1
|
Madhusankha GDMP, Siow LF, Dos Santos Silva Amaral M, Marriott PJ, Thoo YY. Impact of thermal processing and emulsification methods on spice oleoresin blending: Insights for flavor release and emulsion stability. Food Chem 2024; 460:140751. [PMID: 39126948 DOI: 10.1016/j.foodchem.2024.140751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/21/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024]
Abstract
This study investigated the effect of heat treatments on the pungency and aroma profiles of a spice oleoresin blend, and the emulsion stability with different surfactants, encapsulating agents, and homogenization mechanisms. Total pungency increased with heat until 120 °C and drastically reduced at 150 °C. Thermal processing induced aroma release, and 46 compounds were identified at 90 °C, predominantly comprising sesquiterpenes. Tween 80 dispersed the highest oleoresin mass (6.21 ± 0.31 mg/mL) and reported the maximum emulsion stability index. The oleoresin percentage significantly influenced the emulsion stability, with 1% oleoresin producing the most stable emulsion. High-pressure homogenization applied on gum Arabic resulted in a greater encapsulation efficiency, exceeding 86%, and the lowest creaming index (4.70 ± 0.06%), while Hi-Cap 100 produced the best flow properties. The findings provide insights into incorporating lipophilic spice oleoresin blends in aqueous food systems and understanding the release of flavor compounds during thermal food processing.
Collapse
Affiliation(s)
| | - Lee Fong Siow
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia
| | - Michelle Dos Santos Silva Amaral
- Australian Centre for Research on Separation Science, School of Chemistry, Monash University, Wellington Road, Clayton, VIC 3800, Australia
| | - Philip J Marriott
- Australian Centre for Research on Separation Science, School of Chemistry, Monash University, Wellington Road, Clayton, VIC 3800, Australia
| | - Yin Yin Thoo
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia.
| |
Collapse
|
2
|
Toprakçı İ, Cosgun G, Balci-Torun F, Torun M, Şahin S. Preservation of active components in olive leaf extract by spray drying method in biodegradable polymers: Optimization, in vitro gastrointestinal digestion and application. PHYTOCHEMICAL ANALYSIS : PCA 2024; 35:1757-1770. [PMID: 36929214 DOI: 10.1002/pca.3222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 02/26/2023] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
INTRODUCTION Encapsulation of the bioactive ingredients in biodegradable and edible polymers is an alternative novel application method to keep these kind of natural products stable. OBJECTIVE The purpose is to optimize the encapsulation system of olive leaf extract by spray drying method, and to apply the products into a model food. METHODS Olive leaf extract was encapsulated in arabic gum/maltodextrin blend by spray drying method. Combined design approach under I-optimal design type was used to optimize the system. Characterisation studies under moisture content, water activity, solubility, bulk density, tapped density, Carr index, particle size distribution, powder morphology and glass transition temperature were applied to the microparticles obtained under optimum conditions. The bioavailability of the encapsulated active material was tested by in vitro gastrointestinal digestion. Furthermore, microparticles produced under optimum conditions were also evaluated for a potential functional food application. RESULTS The optimum conditions were achieved by arabic gum/maltodextrin (3.7:6.3) with 10% (w/v) in the mixture of wall material and active material under 165.5°C to achieve maximum encapsulation efficiency (86.92%), encapsulation yield (71.32%) and antioxidant activity (5.74 mg Trolox equivalent antioxidant capacity/g dry microparticle). CONCLUSIONS Olive leaf extract encapsulated in arabic gum/maltodextrin may be a good alternative additive to prevent the lipid oxidation in fat-containing food products as well as improvement of the product quality by functional properties.
Collapse
Affiliation(s)
- İrem Toprakçı
- Faculty of Engineering, Chemical Engineering Department, Istanbul University-Cerrahpasa, Istanbul, Türkiye
| | - Gulderen Cosgun
- Faculty of Engineering, Food Engineering Department, Akdeniz University, Antalya, Türkiye
| | - Ferhan Balci-Torun
- Faculty of Tourism, Department of Gastronomy and Culinary Art, Akdeniz University, Antalya, Türkiye
| | - Mehmet Torun
- Faculty of Engineering, Food Engineering Department, Akdeniz University, Antalya, Türkiye
| | - Selin Şahin
- Faculty of Engineering, Chemical Engineering Department, Istanbul University-Cerrahpasa, Istanbul, Türkiye
| |
Collapse
|
3
|
Nejatian M, Ghandehari Yazdi AP, Fattahi R, Saberian H, Bazsefidpar N, Assadpour E, Jafari SM. Improving the storage and oxidative stability of essential fatty acids by different encapsulation methods; a review. Int J Biol Macromol 2024; 260:129548. [PMID: 38246446 DOI: 10.1016/j.ijbiomac.2024.129548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 01/06/2024] [Accepted: 01/15/2024] [Indexed: 01/23/2024]
Abstract
Linoleic acid and α-linolenic acid are the only essential fatty acids (EFAs) known to the human body. Other fatty acids (FAs) of the omega-6 and omega-3 families originate from linoleic acid and α-linolenic acid, respectively, by the biological processes of elongation and desaturation. In diets with low fish consumption or vegetarianism, these FAs play an exclusive role in providing two crucial FAs for maintaining our body's vital functions; docosahexaenoic acid and arachidonic acid. However, these polyunsaturated FAs are inherently sensitive to oxidation, thereby adversely affecting the storage stability of oils containing them. In this study, we reviewed encapsulation as one of the promising solutions to increase the stability of EFAs. Accordingly, five main encapsulation techniques could be classified: (i) spray drying, (ii) freeze drying, (iii) emulsification, (iv) liposomal entrapment, and (v) other methods, including electrospinning/spraying, complex coacervation, etc. Among these, spray drying was the frequently applied technique for encapsulation of EFAs, followed by freeze dryers. In addition, maltodextrin and gum Arabic were the main wall materials in carriers. Paying attention to industrial scalability and lower cost of the encapsulation process by the other methods are the important aspects that should be given more attention in the future.
