1
|
Das S, Maurya A, Singh VK, Chaudhari AK, Singh BK, Dwivedy AK, Dubey NK. Chitosan nanoemulsion incorporated with Carum carvi essential oil as ecofriendly alternative for mitigation of aflatoxin B 1 contamination in stored herbal raw materials. Int J Biol Macromol 2024; 270:132248. [PMID: 38729502 DOI: 10.1016/j.ijbiomac.2024.132248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/27/2024] [Accepted: 05/07/2024] [Indexed: 05/12/2024]
Abstract
The present investigation entails the first report on entrapment of Carum carvi essential oil (CCEO) into chitosan polymer matrix for protection of stored herbal raw materials against fungal inhabitation and aflatoxin B1 (AFB1) production. Physico-chemical characterization of nanoencapsulated CCEO was performed through Fourier transform infrared spectroscopy, dynamic light scattering, X-ray diffractometry, and scanning electron microscopy. The nanoencapsulated CCEO displayed improved antifungal and AFB1 suppressing potentiality along with controlled delivery over unencapsulated CCEO. The encapsulated CCEO nanoemulsion obstructed the ergosterol production and escalated the efflux of cellular ions, thereby suggesting plasma membrane as prime target of antifungal action in Aspergillus flavus cells. The impairment in methyglyoxal production and modeling based carvone interaction with Afl-R protein validated the antiaflatoxigenic mechanism of action. In addition, CCEO displayed augmentation in antioxidant potentiality after encapsulation into chitosan nanomatrix. Moreover, the in-situ study demonstrated the effective protection of Withania somnifera root samples (model herbal raw material) against fungal infestation and AFB1 contamination along with prevention of lipid peroxidation. The acceptable organoleptic qualities of W. somnifera root samples and favorable safety profile in mice (animal model) strengthen the application of nanoencapsulated CCEO emulsion as nano-fungitoxicant for preservation of herbal raw materials against fungi and AFB1 mediated biodeterioration.
Collapse
Affiliation(s)
- Somenath Das
- Department of Botany, Burdwan Raj College, Purba Bardhaman, 713104, West Bengal, India.
| | - Akash Maurya
- Laboratory of Herbal Pesticides, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India; Department of Botany, Shri Murli Manohar Town Post Graduate College, Ballia 277001, Uttar Pradesh, India
| | - Vipin Kumar Singh
- Department of Botany, K. S. Saket P. G. College, Ayodhya 224123, Uttar Pradesh, India
| | - Anand Kumar Chaudhari
- Department of Botany, Rajkiya Mahila Snatkottar Mahavidyalaya, Ghazipur 233001, Uttar Pradesh, India
| | | | - Abhishek Kumar Dwivedy
- Laboratory of Herbal Pesticides, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Nawal Kishore Dubey
- Laboratory of Herbal Pesticides, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
2
|
Muthusamy SP, Jagadeeswaran A, Natarajan A. Pharmacokinetics, dynamics, toxicology and molecular docking of bioactive alkaloid vasicine from Adhatoda vasica: a promising toxin binder against aflatoxin B1 and ochratoxin A. Poult Sci 2024; 103:103272. [PMID: 38100946 PMCID: PMC10764263 DOI: 10.1016/j.psj.2023.103272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/10/2023] [Accepted: 11/10/2023] [Indexed: 12/17/2023] Open
Abstract
Vasicine from Adhatoda vasica was investigated in the management of aflatoxicosis and ochratoxicosis by in silico molecular docking approach. The computational analysis was carried out using Discovery Studio Autodock 4.5 tool. Absorption, distribution, metabolism, and excretion (ADME), pharmacodynamics and toxicity studies were also carried out using Swiss ADME and PASS online server, respectively. The standard drug compound used was silymarin and the structure were retrieved from the protein data bank for both the test compound vasicine and the standard drug. Vasicine interacted with aflatoxin B1 at 10 different poses and the maximum dock score was found to be 83.04 and the binding energy was -37.54 kcal/mol. Silymarin interacted with aflatoxin B1 at 10 different poses and the maximum dock score was found to be 143.578 and the binding energy was -67.32 kcal/mol. Vasicine interacted with ochratoxin A at 10 different poses and the maximum dock score was found to be 73.75 and the binding energy was -56.20 kcal/mol. Silymarin interacted with ochratoxin A at 10 different poses and the maximum dock score was found to be 89.23 and the binding energy was -98.86 kcal/mol. The compounds possess good gastro intestinal absorption with antioxidant property and exhibits minimum adverse effects. The obtained results support the toxin mitigating potential of the test compound with minimum adverse effects and hence vasicine can be regarded as a potential toxin binder of aflatoxin B1 and ochratoxin A, wherein it can be implemented for alleviating aflatoxicosis and ochratoxicosis.
