1
|
Shu M, Fan L, Zhang J, Li J. Research progress of water-in-oil emulsion gelated with internal aqueous phase: gel factors, gel mechanism, application fields, and future direction of development. Crit Rev Food Sci Nutr 2023; 64:6055-6072. [PMID: 36591896 DOI: 10.1080/10408398.2022.2161994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The W/O emulsion is a promising system. Its special structure can keep the sensory properties of fat while reducing the fat content. Improving the stability and physical properties of W/O emulsions is generally oriented toward outer oil-phase modified oil gels and inner water-phase modified inner hydrogels. In this paper, the research progress of internal aqueous gel was reviewed, and some gel factors suitable for internal aqueous gel and the gel mechanism of main gel factors were discussed. The advantages of this internal aqueous gel emulsion system allow its use in the field of fat substitutes and encapsulating substances. Finally, some shortcomings and possible research directions in the future were proposed, which would provide a theoretical basis for the further development of internal water-phase gelled W/O emulsion in the future.
Collapse
Affiliation(s)
- Mingjun Shu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Liuping Fan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jiaxiang Zhang
- Shandong Food Ferment Industry Research & Design Institute, Qilu University of Technology, Jinan, China
| | - Jinwei Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
2
|
Duan F, Zhang Y, Wang Y, Zhang X, Zhao W, Zhang H. Study on stability of grape seed oil/rice hydrolyzed protein emulsion. INTERNATIONAL JOURNAL OF FOOD ENGINEERING 2022. [DOI: 10.1515/ijfe-2021-0270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
In this study, the stability mechanism of grape seed oil/rice hydrolyzed protein emulsion was studied. The grape seed oil (10% v/v) and rice hydrolyzed protein (2% w/v) were homogenized under high pressure to prepare the emulsion. It was observed by CLSM and Multiple light scatterometer that the emulsion had long-term storage stability, and the average particle size of droplets was 0.984–1.363 µm. ζ-potential ranged from −37.733 mV to −25.633 mV. It is found that the emulsion has strong resistance to temperature, ions and other environmental factors from the macroscopic and microscopic structure, and no emulsion stratification phenomenon occurs. The composite emulsion can be used in the field of food industry and fine chemical industry, which can provide nutrition and functionality of products, its research has certain value and has a wide space for development.
Collapse
Affiliation(s)
- Fangyu Duan
- College of Food Science and Engineering , Jilin Agricultural University , Changchun 130118 , Jilin , China
| | - Ying Zhang
- College of Food Science and Engineering , Jilin Agricultural University , Changchun 130118 , Jilin , China
| | - Yue Wang
- College of Food Science and Engineering , Jilin Agricultural University , Changchun 130118 , Jilin , China
| | - Xu Zhang
- College of Food Science and Engineering , Jilin Agricultural University , Changchun 130118 , Jilin , China
| | - Wei Zhao
- College of Food Science and Engineering , Jilin Agricultural University , Changchun 130118 , Jilin , China
| | - Hao Zhang
- College of Food Science and Engineering , Jilin Agricultural University , Changchun 130118 , Jilin , China
| |
Collapse
|
3
|
Wang M, Yan W, Zhou Y, Fan L, Liu Y, Li J. Progress in the application of lecithins in water-in-oil emulsions. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.10.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
4
|
Smułek W, Siejak P, Fathordoobady F, Masewicz Ł, Guo Y, Jarzębska M, Kitts DD, Kowalczewski PŁ, Baranowska HM, Stangierski J, Szwajca A, Pratap-Singh A, Jarzębski M. Whey Proteins as a Potential Co-Surfactant with Aesculus hippocastanum L. as a Stabilizer in Nanoemulsions Derived from Hempseed Oil. Molecules 2021; 26:molecules26195856. [PMID: 34641403 PMCID: PMC8510466 DOI: 10.3390/molecules26195856] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/07/2021] [Accepted: 09/20/2021] [Indexed: 12/19/2022] Open
Abstract
The use of natural surfactants including plant extracts, plant hydrocolloids and proteins in nanoemulsion systems has received commercial interest due to demonstrated safety of use and potential health benefits of plant products. In this study, a whey protein isolate (WPI) from a byproduct of cheese production was used to stabilize a nanoemulsion formulation that contained hempseed oil and the Aesculus hippocastanum L. extract (AHE). A Box-Behnken experimental design was used to set the formulation criteria and the optimal nanoemulsion conditions, used subsequently in follow-up experiments that measured specifically emulsion droplet size distribution, stability tests and visual quality. Regression analysis showed that the concentration of HSO and the interaction between HSO and the WPI were the most significant factors affecting the emulsion polydispersity index and droplet size (nm) (p < 0.05). Rheological tests, Fourier transform infrared spectroscopy (FTIR) analysis and L*a*b* color parameters were also taken to characterize the physicochemical properties of the emulsions. Emulsion systems with a higher concentration of the AHE had a potential metabolic activity up to 84% in a microbiological assay. It can be concluded from our results that the nanoemulsion system described herein is a safe and stable formulation with potential biological activity and health benefits that complement its use in the food industry.