Collapse
Affiliation(s)
- Mohammad Nejatian
- Department of Nutrition Science and Food Hygiene, Faculty of Health, Baqiyatallah University of Medical Sciences, Tehran, Iran; Health Research Center, Life Style Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Amir Pouya Ghandehari Yazdi
- Department of Research and Development, Zarmacaron Company, Zar Industrial and Research Group, Alborz, Iran.
| | - Reza Fattahi
- Department of Research and Development, Zarmacaron Company, Zar Industrial and Research Group, Alborz, Iran
| | - Hamed Saberian
- Technical Centre of Agriculture, Academic Center for Education, Culture and Research (ACECR), Isfahan University of Technology, Isfahan, Iran
| | - Nooshin Bazsefidpar
- Department of Research and Development, Zarmacaron Company, Zar Industrial and Research Group, Alborz, Iran
| | - Elham Assadpour
- Food Industry Research Co., Gorgan, Iran; Food and Bio-Nanotech International Research Center (Fabiano), Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Science and Natural Resources, Gorgan, Iran; Halal Research Center of IRI, Iran Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran.
| |
Collapse
|
4
|
Henao-Ardila A, Quintanilla-Carvajal MX, Santagapita PR, Caldas-Abril M, Bonilla-Bravo V, Moreno FL. Effect of wall material on lipophilic functional compounds of high oleic palm oil emulsions encapsulated by Refractance Window drying. Heliyon 2023; 9:e21499. [PMID: 38027781 PMCID: PMC10651459 DOI: 10.1016/j.heliyon.2023.e21499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 10/18/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
High-oleic palm oil is a food-grade oil with desirable properties, as it is characterised by having an oleic acid concentration above 50 % and a high vitamin E and provitamin A content. This study investigated the effect of different combinations of two wall materials (whey protein (WP) and Capsul®, a commercial octenyl succinic anhydride modified starch (OSA-MS)) on the concentration of provitamin A, vitamin E and oleic acid, and the physical properties of high oleic palm oil emulsions encapsulated by Refractance Window drying technology. Wall material composition significantly affected (p < 0.05) all response variables, and R2 values were above 0.75 for all responses. Phytonutrient preservation showed its highest at an OSA-MS: WP concentration ratio of 1: 3. Optimal results were achieved (minimum moisture content, water activity and hygroscopicity, and maximum encapsulation efficiency and phytonutrient preservation) at an OSA-MS concentration of 8.13 % and WP concentration of 91.87 %. Flakes were obtained as a solid structure that protects oil's phytonutrients with 94 %, 75 % and 87 % of preservation of oleic acid, vitamin E and carotenoids, respectively. It shows that the wall material combination and encapsulation technique are suitable for obtaining lipophilic functional compounds.
Collapse
Affiliation(s)
- Alejandra Henao-Ardila
- Doctorate in Biosciences, Faculty of Engineering, Universidad de La Sabana, Campus Universitario del Puente del Común, Km7 Autopista Norte de Bogotá, Chía, Cundinamarca, Colombia
- Grupo de Investigación en Procesos Agroindustriales, Faculty of Engineering, Universidad de La Sabana, Campus Universitario del Puente del Común, Km7 Autopista Norte de Bogotá, Chía, Cundinamarca, Colombia
| | - María Ximena Quintanilla-Carvajal
- Grupo de Investigación en Procesos Agroindustriales, Faculty of Engineering, Universidad de La Sabana, Campus Universitario del Puente del Común, Km7 Autopista Norte de Bogotá, Chía, Cundinamarca, Colombia
| | - Patricio Román Santagapita
- Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Orgánica & CIHIDECAR (Centro de Investigaciones en Hidratos de Carbono, CONICET-UBA), Buenos Aires, Argentina
| | - Miguel Caldas-Abril
- Grupo de Investigación en Procesos Agroindustriales, Faculty of Engineering, Universidad de La Sabana, Campus Universitario del Puente del Común, Km7 Autopista Norte de Bogotá, Chía, Cundinamarca, Colombia
| | - Valentina Bonilla-Bravo
- Grupo de Investigación en Procesos Agroindustriales, Faculty of Engineering, Universidad de La Sabana, Campus Universitario del Puente del Común, Km7 Autopista Norte de Bogotá, Chía, Cundinamarca, Colombia
| | - Fabián Leonardo Moreno
- Grupo de Investigación en Procesos Agroindustriales, Faculty of Engineering, Universidad de La Sabana, Campus Universitario del Puente del Común, Km7 Autopista Norte de Bogotá, Chía, Cundinamarca, Colombia
| |
Collapse
|
5
|
Edible oil to powder technologies: Concepts and advances. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
|
6
|
Wood Hemicelluloses as Innovative Wall Materials for Spray-Dried Microencapsulation of Berry Juice: Part 1—Effect of Homogenization Techniques on their Feed Solution Properties. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02963-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
AbstractThe use of wood hemicelluloses, including galactoglucomannans (GGM) and glucuronoxylans (GX), in spray-dried microencapsulation of bioactive compounds has not been reported. Our study aims to investigate the benefits of spray-dried GGM and GX powders (sGGM and sGX) along with the effects of homogenization techniques (magnetic stirring, ultrasonication, and a combination of UltraTurrax homogenization and microfluidization) on the physicochemical properties of feed solutions (10–20%, w/w). Feed solutions of bilberry juice with sGGM, sGX, and mixtures of either sGGM or sGX with methylcellulose (MC) or carboxymethylcellulose (CMC) were examined to produce highly stable feed solutions for spray-dried microencapsulation. The effects of ultrasonication amplitudes (30–80%) on the viscosity and particle size distribution of sGGM feed solutions were more profound than observed in their sGX counterparts. Unlike sGX feed solutions, sGGM feed solutions homogenized by ultrasonication and microfluidization formed a gel-like structure. Microfluidization also caused a loss of total anthocyanin content (TAC) of the feed solutions. Magnetic stirring resulted in no gel formation and in the lowest viscosity of the feed solutions; hence, it is an effective method for preparing hemicellulose feed solutions. sGGM and sGX powders have high heat stability with melting temperatures of 170–180 °C. The sGGM + CMC combination was more stable over 1 week of storage than the sGGM and sGX feed solutions. Storing the feed solutions reduced TAC and increased sGGM viscosity. Our results indicated that GGM and GX have high potential for use as wall materials in the spray-dried microencapsulation of bioactive compounds.
Collapse
|
7
|
Espinosa-Solis V, García-Tejeda YV, Portilla-Rivera OM, Chávez-Murillo CE, Barrera-Figueroa V. Effect of Mixed Particulate Emulsifiers on Spray-Dried Avocado Oil-in-Water Pickering Emulsions. Polymers (Basel) 2022; 14:polym14153064. [PMID: 35956579 PMCID: PMC9370146 DOI: 10.3390/polym14153064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/22/2022] [Accepted: 07/25/2022] [Indexed: 11/17/2022] Open
Abstract
Avocado oil is a very valuable agro-industrial product which can be perishable in a short time if it is not stored in the right conditions. The encapsulation of the oils through the spray drying technique protects them from oxidation and facilitates their incorporation into different pharmaceutical products and food matrices; however, the selection of environmentally friendly emulsifiers is a great challenge. Four formulations of the following solid particles: Gum Arabic, HI-CAP®100 starch, and phosphorylated waxy maize starch, were selected to prepare avocado oil Pickering emulsions. Two of the formulations have the same composition, but one of them was emulsified by rotor-stator homogenization. The rest of the emulsions were emulsified by combining rotor-stator plus ultrasound methods. The protective effect of mixed particle emulsifiers in avocado oil encapsulated by spray drying was based on the efficiency of encapsulation. The best results were achieved when avocado oil was emulsified with a mixture of phosphorylated starch/HI-CAP®100, where it presented the highest encapsulation efficiency.