Collapse
Affiliation(s)
- Sakthi Priya Muthusamy
- Department of Veterinary Pharmacology and Toxicology, Veterinary College and Research Institute, Namakkal 637 002, Tamil Nadu, India.
| | - Appusamy Jagadeeswaran
- Department of Veterinary Pharmacology and Toxicology, Veterinary College and Research Institute, Namakkal 637 002, Tamil Nadu, India
| | - Amirthalingam Natarajan
- Animal Feed Analytical and Quality Assurance Laboratory, Veterinary College and Research Institute, Namakkal 637 002, Tamil Nadu, India
| |
Collapse
|
3
|
Das S, Chaudhari AK, Singh VK, Dwivedy AK, Dubey NK. Encapsulation of carvone in chitosan nanoemulsion as edible film for preservation of slice breads against Aspergillus flavus contamination and aflatoxin B 1 production. Food Chem 2024; 430:137038. [PMID: 37549622 DOI: 10.1016/j.foodchem.2023.137038] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 07/10/2023] [Accepted: 07/26/2023] [Indexed: 08/09/2023]
Abstract
Aspergillus flavus is a common fungus causing bread spoilage by aflatoxin B1 (AFB1) production. Essential oil components are considered as effective antifungal agent; however, volatility and oxidative-instability limited their practical applications. The aim of this study was to fabricate novel chitosan nanoemulsion film incorporating carvone (carvone-Ne) for protection of bread slices against A. flavus and AFB1 contamination in storage conditions. The nanoemulsion was characterized by SEM, DLS, XRD, and FTIR analyses accompanying with sustained delivery of carvone. The carvone-Ne displayed better inhibition of A. flavus (0.5 µL/mL) and AFB1 production (0.4 µL/mL) over unencapsulated carvone along with promising antioxidant activity (p < 0.05). Destruction of ergosterol, mitochondrial-membrane-potential, ions leakage, deformities in methylglyoxal biosynthesis, and in-silico interaction of carvone with Afl-R protein emphasized the antifungal and antiaflatoxigenic mechanisms of action. Further, in-situ preservation potentiality of Carvone-Ne in bread slices with improved gas compositions, and acceptable sensory qualities strengthen its application as innovative packaging material for food preservation.
Collapse
Affiliation(s)
- Somenath Das
- Department of Botany, Burdwan Raj College, Purba Bardhaman, 713104 West Bengal, India.
| | - Anand Kumar Chaudhari
- Department of Botany, Rajkiya Mahila Snatkottar Mahavidyalaya, Ghazipur 233001, Uttar Pradesh, India
| | - Vipin Kumar Singh
- Department of Botany, K. S. Saket P. G. College, Ayodhya 224123, Uttar Pradesh, India
| | - Abhishek Kumar Dwivedy
- Laboratory of Herbal Pesticides, Centre of Advanced Study (CAS) in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Nawal Kishore Dubey
- Laboratory of Herbal Pesticides, Centre of Advanced Study (CAS) in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
4
|
Iordache AM, Nechita C, Podea P, Șuvar NS, Mesaroṣ C, Voica C, Bleiziffer R, Culea M. Comparative Amino Acid Profile and Antioxidant Activity in Sixteen Plant Extracts from Transylvania, Romania. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12112183. [PMID: 37299164 DOI: 10.3390/plants12112183] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/19/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023]
Abstract
In addition to the naturopathic medicines based on the antiseptic, anti-inflammatory, anticancer, or antioxidant properties of plant extracts that have been capitalized upon through the pharmaceutical industry, the increasing interest of the food industry in this area requires potent new materials capable of supporting this market. This study aimed to evaluate the in vitro amino acid contents and antioxidant activities of ethanolic extracts from sixteen plants. Our results show high accumulated amino acid contents, mainly of proline, glutamic, and aspartic acid. The most consistent values of essential amino acids were isolated from T. officinale, U. dioica, C. majus, A. annua, and M. spicata. The results of the 2,2-diphenyl-1-pycrylhydrazyl (DPPH) radical scavenging assay indicate that R. officinalis was the most potent antioxidant, followed by four other extracts (in decreasing order): T. serpyllum, C. monogyna, S. officinalis, and M. koenigii. The network and principal component analyses found four natural groupings between samples based on DPPH free radical scavenging activity content. Each plant extracts' antioxidant action was discussed based on similar results found in the literature, and a lower capacity was observed for most species. An overall ranking of the analyzed plant species can be accomplished due to the range of experimental methods. The literature review revealed that these natural antioxidants represent the best side-effect-free alternatives to synthetic additives, especially in the food processing industry.
