of probiotics encapsulation strategies has always been a hot topic due to the high sensitivity of probiotics to processing, storage and the gastrointestinal environment. In this study, water in oil (W/O) emulsions of single-phase or dual-phase gels were constructed through the water phase, oil phase alone or all gels. And the W/O emulsions were used to encapsulate Bifidobacterium lactis V9. The effects of water, oil and biphasic gels on the physicochemical properties of the emulsion and the probiotic activity were investigated. Water, oil and biphasic gels contribute to the stability of emulsions. Oil-phase gels make the emulsion form a solid-like texture, while water-phase gels have no significant effect on the liquidity of the emulsion. The microscopic image shows that the probiotics were completely encapsulated in the internal aqueous phase due to the excellent water affinity of probiotic powder. In addition, all W/O emulsions retain higher probiotic activity, which is attributed to good physical isolation during the gastric phase, while oil-phase and biphasic gel emulsions have high probiotic activity after intestinal digestion due to reduced lipid digestion by oil-phase gels. A liquid or solid-state encapsulated probiotic emulsion has been developed and can be used as a coating sauce, solid fat, etc., which can provide additional ideas for probiotic encapsulation systems and functional food development.
Collapse
Affiliation(s)
- Hongxia Gao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, 330047, China.
| | - Xin Huang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, 330047, China.
| | - Youfa Xie
- Jiangzhong Pharmaceutical Co. LTD, Nanchang, 330041, Jiangxi, PR China
| | - Suqiong Fang
- Sirio Pharma Co., Ltd., Shantou, Guangdong 515041, China
| | - Wenrong Chen
- Sirio Pharma Co., Ltd., Shantou, Guangdong 515041, China
| | - Kui Zhang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, 330047, China.
| | - Xing Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, 330047, China.
| | - Liqiang Zou
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, 330047, China.
| | - Wei Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, 330047, China. .,National R&D Center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang, Jiangxi, 330022, China
| |
Collapse
|
40
|
Jie Y, Chen F. Progress in the Application of Food-Grade Emulsions. Foods 2022; 11:2883. [PMID: 36141011 PMCID: PMC9498284 DOI: 10.3390/foods11182883] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/07/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
The detailed investigation of food-grade emulsions, which possess considerable structural and functional advantages, remains ongoing to enhance our understanding of these dispersion systems and to expand their application scope. This work reviews the applications of food-grade emulsions on the dispersed phase, interface structure, and macroscopic scales; further, it discusses the corresponding factors of influence, the selection and design of food dispersion systems, and the expansion of their application scope. Specifically, applications on the dispersed-phase scale mainly include delivery by soft matter carriers and auxiliary extraction/separation, while applications on the scale of the interface structure involve biphasic systems for enzymatic catalysis and systems that can influence substance digestion/absorption, washing, and disinfection. Future research on these scales should therefore focus on surface-active substances, real interface structure compositions, and the design of interface layers with antioxidant properties. By contrast, applications on the macroscopic scale mainly include the design of soft materials for structured food, in addition to various material applications and other emerging uses. In this case, future research should focus on the interactions between emulsion systems and food ingredients, the effects of food process engineering, safety, nutrition, and metabolism. Considering the ongoing research in this field, we believe that this review will be useful for researchers aiming to explore the applications of food-grade emulsions.
Collapse
Affiliation(s)
| | - Fusheng Chen
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| |
Collapse
|
41
|
Rheology and Tribology of Ethylcellulose-Based Oleogels and W/O Emulsions as Fat Substitutes: Role of Glycerol Monostearate. Foods 2022; 11:foods11152364. [PMID: 35954132 PMCID: PMC9368340 DOI: 10.3390/foods11152364] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/01/2022] [Accepted: 08/05/2022] [Indexed: 11/16/2022] Open
Abstract
Rheological and tribological properties of oleogels and water-in-oil (W/O) emulsions are important for application in fat substitutes. This study investigated the roles of glycerol monostearate (GMS) in tailoring the structural, rheological and tribological properties of ethylcellulose (EC)-based oleogels and W/O emulsions as potential fat substitutes. The addition of GMS contributed to more round and compact oil pores in oleogel networks. The oleogel with 5% GMS had higher crystallinity, leading to solid state (lower tanδ value), mechanical reversibility (higher thixotropic recovery), but a brittle (lower critical strain) structure in the samples. GMS gave the oleogels and emulsions higher oil binding capacity, storage modulus and yield stress. Under oral processing conditions, GMS addition contributed to higher textural attributes and viscosity. Friction coefficients in mixed and boundary regions of oleogels and emulsions were reduced with the increase in GMS content from 0~2%, but increased with 5% GMS. Rheological and tribological properties of lard, mayonnaise and cream cheese can be mimicked by EC oleogels with 5% GMS, or emulsions with 2% GMS and 2-5% GMS, respectively. The study showed the potentials of oleogel and W/O emulsions in designing low-fat products by tuning the structures for healthier and better sensory attributes.
Collapse
|
42
|
Sun D, Wu M, Zhou C, Wang B. Transformation of high moisture extrusion on pea protein isolate in melting zone during: From the aspects of the rheological property, physicochemical attributes and modification mechanism. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|