Collapse
Affiliation(s)
- Vicente Espinosa-Solis
- Coordinación Académica Región Huasteca Sur, Universidad Autónoma de San Luis Potosí, km 5, Carretera Tamazunchale-San Martín, Tamazunchale 79960, Mexico; (V.E.-S.); (O.M.P.-R.)
| | - Yunia Verónica García-Tejeda
- Academia de Ciencias Básicas, UPIITA, Avenida Instituto Politécnico Nacional No. 2580, Col. Barrio la Laguna Ticomán, Gustavo A. Madero, Mexico City 07340, Mexico
- Correspondence: ; Tel.: +52-555-729-6000 (Ext. 56918)
| | - Oscar Manuel Portilla-Rivera
- Coordinación Académica Región Huasteca Sur, Universidad Autónoma de San Luis Potosí, km 5, Carretera Tamazunchale-San Martín, Tamazunchale 79960, Mexico; (V.E.-S.); (O.M.P.-R.)
| | - Carolina Estefania Chávez-Murillo
- Academia de Bioingeniería, UPIIZ, Instituto Politécnico Nacional, Circuito del Gato No. 202, Col. Ciudad Administrativa, Zacatecas 98160, Mexico;
| | - Víctor Barrera-Figueroa
- Sección de Estudios de Posgrado e Investigación, UPIITA, Avenida Instituto Politécnico Nacional No. 2580, Col. Barrio la Laguna Ticomán, Gustavo A. Madero, Mexico City 07340, Mexico;
| |
Collapse
|
8
|
Baltic herring (Clupea harengus membras) oil encapsulation by spray drying using a rice and whey protein blend as a coating material. J FOOD ENG 2022. [DOI: 10.1016/j.jfoodeng.2021.110769] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
9
|
Yan S, Xu J, Zhang S, Zhu H, Qi B, Li Y. Effects of different surfactants on the conjugates of soybean protein-polyphenols for the preparation of β-carotene microcapsules. Food Funct 2022; 13:1989-2002. [PMID: 35089301 DOI: 10.1039/d1fo03382d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this study, we investigated the spray-drying microencapsulation of β-carotene in oil co-stabilized by soy protein isolate-epigallocatechin-3-gallate conjugate (SPE) and small molecule surfactants [sodium dodecyl sulfate (SDS), hexadecyl trimethyl ammonium bromide (CTAB), and tea saponin (TS)] of different concentrations [0.1, 0.5, and 1.0% (w/v)], as a prospective approach to stabilize β-carotene. The results show that different surfactant types and concentrations significantly affect the encapsulation efficiency, water dispersibility, microstructure, and digestion of the microcapsules. Interactions between the surfactants and the SPE at the interface were found to include both synergistic and competitive effects, and they depended on the surfactant type and concentration. Moreover, the addition of SDS and TS before spray drying significantly improved the microencapsulation performance of the microcapsules and the water dispersion behavior of the corresponding spray-dried powders. The highest encapsulation efficiency was achieved for the SPE-0.1TS-encapsulated β-carotene microcapsules. In contrast, the addition of CTAB was not conducive to microcapsule formation, resulting in poor encapsulation efficiency, water dispersibility, thermal stability, β-carotene retention rate, and oxidation stability. In vitro gastrointestinal digestion results revealed that the addition of CTAB promotes the release of β-carotene and improves the bioaccessibility of β-carotene. In contrast, except for SPE-1.0SDS, the addition of SDS and TS inhibited β-carotene release and reduced β-carotene bioaccessibility. This study demonstrated that this novel β-carotene encapsulation formulation can overcome stability limitations for the development of β-carotene supplements with a high bioaccessibility.
Collapse
Affiliation(s)
- Shizhang Yan
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Jingwen Xu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Shuang Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Huaping Zhu
- China Rural Technology Development Center, Beijing 100045, China
| | - Baokun Qi
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Yang Li
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China. .,National Research Center of Soybean Engineering and Technology, Harbin, Heilongjiang 150030, China
| |
Collapse
|
10
|
Böger BR, Bigotto BG, Lonni AASG, Benassi MT. Eye Cosmeceutical Formulations with Roasted Coffee Oil in Free and Microencapsulated Forms: Development and Preliminary Stability Study. EUR J LIPID SCI TECH 2022. [DOI: 10.1002/ejlt.202100168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Bruna R. Böger
- Depto. Ciência e Tecnologia de Alimentos Universidade Estadual de Londrina Rodovia Celso Garcia Cid Km 380 Londrina 86057‐970 Brazil
| | - Briani G. Bigotto
- Depto. Ciências Farmacêuticas Universidade Estadual de Londrina Avenida Roberto Koch 60 Londrina 86039‐440 Brazil
| | - Audrey A. S. G. Lonni
- Depto. Ciências Farmacêuticas Universidade Estadual de Londrina Avenida Roberto Koch 60 Londrina 86039‐440 Brazil
| | - Marta T. Benassi
- Depto. Ciência e Tecnologia de Alimentos Universidade Estadual de Londrina Rodovia Celso Garcia Cid Km 380 Londrina 86057‐970 Brazil
| |
Collapse
|
11
|
Saavedra-Leos MZ, Román-Aguirre M, Toxqui-Terán A, Espinosa-Solís V, Franco-Vega A, Leyva-Porras C. Blends of Carbohydrate Polymers for the Co-Microencapsulation of Bacillus clausii and Quercetin as Active Ingredients of a Functional Food. Polymers (Basel) 2022; 14:236. [PMID: 35054642 PMCID: PMC8779310 DOI: 10.3390/polym14020236] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/01/2022] [Accepted: 01/02/2022] [Indexed: 12/31/2022] Open
Abstract
A functional food based on blends of carbohydrate polymers and active ingredients was prepared by spray drying. Inulin (IN) and maltodextrin (MX) were used as carrying agents to co-microencapsulate quercetin as an antioxidant and Bacillus clausii (Bc) as a probiotic. Through a reduced design of experiments, eleven runs were conducted and characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), and modulated differential scanning calorimetry (MDSC). The physical characterizations showed fine and non-aggregated powders, composed of pseudo-spherical particles with micrometric sizes. The observation of rod-like particles suggested that microorganisms were microencapsulated in these particles. The microstructure of the powders was amorphous, observing diffraction peaks attributed to the crystallization of the antioxidant. The glass transition temperature (Tg) of the blends was above the room temperature, which may promote a higher stability during storage. The antioxidant activity (AA) values increased for the IN-MX blends, while the viability of the microorganisms increased with the addition of MX. By a surface response plot (SRP) the yield showed a major dependency with the drying temperature and then with the concentration of IN. The work contributes to the use of carbohydrate polymers blends, and to the co-microencapsulation of active ingredients.