Collapse
Affiliation(s)
- Wojciech Smułek
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60-695 Poznań, Poland;
| | - Przemysław Siejak
- Department of Physics and Biophysics, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Wojska Polskiego 38/42, 60-637 Poznań, Poland; (P.S.); (Ł.M.); (H.M.B.)
| | - Farahnaz Fathordoobady
- Food, Nutrition and Health Program, Faculty of Land & Food Systems, The University of British Columbia, 2205 East Mall, Vancouver, BC V6T 1Z4, Canada; (F.F.); (Y.G.); (D.D.K.)
| | - Łukasz Masewicz
- Department of Physics and Biophysics, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Wojska Polskiego 38/42, 60-637 Poznań, Poland; (P.S.); (Ł.M.); (H.M.B.)
| | - Yigong Guo
- Food, Nutrition and Health Program, Faculty of Land & Food Systems, The University of British Columbia, 2205 East Mall, Vancouver, BC V6T 1Z4, Canada; (F.F.); (Y.G.); (D.D.K.)
| | | | - David D. Kitts
- Food, Nutrition and Health Program, Faculty of Land & Food Systems, The University of British Columbia, 2205 East Mall, Vancouver, BC V6T 1Z4, Canada; (F.F.); (Y.G.); (D.D.K.)
| | - Przemysław Łukasz Kowalczewski
- Department of Food Technology of Plant Origin, Poznań University of Life Sciences, 31 Wojska Polskiego St., 60-624 Poznań, Poland;
| | - Hanna Maria Baranowska
- Department of Physics and Biophysics, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Wojska Polskiego 38/42, 60-637 Poznań, Poland; (P.S.); (Ł.M.); (H.M.B.)
| | - Jerzy Stangierski
- Department of Food Quality and Safety Management, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Wojska Polskiego 31/33, 60-624 Poznań, Poland;
| | - Anna Szwajca
- Department of Synthesis and Structure of Organic Compounds, Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland;
| | - Anubhav Pratap-Singh
- Food, Nutrition and Health Program, Faculty of Land & Food Systems, The University of British Columbia, 2205 East Mall, Vancouver, BC V6T 1Z4, Canada; (F.F.); (Y.G.); (D.D.K.)
- Correspondence: (A.P.-S.); (M.J.)
| | - Maciej Jarzębski
- Department of Physics and Biophysics, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Wojska Polskiego 38/42, 60-637 Poznań, Poland; (P.S.); (Ł.M.); (H.M.B.)
- Correspondence: (A.P.-S.); (M.J.)