Collapse
Affiliation(s)
- Andreea Maria Iordache
- National Research and Development Institute for Cryogenics and Isotopic Technologies, 4 Uzinei Str., 240050 Râmnicu Vâlcea, Romania
| | - Constantin Nechita
- National Research and Development Institute for Forestry "Marin Dracea" Calea Bucovinei, 73 Bis, 725100 Campulung Moldovenesc, Romania
| | - Paula Podea
- Chemistry Department, Faculty of Chemistry and Chemical Engineering, Babeș-Bolyai University, Arany Janos 11, 400028 Cluj-Napoca, Romania
| | - Niculina Sonia Șuvar
- National Institute for Research and Development in Mine Safety and Protection to Explosion, 32-34 General Vasile Milea Str., 332047 Petroșani, Romania
| | - Cornelia Mesaroṣ
- Department of Biophysics, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, 38 Gh. Marinescu Str., 540139 Târgu Mureş, Romania
| | - Cezara Voica
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat Str., 400293 Cluj-Napoca, Romania
| | - Ramona Bleiziffer
- Biomolecular Physics Department, Faculty of Physics, Babeș-Bolyai University, Kogălniceanu 1, 400084 Cluj-Napoca, Romania
| | - Monica Culea
- Biomolecular Physics Department, Faculty of Physics, Babeș-Bolyai University, Kogălniceanu 1, 400084 Cluj-Napoca, Romania
| |
Collapse
|
5
|
Encapsulation of Cymbopogon khasiana × Cymbopogon pendulus Essential Oil (CKP-25) in Chitosan Nanoemulsion as a Green and Novel Strategy for Mitigation of Fungal Association and Aflatoxin B 1 Contamination in Food System. Foods 2023; 12:foods12040722. [PMID: 36832806 PMCID: PMC9956316 DOI: 10.3390/foods12040722] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/19/2023] [Accepted: 01/22/2023] [Indexed: 02/11/2023] Open
Abstract
The present study deals with the encapsulation of Cymbopogon khasiana × Cymbopogon pendulus essential oil (CKP-25-EO) into a chitosan nanoemulsion and efficacy assessment for inhibition of fungal inhabitation and aflatoxin B1 (AFB1) contamination in Syzygium cumini seeds with emphasis on cellular and molecular mechanism of action. DLS, AFM, SEM, FTIR, and XRD analyses revealed the encapsulation of CKP-25-EO in chitosan with controlled delivery. The CKP-25-Ne displayed enhanced antifungal (0.08 µL/mL), antiaflatoxigenic (0.07 µL/mL), and antioxidant activities (IC50 DPPH = 6.94 µL/mL, IC50 ABTS = 5.40 µL/mL) in comparison to the free EO. Impediment in cellular ergosterol, methylglyoxal biosynthesis, and in silico molecular modeling of CKP-25-Ne validated the cellular and molecular mechanism of antifungal and antiaflatoxigenic activity. The CKP-25-Ne showed in situ efficacy for inhibition of lipid peroxidation and AFB1 secretion in stored S. cumini seeds without altering the sensory profile. Moreover, the higher mammalian safety profile strengthens the application of CKP-25-Ne as a safe green nano-preservative against fungal association, and hazardous AFB1 contamination in food, agriculture, and pharmaceutical industries.