Collapse
Affiliation(s)
- María Z. Saavedra-Leos
- Coordinación Académica Región Altiplano (COARA), Universidad Autónoma de San Luis Potosí, Matehuala, San Luis Potosi 78700, Mexico;
| | - Manuel Román-Aguirre
- Centro de Investigación en Materiales Avanzados S.C., CIMAV, Miguel de Cervantes No. 120, Complejo Industrial Chihuahua, Chihuahua 31136, Mexico;
| | - Alberto Toxqui-Terán
- Centro de Investigación en Materiales Avanzados S.C., Unidad Monterrey, Alianza Norte No. 202, Parque de Investigación e Innovación Tecnológica, Apodaca 66600, Mexico;
| | - Vicente Espinosa-Solís
- Coordinación Académica Región Huasteca Sur, Universidad Autónoma de San Luis Potosí, Carretera Tamazunchale-San Martin Km. 5. Tamazunchale, San Luis Potosi 79960, Mexico;
| | - Avelina Franco-Vega
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luis Potosi 78210, Mexico;
| | - César Leyva-Porras
- Centro de Investigación en Materiales Avanzados S.C., CIMAV, Miguel de Cervantes No. 120, Complejo Industrial Chihuahua, Chihuahua 31136, Mexico;
| |
Collapse
|
12
|
Franco Ribeiro E, Carregari Polachini T, Dutra Alvim I, Quiles A, Hernando I, Nicoletti VR. Microencapsulation of roasted coffee oil Pickering emulsions using spray‐ and freeze‐drying: physical, structural and
in vitro
bioaccessibility studies. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15378] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Elisa Franco Ribeiro
- São Paulo State University (Unesp) Institute of Biosciences, Humanities and Exact Sciences (Ibilce) Campus São José do Rio Preto São Paulo 15054‐000 Brazil
- Food Microstructure and Chemistry Research Group Universitat Politècnica de València (UPV) Valencia 46022 Spain
| | - Tiago Carregari Polachini
- São Paulo State University (Unesp) Institute of Biosciences, Humanities and Exact Sciences (Ibilce) Campus São José do Rio Preto São Paulo 15054‐000 Brazil
| | - Izabela Dutra Alvim
- Cereal and Chocolate Technology Center Food Technology Institute (ITAL) Campinas São Paulo 13070‐178 Brazil
| | - Amparo Quiles
- Food Microstructure and Chemistry Research Group Universitat Politècnica de València (UPV) Valencia 46022 Spain
| | - Isabel Hernando
- Food Microstructure and Chemistry Research Group Universitat Politècnica de València (UPV) Valencia 46022 Spain
| | - Vania Regina Nicoletti
- São Paulo State University (Unesp) Institute of Biosciences, Humanities and Exact Sciences (Ibilce) Campus São José do Rio Preto São Paulo 15054‐000 Brazil
| |
Collapse
|
13
|
Villalobos-Castillejos F, Lartundo-Rojas L, Leyva-Daniel D, Porras-Saavedra J, Pereyra-Castro S, Gutiérrez-López G, Alamilla-Beltrán L. Effect of emulsification techniques on the distribution of components on the surface of microparticles obtained by spray drying. FOOD AND BIOPRODUCTS PROCESSING 2021. [DOI: 10.1016/j.fbp.2021.07.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
14
|
Influence of Wall Materials and Homogenization Pressure on Microencapsulation of Rice Bran Oil. FOOD BIOPROCESS TECH 2021. [DOI: 10.1007/s11947-021-02685-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
15
|
Böger B, Acre L, Viegas M, Kurozawa L, Benassi M. Roasted coffee oil microencapsulation by spray drying and complex coacervation techniques: Characteristics of the particles and sensory effect. INNOV FOOD SCI EMERG 2021. [DOI: 10.1016/j.ifset.2021.102739] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
16
|
Smaoui S, Ben Hlima H, Ben Braïek O, Ennouri K, Mellouli L, Mousavi Khaneghah A. Recent advancements in encapsulation of bioactive compounds as a promising technique for meat preservation. Meat Sci 2021; 181:108585. [PMID: 34119890 DOI: 10.1016/j.meatsci.2021.108585] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 12/24/2022]
Abstract
Encapsulation is currently considered as one the most valuable methods for preserving aromatic compounds or hiding odors, enhancing their thermal and oxidative stability, and expanding their food applications. Indeed, this current article was aimed to provide an overview regarding the encapsulation of plant bioactive compounds and the spray-drying and extrusion processes with a focused discussion regarding the encountered challenges for meat and meat product preservation. Furthermore, different ranges of carbohydrates as wall materials (carriers) besides the process conditions' effects on the encapsulation effectiveness and the particle size of the encapsulated bioactive compounds have been discussed. The encapsulation of these compounds ameliorates the quality of the stored meat products by further delaying in microflora growth and lipid/protein oxidation. Therefore, the innovative technologies for plant active compounds encapsulation offer a prospective alternative for natural preservation development in the meat industry.
Collapse
Affiliation(s)
- Slim Smaoui
- Laboratory of Microbial, Enzymatic Biotechnology and Biomolecules (LBMEB), Center of Biotechnology of Sfax, University of Sfax-Tunisia, Road of Sidi Mansour Km 6, P. O. Box 1177, 3018 Sfax, Tunisia.
| | - Hajer Ben Hlima
- Algae Biotechnology Unit, Biological Engineering Department, National School of Engineers of Sfax, University of Sfax-Tunisia, 3038 Sfax, Tunisia
| | - Olfa Ben Braïek
- Laboratory of Transmissible Diseases and Biologically Active Substances (LR99ES27), Faculty of Pharmacy, University of Monastir, Tunisia
| | - Karim Ennouri
- Laboratory of Amelioration and Protection of Olive Genetic Resources, Olive Tree Institute, University of Sfax, Sfax, Tunisia
| | - Lotfi Mellouli
- Laboratory of Microbial, Enzymatic Biotechnology and Biomolecules (LBMEB), Center of Biotechnology of Sfax, University of Sfax-Tunisia, Road of Sidi Mansour Km 6, P. O. Box 1177, 3018 Sfax, Tunisia
| | - Amin Mousavi Khaneghah
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas (UNICAMP), 13083-862 Campinas, São Paulo, Brazil.