| |
Collapse
|
5
|
Hong X, Zhao Q, Liu Y, Li J. Recent advances on food-grade water-in-oil emulsions: Instability mechanism, fabrication, characterization, application, and research trends. Crit Rev Food Sci Nutr 2021; 63:1406-1436. [PMID: 34387517 DOI: 10.1080/10408398.2021.1964063] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Owing to their promising application prospects, water-in-oil (W/O) emulsions have aroused continuous attention in recent years. However, long-term stability of W/O emulsions remains a particularly challenging problem in colloid science. With the increasing demand of consumers for natural, green, and healthy foods, the heavy reliance on chemically synthesized surfactants to achieve long-term stability has become the key technical defect restricting the application of W/O emulsions in food. To design and manufacture W/O emulsions with long-term stability and clean label, a comprehensive understanding of the fundamentals of the W/O emulsion system is required. This review aims to demystify the field of W/O emulsions and update its current research progress. We first provide a summary on the essential basic knowledge regarding the instability mechanisms, including physical and chemical instability in W/O emulsions. Then, the formulation of the W/O emulsion system is introduced, particularly focusing on the use of natural stabilizers. Besides, the characterization and application of W/O emulsions are also discussed. Finally, we propose promising research trends, including (1) developing W/O high internal phase emulsions (HIPEs) as fat mimetic and substitute, (2) promising formulation routine for long-term stable double emulsions, and (3) searching for novel plant-derived stabilizers of W/O emulsions.
Collapse
Affiliation(s)
- Xin Hong
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Qiaoli Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Yuanfa Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Jinwei Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| |
Collapse
|
6
|
Effect of Water Content and Pectin on the Viscoelastic Improvement of Water-in-Canola Oil Emulsions. FLUIDS 2021. [DOI: 10.3390/fluids6060228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This study aimed to investigate gelation in glycerol monooleate (GMO)-stabilized water-in-canola oil (W/CO) emulsions by increasing water content (20–50 wt.%) and the addition of low methoxyl pectin (LMP) in the aqueous phase. A constant ratio of GMO to water was used to keep a similar droplet size in all emulsions. Hydrogenated soybean oil (7 wt.%) was used to provide network stabilization in the continuous phase. All fresh emulsions with LMP in the aqueous phase formed a stable and self-supported matrix with higher viscosity and gel strength than emulsions without LMP. Emulsion viscosity and gel strength increased with an increase in water content. All emulsions showed gel-like properties (storage moduli (G’) > loss moduli (G’’)) related to the presence of LMP in the aqueous phase and increased water content. Freeze/thaw analysis using a differential scanning calorimeter showed improved stability of the water droplets in the presence of LMP in the aqueous phase. This study demonstrated the presence of LMP in the aqueous phase, its interaction with GMO at the interface, and fat crystals in the continuous phase that could support the water droplets’ aggregation to obtain stable elastic W/CO emulsions that could be used as low-fat table spreads.
Collapse
|
7
|
Ge A, Iqbal S, Kirk TV, Chen XD. Modulating the rheological properties of oil-in-water emulsions using controlled WPI-polysaccharide aggregation in aqueous phases. J FOOD ENG 2021. [DOI: 10.1016/j.jfoodeng.2021.110488] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
8
|
Iqbal S, Ayyub A, Iqbal H, Chen XD. Protein microspheres as structuring agents in lipids: potential for reduction of total and saturated fat in food products. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:820-830. [PMID: 32629545 DOI: 10.1002/jsfa.10645] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 06/20/2020] [Accepted: 07/06/2020] [Indexed: 06/11/2023]
Abstract
Excess consumption of total and saturated fats is linked to the development of chronic diseases, such as obesity, heart disease, diabetes, and cancer. There is therefore considerable interest in the development of foods containing lower levels of total and saturated fats, but that still have the same desirable physicochemical and sensory characteristics as the original foods. Solid fats normally contribute a number of key functional attributes to foods due to their ability to form crystalline networks that alter texture (such as elasticity, plasticity, and spreadability) and appearance (such as opacity and creaminess). The aim of this review is to provide an overview and to discuss the potential applications of food proteins as fat structuring agents that may be able to offer some of the desirable attributes normally supplied by saturated and trans fats. Previous studies have shown that globular proteins (such as whey proteins) trapped inside water-in-oil emulsions form protein microspheres when they are thermally denatured, which leads to the creation of highly viscous or solid-like lipid phases, having higher rheological properties. These protein microspheres may therefore be useful for the development of reduced fat margarines and spreads with reduced level of saturated/trans-fat contents. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Shahid Iqbal
- Life Quality Engineering Interest Group, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, China
- Department of Food Science, University of Massachusetts, Amherst, MA, USA
- Institute of Chemical Sciences, Gomal University, Dera Ismail Khan, Pakistan
| | - Azhar Ayyub
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, China
| | - Haroon Iqbal
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, and College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Xiao Dong Chen
- Life Quality Engineering Interest Group, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, China
| |
Collapse
|
9
|
Water-in-oil emulsions stabilized by surfactants, biopolymers and/or particles: a review. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.07.028] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
10
|
Abstract
Tea (Camelia sinensis L.) is one of the main beverages known and consumed all around the world. Quality of tea is not only linked to the raw material but also to the processing steps that influence on the biochemical and sensory characteristics of each type of tea. This overview is focused on the differences in the production and composition of the main types of teas present in the market, highlighting not only their chemical and sensory characteristics, but also the importance of this plant from the food science viewpoint related to its several applications.