Collapse
|
6
|
Verma R, Singh N, Tomar M, Bhardwaj R, Deb D, Rana A. Deciphering the growth stage specific bioactive diversity patterns in Murraya koenigii (L.) Spreng. using multivariate data analysis. FRONTIERS IN PLANT SCIENCE 2022; 13:963150. [PMID: 36092393 PMCID: PMC9452700 DOI: 10.3389/fpls.2022.963150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
The study was undertaken to characterize the total phenolics, flavonoids, essential oils, quinones, tannins and antioxidant activity of 15 samples of wild Murraya koenigii (L.) Spreng. (MK) leaves obtained from different locations of Himachal Pradesh at various growth stages. The results indicated a significant variation in total phenolic content which ranged from [(170.09 ± 4.59 to 303.57 ± 7.94) in pre-flowering, (266.48 ± 7.49 to 450.01 ± 11.78) in the flowering stage, and (212.72 ± 5.37 to 363.85 ± 9.79) in fruiting stage], expressed as mg tannic acid equivalents (TAE)/g. The total flavonoid content ranged from [(15.17 ± 0.36 to 33.40 ± 0.81) in pre-flowering, (25.16 ± 0.67 to 58.17 ± 1.52) in flowering stage, and (17.54 ± 0.42 to 37.34 ± 0.97) in fruiting stage], expressed as mg catechin equivalent (CE)/g. Total tannin content ranged from [(75.75 ± 1.69 to 143 ± 3.74) in pre-flowering, (116 ± 3.26 to 207 ± 5.42) in the flowering stage, and (47 ± 1.18 to 156 ± 4.05) in fruiting stage], expressed as mg TAE/g. The essential oil content ranged from (0.64 ± 0.01 to 0.89 ± 0.02%) in pre-flowering, (0.85 ± 0.02 to 1 ± 0.02%) in flowering stage, and (0.54 ± 0.01 to 0.7 ± 0.01%) in fruiting stage. Quinones ranged from [(2.05 ± 0.05 to 2.97 ± 0.07) in pre-flowering, (3.07 ± 0.07 to 4.95 ± 0.13) in flowering stage, and (1.02 ± 0.02 to 1.96 ± 0.04) in fruiting stage], expressed as mM/min/g tissue. Antioxidant activity ranged from [(4.01 ± 0.09 to 7.42 ± 0.17) in pre-flowering, (8.08 ± 0.19 to 13.60 ± 0.35) in flowering stage, and (3.11 ± 0.06 to 6.37 ± 0.15) in fruiting stage], expressed as μg/ml. Data was subjected to multivariate analysis using principal component analysis (PCA), hierarchical clustering analysis (HCA). This was used for elucidating the intricate relationships between the phytochemical properties. All evaluated phytochemical parameters significantly increased during the growth transition from pre-flowering to the flowering stage, followed by their gradual decrease during the fruiting stage. The present study can serve as rationale for commercializing MK for aromatic and phytopharmaceutical industries.
Collapse
Affiliation(s)
- Reetu Verma
- Division of Crop Improvement, ICAR-Indian Grassland and Fodder Research Institute, Jhansi, India
| | - Nageswer Singh
- Department of Chemistry and Biochemistry, Chaudhary Sarwan Kumar Himachal Pradesh Agriculture University, Palampur, HP, India
| | - Maharishi Tomar
- Division of Seed Technology, Indian Council of Agricultural Research-Indian Grassland and Fodder Research Institute, Jhansi, India
| | - Rakesh Bhardwaj
- Germplasm Evaluation Division, National Bureau of Plant Genetic Resources, New Delhi, India
| | - Dibyendu Deb
- Division of Social Science, Indian Council of Agricultural Research-Indian Grassland and Fodder Research Institute, Jhansi, India
| | - Anita Rana
- Department of Chemistry and Biochemistry, Chaudhary Sarwan Kumar Himachal Pradesh Agriculture University, Palampur, HP, India
| |
Collapse
|
7
|
Das S, Singh VK, Dwivedy AK, Chaudhari AK, Dubey NK. Anethum graveolens Essential Oil Encapsulation in Chitosan Nanomatrix: Investigations on In Vitro Release Behavior, Organoleptic Attributes, and Efficacy as Potential Delivery Vehicles Against Biodeterioration of Rice (Oryza sativa L.). FOOD BIOPROCESS TECH 2021. [DOI: 10.1007/s11947-021-02589-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
8
|
Das S, Singh VK, Dwivedy AK, Chaudhari AK, Dubey NK. Myristica fragrans essential oil nanoemulsion as novel green preservative against fungal and aflatoxin contamination of food commodities with emphasis on biochemical mode of action and molecular docking of major components. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109495] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
9
|
AdditiveChem: A comprehensive bioinformatics knowledge-base for food additive chemicals. Food Chem 2020; 308:125519. [DOI: 10.1016/j.foodchem.2019.125519] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 09/06/2019] [Accepted: 09/10/2019] [Indexed: 12/18/2022]
|
10
|
Nanoencapsulated plant-based bioactive formulation against food-borne molds and aflatoxin B1 contamination: Preparation, characterization and stability evaluation in the food system. Food Chem 2019; 287:139-150. [DOI: 10.1016/j.foodchem.2019.02.045] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 02/09/2019] [Accepted: 02/10/2019] [Indexed: 11/20/2022]
|
11
|
Kasi M, K. A, A. Hatamleh A, Albaqami FS, Al-Sohaibani S. Groundnut Oil Biopreservation: Bioactive Components, Nutritional Value and Anti-Aflatoxigenic Effects of Traditional Ginger Seasoning. J FOOD PROCESS PRES 2017. [DOI: 10.1111/jfpp.12984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Murugan Kasi
- Department of Microbiology and Botany, College of Science; King Saud University; Riyadh 11451 Saudi Arabia
| | - Anandaraj K.