| |
Collapse
|
17
|
Ciou J, Yang K, Hou C, You J. The physicochemical properties of spray‐dried sesame powder with different blending ratios. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jhih‐Ying Ciou
- Department of Food Science Tunghai University Taichung Taiwan
| | - Kai‐Min Yang
- Department of Hospitality Management MingDao University Changhua Taiwan
| | - Chih‐Yao Hou
- Department of Seafood Science National Kaohsiung University of Science and Technology Kaohsiung City Taiwan
| | - Jia‐Yin You
- Department of Food Science Tunghai University Taichung Taiwan
| |
Collapse
|
18
|
Abedi A, Rismanchi M, Moosavi MH, Khaneghah AM, Mohammadi A, Mahmoudzadeh M. A Mixture of Modified Starch and Maltodextrin for Spray Drying Encapsulation of
Nigella sativa
Seeds Oil Containing Thymoquinone. STARCH-STARKE 2020. [DOI: 10.1002/star.201900255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Abdol‐Samad Abedi
- Department of Food Science and Technology/National Nutrition and Food Technology Research Institute Shahid Beheshti University of Medical Sciences P.O. Box 19395‐4741 Tehran Iran
| | - Marjan Rismanchi
- Department of Food Science and Technology/National Nutrition and Food Technology Research Institute Shahid Beheshti University of Medical Sciences P.O. Box 19395‐4741 Tehran Iran
| | - Motahareh Hashemi Moosavi
- Department of Food Science and Technology/National Nutrition and Food Technology Research Institute Shahid Beheshti University of Medical Sciences P.O. Box 19395‐4741 Tehran Iran
| | - Amin Mousavi Khaneghah
- Department of Food Science, Faculty of Food Engineering State University of Campinas (UNICAMP) Monteiro Lobato, 80, Caixa Postal:6121, CEP:13083‐862 Campinas São Paulo Brazil
| | - Abdorreza Mohammadi
- Department of Food Science and Technology/National Nutrition and Food Technology Research Institute Shahid Beheshti University of Medical Sciences P.O. Box 19395‐4741 Tehran Iran
| | - Maryam Mahmoudzadeh
- Nutrition Research Center and Department of Food Science and Technology, Faculty of Nutrition and Food Science Tabriz University of Medical Sciences P.O. Box 51666‐14766 Tabriz Iran
| |
Collapse
|
19
|
Makouie S, Alizadeh M, Maleki O, Khosrowshahi A. Investigation of physicochemical properties and oxidative stability of encapsulated
Nigella sativa
seed oil. FLAVOUR FRAG J 2020. [DOI: 10.1002/ffj.3638] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Sina Makouie
- Food Science and Technology Department Agriculture Faculty Urmia University Urmia Iran
| | - Mohammad Alizadeh
- Food Science and Technology Department Agriculture Faculty Urmia University Urmia Iran
| | - Omid Maleki
- Food Science and Technology Department Agriculture Faculty Urmia University Urmia Iran
| | - Asghar Khosrowshahi
- Food Science and Technology Department Agriculture Faculty Urmia University Urmia Iran
| |
Collapse
|
20
|
Factors determining the surface oil concentration of encapsulated lipid particles: impact of the emulsion oil droplet size. Eur Food Res Technol 2020. [DOI: 10.1007/s00217-020-03545-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
AbstractMicroencapsulation of oxidation sensitive oils aims to separate lipids from the environmental oxygen by embedding oil droplets in a solid matrix, which builds a physical barrier. Some oil droplets are not fully incorporated and are in contact with the powder surface generating surface oil. It is proposed that the probability of oil droplets being in contact with the particle surface increases with the oil droplet size. The aim of the study is to investigate the impact of the oil droplet size on the encapsulation efficiency (EE). Two sets of feed emulsions differing in the applied homogenization pressure and in the protein to oil ratio were spray dried using a pilot plant spray dryer. The oil droplet size of the emulsion was determined by static light scattering (SLS). In addition, nuclear magnetic resonance (NMR) was used to measure the d3,2 of oil droplets in the emulsion and in the powder before and after surface oil removal. Encapsulates were analyzed regarding aw, moisture content, particle size, oil load and EE. The oil droplet size in the emulsion decreased with increasing protein to oil ratio as well as with the homogenization pressure. Large oil droplets and in particular droplet clusters resulted in more non-encapsulated oil. The experimentally determined EE was in accordance with the theoretical one, calculated based on the droplet and particle diameter. For emulsions with a diameter > 1 µm, the d3,2 decreased in the powder and further by removing the surface oil, which was related to the deformation of oil droplets contributing to the non-encapsulated oil.
Collapse
|
21
|
Complex coacervates of cashew gum and gelatin as carriers of green coffee oil: The effect of microcapsule application on the rheological and sensorial quality of a fruit juice. Food Res Int 2020; 131:109047. [DOI: 10.1016/j.foodres.2020.109047] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 12/21/2019] [Accepted: 01/28/2020] [Indexed: 11/19/2022]
|
22
|
Production of bioactive films of carboxymethyl cellulose enriched with green coffee oil and its residues. Int J Biol Macromol 2020; 146:730-738. [DOI: 10.1016/j.ijbiomac.2019.10.123] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 10/10/2019] [Accepted: 10/13/2019] [Indexed: 11/21/2022]
|
23
|
Oliyaei N, Moosavi-Nasab M, Tamaddon AM, Fazaeli M. Double encapsulation of fucoxanthin using porous starch through sequential coating modification with maltodextrin and gum Arabic. Food Sci Nutr 2020; 8:1226-1236. [PMID: 32148828 PMCID: PMC7020259 DOI: 10.1002/fsn3.1411] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 12/14/2019] [Accepted: 12/18/2019] [Indexed: 01/12/2023] Open
Abstract
This study aims to assess the effect of gum Arabic (GA), maltodextrin (MD), or their combination as a coating agent at different ratios (1/3, 1/5, and 1/7 w/w) to encapsulate fucoxanthin. For this purpose, fucoxanthin was initially extracted and purified from Sargassum angustifolium brown seaweed and then loaded into porous starch (PS). The fucoxanthin-loaded PS samples were further contributed in another encapsulation process using the coating materials. All samples were evaluated in terms of encapsulation efficiency, Fourier-transform infrared (FTIR) spectroscopy and stability under light, dark and low or high temperature (4 and 50°C) exposure over a certain time period. Purification of fucoxanthin was verified through HPLC and NMR spectroscopy. It was shown that the subsequent coating with MD + GA (1/7 w/w) caused an enhanced encapsulation of fucoxanthin-loaded PS, reaching to about 96%. In addition, the stability of fucoxanthin-loaded PS was greatly influenced by light and high temperature exposure and decreased from 85% to 58% using the GA-coated material (1/3 w/w). First-order kinetic model was found to be fitted well on thermal degradation data of fucoxanthin. Interestingly, the mixture of MD + GA (1/7 w/w) exhibited the highest fucoxanthin prevention at the end of the storage period. Conclusively, the findings of this study can provide simple and facile protocol for food chemists in protecting the food ingredients using encapsulation process.