Collapse
|
11
|
|
12
|
Iqbal S, Xu Z, Huang H, Chen XD. Controlling the rheological properties of oil phases using controlled protein-polysaccharide aggregation and heteroaggregation in water-in-oil emulsions. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2019.05.028] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
13
|
Structuring of water-in-oil emulsions using controlled aggregation of polysaccharide in aqueous phases. J FOOD ENG 2019. [DOI: 10.1016/j.jfoodeng.2019.04.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
14
|
Zhu Q, Pan Y, Jia X, Li J, Zhang M, Yin L. Review on the Stability Mechanism and Application of Water‐in‐Oil Emulsions Encapsulating Various Additives. Compr Rev Food Sci Food Saf 2019; 18:1660-1675. [DOI: 10.1111/1541-4337.12482] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 06/08/2019] [Accepted: 07/05/2019] [Indexed: 12/30/2022]
Affiliation(s)
- Qiaomei Zhu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional EngineeringChina Agricultural Univ. Beijing China
- Key Laboratory of Food Nutrition and Safety (Tianjin Univ. of Science & Technology)Ministry of Education Tianjin 300457 China
| | - Yijun Pan
- Dept. of Food Science, RutgersThe State Univ. of New Jersey 65 Dudley Rd. New Brunswick NJ08901 USA
| | - Xin Jia
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional EngineeringChina Agricultural Univ. Beijing China
| | - Jinlong Li
- Beijing Advanced Innovation Center for Food Nutrition and Human HealthBeijing Technology and Business Univ. Beijing China
| | - Min Zhang
- Key Laboratory of Food Nutrition and Safety (Tianjin Univ. of Science & Technology)Ministry of Education Tianjin 300457 China
| | - Lijun Yin
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional EngineeringChina Agricultural Univ. Beijing China
| |
Collapse
|
15
|
Koroleva M, Tokarev A, Yurtov E. Simulation of flocculation in W/O emulsions and experimental study. Colloids Surf A Physicochem Eng Asp 2015. [DOI: 10.1016/j.colsurfa.2015.05.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
16
|
Controlling W/O/W multiple emulsion microstructure by osmotic swelling and internal protein gelation. Food Res Int 2013. [DOI: 10.1016/j.foodres.2013.09.035] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
17
|
Iqbal S, Baloch MK, Hameed G, Bano A. Impact of Various Parameters Over the Stability of Water-in-Vegetable Oil Emulsion. J DISPER SCI TECHNOL 2013. [DOI: 10.1080/01932691.2012.743307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
18
|
Lante A, Friso D. Oxidative stability and rheological properties of nanoemulsions with ultrasonic extracted green tea infusion. Food Res Int 2013. [DOI: 10.1016/j.foodres.2013.07.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
19
|
Iqbal S, Hameed G, Baloch MK, McClements DJ. Structuring of lipid phases using controlled heteroaggregation of protein microspheres in water-in-oil emulsions. J FOOD ENG 2013. [DOI: 10.1016/j.jfoodeng.2012.10.044] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
20
|
Iqbal S, Hameed G, Baloch MK, McClements DJ. Structuring lipids by aggregation of acidic protein microspheres in W/O emulsions. Lebensm Wiss Technol 2013. [DOI: 10.1016/j.lwt.2012.10.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|