- Department of Microbiology; Shanmuga Industries College of Arts and Science; Tiruvannamalai Tamil Nadu India
| | - Ashraf A. Hatamleh
- Department of Microbiology and Botany, College of Science; King Saud University; Riyadh 11451 Saudi Arabia
| | - Fahad Saeed Albaqami
- Department of Microbiology and Botany, College of Science; King Saud University; Riyadh 11451 Saudi Arabia
| | - Saleh Al-Sohaibani
- Department of Microbiology and Botany, College of Science; King Saud University; Riyadh 11451 Saudi Arabia
| |
Collapse
|
12
|
Jessica Elizabeth DLT, Gassara F, Kouassi AP, Brar SK, Belkacemi K. Spice use in food: Properties and benefits. Crit Rev Food Sci Nutr 2017; 57:1078-1088. [PMID: 26560460 DOI: 10.1080/10408398.2013.858235] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Spices are parts of plants that due to their properties are used as colorants, preservatives, or medicine. The uses of spices have been known since long time, and the interest in the potential of spices is remarkable due to the chemical compounds contained in spices, such as phenylpropanoids, terpenes, flavonoids, and anthocyanins. Spices, such as cumin (cuminaldehyde), clove (eugenol), and cinnamon (cinnamaldehyde) among others, are known and studied for their antimicrobial and antioxidant properties due to their main chemical compounds. These spices have the potential to be used as preservatives in many foods namely in processed meat to replace chemical preservatives. Main chemical compounds in spices also confer other properties providing a variety of applications to spices, such as insecticidal, medicines, colorants, and natural flavoring. Spices provide beneficial effects, such as antioxidant activity levels that are comparable to regular chemical antioxidants used so they can be used as a natural alternative to synthetic preservatives. In this review, the main characteristics of spices will be described as well as their chemical properties, different applications of these spices, and the advantages and disadvantages of their use.
Collapse
Affiliation(s)
- De La Torre Jessica Elizabeth
- a INRS-ETE, Université du Québec , Québec , Canada
- b Instituto Tecnológico y de Estudios Superiores de Monterrey (ITESM)
| | | | - Anne Patricia Kouassi
- a INRS-ETE, Université du Québec , Québec , Canada
- c Département des Sols et de Génie Agroalimentaire , Pavillon Paul-Comtois, Université Laval , Québec , Québec , Canada
| | | | - Khaled Belkacemi
- c Département des Sols et de Génie Agroalimentaire , Pavillon Paul-Comtois, Université Laval , Québec , Québec , Canada
| |
Collapse
|
13
|
Murugan K, Anandaraj K, Al-Sohaibani SA. Evaluation of allium and its seasoning on toxigenic, nutritional, and sensorial profiles of groundnut oil. J Food Sci 2014; 79:M643-52. [PMID: 24620916 DOI: 10.1111/1750-3841.12367] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 12/23/2013] [Indexed: 11/30/2022]
Abstract
Mitigation of xerophilic storage fungi-associated aflatoxin threat in culinary oil will be a new technology advantage to food industries. Groundnut oil isolate Aspergillus flavus MTCC 10680 susceptibility to Allium species (A. sativum L., A. cepa L., and A. cepa var. aggregatum) extracts, composition, and in silico confirmation of extract's phytoconstituent aflatoxin synthesis inhibition were determined. The behavior of seasoning carrier medium groundnut oil in the presence of Allium was also determined. All the Allium species extracts exhibited concentration dependent in vitro inhibition on mycelial biomass, radial growth, and toxin elaboration. The gas chromatography-mass spectrometry revealed the presence of 28, 16, and 9 compounds in the extracts of A. sativum, A. cepa, A. cepa var. aggregatum, respectively. The Allium phytocostituents-like hexadecanoic acid, 5-Octanoyl-2,4,6(1H,3H,5H)-pyrimidinetrione, Guanosine, and so on, showed higher binding energy with aflatoxin synthesis key enzyme ver1. Allium seasoning increased the typical nutty odor of the groundnut oil with sweet aroma note as well as intensification of pale yellow color. Allium seasoning exhibited the highest aflatoxin detoxification and aroma development without any nutritional loss. Culinary oil Allium seasoning has anti-aflatoxin and food additive potential for use in food industries.
Collapse
Affiliation(s)
- Kasi Murugan
- Dept. of Botany and Microbiology, College of Science, King Saud Univ, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | | | | |
Collapse
|