Collapse
Affiliation(s)
- Najme Oliyaei
- Seafood Processing Research Group School of Agriculture Shiraz University Shiraz Iran
- Department of Food Science and Technology School of Agriculture Shiraz University Shiraz Iran
| | - Marzieh Moosavi-Nasab
- Seafood Processing Research Group School of Agriculture Shiraz University Shiraz Iran
- Department of Food Science and Technology School of Agriculture Shiraz University Shiraz Iran
| | - Ali Mohammad Tamaddon
- School of Pharmacy and Research Center for Nanotechnology in Drug Delivery Shiraz University of Medical Science Shiraz Iran
| | - Mahboubeh Fazaeli
- Department of Food Science and Technology School of Agriculture Shiraz University Shiraz Iran
| |
Collapse
|
24
|
Oxidative Stability of Green Coffee Oil (Coffea arabica) Microencapsulated by Spray Drying. Processes (Basel) 2019. [DOI: 10.3390/pr7100734] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
In the search for oils of commercial interest that serve as new sources for the generation of cosmetic, pharmaceutical, or nutraceutical products, the green coffee beans oil (Coffea arabica L.) was studied. This research aimed to evaluate the oxidative stability of microencapsulated green coffee oil (Coffea arabica) by spray drying. The green coffee oil emulsions were produced by microfluidization using mesquite gum and octenyl succinic anhydride modified starches (OSA-starch) as wall-material. The particle size, polydispersity, and zeta potential on the microfluidized emulsions were optimized. The results showed that microfluidization had positive effects on the reduction of the emulsion droplets and the zeta potential, developing stable emulsions for both polymers. Then, the optimal microfluidization conditions were used to evaluate the impact of the spray drying conditions on the microencapsulation efficiency, morphology, and oxidation stability of the green coffee oil microcapsules under accelerated storage conditions (32% relative humidity (RH) at 25 °C). The microencapsulation efficiency was approximately 98% for both wall-materials. The morphology of the microcapsules showed spherical shapes and polydisperse sizes, a typical characteristic of spray-dried powders. The oxidative stability of the microcapsules was lower than the bulk green coffee oil (87.39 meq of O2/kg of oil), reaching values of 60.83 meq of O2/kg of oil for mesquite gum and 70.67 meq of O2/kg of oil for OSA-starch. The microcapsules produced have good potential for the development of nutraceutical foods or cosmetic formulations with adequate stability.
Collapse
|
25
|
Alcântara MA, Lima AEAD, Braga ALM, Tonon RV, Galdeano MC, Mattos MDC, Brígida AIS, Rosenhaim R, Santos NAD, Cordeiro AMTDM. Influence of the emulsion homogenization method on the stability of chia oil microencapsulated by spray drying. POWDER TECHNOL 2019. [DOI: 10.1016/j.powtec.2019.06.026] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
26
|
Jamshidi A, Antequera T, Solomando JC, Perez-Palacios T. Microencapsulation of oil and protein hydrolysate from fish within a high-pressure homogenized double emulsion. Journal of Food Science and Technology 2019; 57:60-69. [PMID: 31975708 DOI: 10.1007/s13197-019-04029-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 07/04/2019] [Accepted: 08/12/2019] [Indexed: 01/26/2023]
Abstract
In this study, the effect of high-pressure homogenization on the water-in-oil-in-water (W1/O/W2) double emulsions containing fish protein hydrolysate and fish oil encapsulated within a complex of whey protein concentrate and inulin were investigated in order to produce stable double emulsion. After adequacy of the positive influence of high-pressure homogenization at W1/O (one pass) and W1/O/W2 (three passes), the double emulsions were produced with (H) and without (HS) high-pressure homogenization. H samples were demonstrated lower CI of double emulsion and higher amounts of yield, total oil, encapsulated oil, EPA and DHA of microcapsules in comparison with HS samples. At subsequent step, response surface methodology were applied to optimize the high-pressure homogenization conditions (700-1500 Ba) of double emulsions in terms of minimum CI of emulsions and maximum microencapsulation efficiency and oxidation stability. Optimal conditions were obtained by using high-pressure homogenization at 1000 and 1100 Ba on W1/O and W1/O/W2, respectively.
Collapse
Affiliation(s)
- Aniseh Jamshidi
- 1Agricultural Sciences and Natural Resources, Gorgan University, Gorgan, Iran
| | - Teresa Antequera
- 2Research Institute of Meat and Meat Products (IProCar), University of Extremadura, Avda. de las Ciencias s/n, 10003 Cáceres, Spain
| | - Juan Carlos Solomando
- 2Research Institute of Meat and Meat Products (IProCar), University of Extremadura, Avda. de las Ciencias s/n, 10003 Cáceres, Spain
| | - Trinidad Perez-Palacios
- 2Research Institute of Meat and Meat Products (IProCar), University of Extremadura, Avda. de las Ciencias s/n, 10003 Cáceres, Spain
| |
Collapse
|
27
|
Iriondo-DeHond A, Cornejo FS, Fernandez-Gomez B, Vera G, Guisantes-Batan E, Alonso SG, Andres MIS, Sanchez-Fortun S, Lopez-Gomez L, Uranga JA, Abalo R, Del Castillo MD. Bioaccesibility, Metabolism, and Excretion of Lipids Composing Spent Coffee Grounds. Nutrients 2019; 11:E1411. [PMID: 31234581 PMCID: PMC6627363 DOI: 10.3390/nu11061411] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 06/17/2019] [Accepted: 06/20/2019] [Indexed: 11/30/2022] Open
Abstract
The bioaccessibility, metabolism, and excretion of lipids composing spent coffee grounds (SCGs) were investigated. An analysis of mycotoxins and an acute toxicity study in rats were performed for safety evaluation. Total fat, fatty acids, and diterpenes (cafestol and kahweol) were determined in SCGs and their digests obtained in vitro. A pilot repeated intake study was carried out in Wistar rats using a dose of 1 g SCGs/kg b.w. for 28 days. Fat metabolism was evaluated by analysis of total fat, cholesterol, and histology in liver. The dietary fiber effect of SCGs was measured radiographically. The absence of mycotoxins and toxicity was reported in SCGs. A total of 77% of unsaturated fatty acids and low amounts of kahweol (7.09 µg/g) and cafestol (414.39 µg/g) were bioaccessible after in vitro digestion. A significantly lower (p < 0.1) accumulation of lipids in the liver and a higher excretion of these in feces was found in rats treated with SCGs for 28 days. No lipid droplets or liver damage were observed by histology. SCGs acutely accelerated intestinal motility in rats. SCGs might be considered a sustainable, safe, and healthy food ingredient with potential for preventing hepatic steatosis due to their effect as dietary fiber with a high fat-holding capacity.
Collapse
Affiliation(s)
- Amaia Iriondo-DeHond
- Instituto de Investigación en Ciencias de la Alimentación (CIAL) (CSIC-UAM), Campus de la Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| | - Fresia Santillan Cornejo
- Instituto de Investigación en Ciencias de la Alimentación (CIAL) (CSIC-UAM), Campus de la Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| | - Beatriz Fernandez-Gomez
- Instituto de Investigación en Ciencias de la Alimentación (CIAL) (CSIC-UAM), Campus de la Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| | - Gema Vera
- Departamento de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos (URJC), Alcorcón, 28922 Madrid, Spain.
| | - Eduardo Guisantes-Batan
- Instituto Regional de Investigación Científica Aplicada (IRICA), Universidad de Castilla-La Mancha, 13005 Ciudad Real, Spain.
| | - Sergio Gomez Alonso
- Instituto Regional de Investigación Científica Aplicada (IRICA), Universidad de Castilla-La Mancha, 13005 Ciudad Real, Spain.
| | | | | | - Laura Lopez-Gomez
- Departamento de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos (URJC), Alcorcón, 28922 Madrid, Spain.
| | - Jose Antonio Uranga
- Departamento de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos (URJC), Alcorcón, 28922 Madrid, Spain.
| | - Raquel Abalo
- Departamento de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos (URJC), Alcorcón, 28922 Madrid, Spain.
| | - Maria Dolores Del Castillo
- Instituto de Investigación en Ciencias de la Alimentación (CIAL) (CSIC-UAM), Campus de la Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| |
Collapse
|
28
|
Hoyos-Leyva J, Bello-Perez L, Agama-Acevedo J, Alvarez-Ramirez J, Jaramillo-Echeverry L. Characterization of spray drying microencapsulation of almond oil into taro starch spherical aggregates. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2018.11.079] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
29
|
Anaya Castro MA, Alric I, Brouillet F, Peydecastaing J, Fullana SG, Durrieu V. Spray-Dried Succinylated Soy Protein Microparticles for Oral Ibuprofen Delivery. AAPS PharmSciTech 2019; 20:79. [PMID: 30635750 DOI: 10.1208/s12249-018-1250-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 11/13/2018] [Indexed: 02/01/2023] Open
Abstract
The potential value of succinylated soy protein (SPS) as a wall material for the encapsulation of ibuprofen (IBU), a model hydrophobic drug, by spray-drying was investigated. A succinylation rate of 93% was obtained for soy protein isolate, with a molar ratio of 1/1.5 (NH2/succinic anhydride). The solubility profile at 37°C showed that this chemical modification decreased the solubility of the protein below its isoelectric point, whereas solubility increased in alkaline conditions. Various SPS/IBU ratios (90/10, 80/20, and 60/40) were studied and compared with the same ratio of soy protein isolate (SPI/IBU). High encapsulation efficiency was achieved (91-95%). Microparticles were spherical and between 4 and 8 μm in diameter. The spray-drying of protein/IBU solutions appeared to be beneficial, as it resulted in an amorphous solid dispersion of IBU within the microparticles, coupled with an increase in the thermal stability of IBU. In vitro release was evaluated in acidic (pH 1.2 in the presence of pepsin) and neutral (pH 6.8) conditions similar to those in the gastrointestinal (GI) tract. IBU was released significantly more slowly at pH 1.2, for both proteins. However, this slowing was particularly marked for SPS, for which rapid (within 2 h) and complete release was observed at pH 6.8. These results validate the hypothesis that SPS is suitable for use as a coating material for hydrophobic active pharmaceutical ingredients (APIs) due to its pH sensitivity, which should delay IBU release in the gastrointestinal tract.
Collapse
|
30
|
Nawas T, Azam MS, Ramadhan AH, Xu Y, Xia W. Impact of Wall Material on the Physiochemical Properties and Oxidative Stability of Microencapsulated Spray Dried Silver Carp Oil. JOURNAL OF AQUATIC FOOD PRODUCT TECHNOLOGY 2019. [DOI: 10.1080/10498850.2018.1560380] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Tazbidul Nawas
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, China
| | - Md Shofiul Azam
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Abuubakar Hassan Ramadhan
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, China
| | - Yanshun Xu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, China
| | - Wenshui Xia
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
31
|
Arepally D, Goswami TK. Effect of inlet air temperature and gum Arabic concentration on encapsulation of probiotics by spray drying. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2018.10.022] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
32
|
Microencapsulation of a Model Oil in Wall System Consisting of Wheat Proteins Isolate (WHPI) and Lactose. APPLIED SCIENCES-BASEL 2018. [DOI: 10.3390/app8101944] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Microencapsulation allows for the entrapment, protection, and delivery of sensitive and/or active desired nutrients and ingredients as well as biologically-active agents. The microencapsulating properties of wall solutions (WS) containing 2.5–10% (w/w) wheat proteins isolate (WHPI) and 17.5–10% (w/w) lactose were investigated. Core-in-wall-emulsions (CIWEs) consisting of the WS and soy oil were prepared at a wall-to-core (W:C) ratio ranging from 25:75 to 75:25 (w/w). Microcapsules were prepared by spray-drying the CIWEs. The CIWEs had a mean particle diameter smaller than 0.5 µm and surface excess that ranged from 1.59 to 5.32 mg/m2. In all cases, microcapsules with smooth outer surfaces that exhibited only limited surface indentation were obtained. The core, in the form of protein-coated lipid droplets, was embedded throughout the wall matrices. In all but one case, core retention was higher than 83%, and in 50% of the cases, it was higher than 90%. Core retention was significantly influenced the composition of the WS and by W:C ratio (p < 0.05). Except for two cases, microcapsules exhibited very limited core extractability. The microencapsulation efficiency was >90% and was influenced, to a certain degree, by the composition of the CIWEs. Results indicated the potential for utilizing wall systems consisting of WHPI and lactose as effective and highly functional microencapsulating agents in food and related applications.
Collapse
|
33
|
Wang S, Shi Y, Han L. Development and evaluation of microencapsulated peony seed oil prepared by spray drying: Oxidative stability and its release behavior during in-vitro digestion. J FOOD ENG 2018. [DOI: 10.1016/j.jfoodeng.2018.03.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
34
|
Belmiro RH, Tribst AAL, Cristianini M. Application of high-pressure homogenization on gums. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2018; 98:2060-2069. [PMID: 28944960 DOI: 10.1002/jsfa.8695] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 08/21/2017] [Accepted: 09/13/2017] [Indexed: 06/07/2023]
Abstract
High-pressure homogenization (HPH) is an emerging process during which a fluid product is pumped by pressure intensifiers, forcing it to flow through a narrow gap, usually measured in the order of micrometers. Gums are polysaccharides from vegetal, animal or microbial origin and are widely employed in food and chemical industries as thickeners, stabilizers, gelling agents and emulsifiers. The choice of a specific gum depends on its application and purpose because each form of gum has particular values with respect to viscosity, intrinsic viscosity, stability, and emulsifying and gelling properties, with these parameters being determined by its structure. HPH is able to alter those properties positively by inducing changes in the original polymer, allowing for new applications and improvements with respect to the technical properties of gums. This review highlights the most important advances when this process is applied to change polysaccharides from distinct sources and molecular structures, as well as the future challenges that remain. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ricardo Henrique Belmiro
- Department of Food Technology (DTA), School of Food Engineering (FEA), University of Campinas (UNICAMP), Campinas, Brazil
| | | | - Marcelo Cristianini
- Department of Food Technology (DTA), School of Food Engineering (FEA), University of Campinas (UNICAMP), Campinas, Brazil
- Center of Studies and Researches in Food (NEPA), University of Campinas (UNICAMP), Campinas, Brazil
| |
Collapse
|
35
|
Arshad H, Ali TM, Abbas T, Hasnain A. Effect of Microencapsulation on Antimicrobial and Antioxidant Activity of Nutmeg Oleoresin Using Mixtures of Gum Arabic, OSA, and Native Sorghum Starch. STARCH-STARKE 2018. [DOI: 10.1002/star.201700320] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Hira Arshad
- Department of Food Science and Technology, University of Karachi; 75270 Karachi Pakistan
| | - Tahira Mohsin Ali
- Department of Food Science and Technology, University of Karachi; 75270 Karachi Pakistan
| | - Tanveer Abbas
- Department of Microbiology, University of Karachi; 75270 Karachi Pakistan
| | - Abid Hasnain
- Department of Food Science and Technology, University of Karachi; 75270 Karachi Pakistan
| |
Collapse
|
36
|
Abstract
The preparation methods and applications of flavor and fragrance capsules based on polymeric, inorganic and polymeric–inorganic wall materials are summarized.
Collapse
Affiliation(s)
- Lei He
- School of Perfume and Aroma Technology
- Shanghai Institute of Technology
- Shanghai
- China
| | - Jing Hu
- School of Perfume and Aroma Technology
- Shanghai Institute of Technology
- Shanghai
- China
| | - Weijun Deng
- School of Perfume and Aroma Technology
- Shanghai Institute of Technology
- Shanghai
- China
| |
Collapse
|
37
|
Consoli L, de Figueiredo Furtado G, da Cunha RL, Hubinger MD. High solids emulsions produced by ultrasound as a function of energy density. ULTRASONICS SONOCHEMISTRY 2017; 38:772-782. [PMID: 27955981 DOI: 10.1016/j.ultsonch.2016.11.038] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 11/28/2016] [Accepted: 11/29/2016] [Indexed: 06/06/2023]
Abstract
The use of emulsifying methods is frequently required before spray drying food ingredients, where using high concentration of solids increases the drying process yield. In this work, we used ultrasound to obtain kinetically stable palm oil-in-water emulsions with 30g solids/100g of emulsion. Sodium caseinate, maltodextrin and dried glucose syrup were used as stabilizing agents. Sonication time of 3, 7 and 11min were evaluated at power of 72, 105 and 148W (which represents 50%, 75% and 100% of power amplitude in relation to the nominal power of the equipment). Energy density required for each assay was calculated. Emulsions were characterized for droplets mean diameter and size distribution, optical microscopy, confocal microscopy, ζ-potential, creaming index (CI) and rheological behavior. Emulsions presented bimodal size distribution, with D[3,2] ranging from 0.7 to 1.4μm and CI between 5% and 12%, being these parameters inversely proportional to sonication time and power, but with a visual kinetically stabilization after the treatment at 148W at 7min sonication. D[3,2] showed to depend of energy density as a power function. Sonication presented as an effective method to be integrated to spray drying when emulsification is needed before the drying process.
Collapse
Affiliation(s)
- Larissa Consoli
- Department of Food Engineering, School of Food Engineering, 80, Monteiro Lobato Street, University of Campinas, 13083-862 Campinas, SP, Brazil.
| | - Guilherme de Figueiredo Furtado
- Department of Food Engineering, School of Food Engineering, 80, Monteiro Lobato Street, University of Campinas, 13083-862 Campinas, SP, Brazil.
| | - Rosiane Lopes da Cunha
- Department of Food Engineering, School of Food Engineering, 80, Monteiro Lobato Street, University of Campinas, 13083-862 Campinas, SP, Brazil.
| | - Míriam Dupas Hubinger
- Department of Food Engineering, School of Food Engineering, 80, Monteiro Lobato Street, University of Campinas, 13083-862 Campinas, SP, Brazil.
| |
Collapse
|
38
|
Influence of soy lecithin concentration on the physical properties of whey protein isolate-stabilized emulsion and microcapsule formation. J FOOD ENG 2017. [DOI: 10.1016/j.jfoodeng.2017.03.020] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
39
|
Campelo PH, Junqueira LA, Resende JVD, Zacarias RD, Fernandes RVDB, Botrel DA, Borges SV. Stability of lime essential oil emulsion prepared using biopolymers and ultrasound treatment. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2017. [DOI: 10.1080/10942912.2017.1303707] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Pedro Henrique Campelo
- Faculty of Agrarian Science, Federal University of Amazonas, Manaus, Amazonas, Brazil
- Department of Food Science, Federal University of Lavras, Lavras, Minas Gerais, Brazil
| | | | | | | | | | | | - Soraia Vilela Borges
- Department of Food Science, Federal University of Lavras, Lavras, Minas Gerais, Brazil
| |
Collapse
|
40
|
Effects of the Emulsion Composition on the Physical Properties and Oxidative Stability of Sacha Inchi (Plukenetia volubilis L.) Oil Microcapsules Produced by Spray Drying. FOOD BIOPROCESS TECH 2017. [DOI: 10.1007/s11947-017-1906-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
41
|
Reis ASD, Diedrich C, Moura CD, Pereira D, Almeida JDF, Silva LDD, Plata-Oviedo MSV, Tavares RAW, Carpes ST. Physico-chemical characteristics of microencapsulated propolis co-product extract and its effect on storage stability of burger meat during storage at −15 °C. Lebensm Wiss Technol 2017. [DOI: 10.1016/j.lwt.2016.05.033] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
42
|
Hoyos-Leyva JD, Bello-Pérez LA, Alvarez-Ramirez J, Garcia HS. Microencapsulation using starch as wall material: A review. FOOD REVIEWS INTERNATIONAL 2017. [DOI: 10.1080/87559129.2016.1261298] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
| | | | - J. Alvarez-Ramirez
- Departamento de Ingeniería de Procesos e Hidráulica, Universidad Autónoma Metropolitana-Iztapalapa, Iztapalapa, Ciudad de México, México
| | - Hugo S. Garcia
- UNIDA, Instituto Tecnológico de Veracruz, Veracruz, México
| |
Collapse
|
43
|
Aguiar J, Estevinho B, Santos L. Microencapsulation of natural antioxidants for food application – The specific case of coffee antioxidants – A review. Trends Food Sci Technol 2016. [DOI: 10.1016/j.tifs.2016.10.012] [Citation(s) in RCA: 126] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
44
|
Abedi AS, Rismanchi M, Shahdoostkhany M, Mohammadi A, Hosseini H. Microencapsulation of Nigella sativa
seeds oil containing thymoquinone by spray-drying for functional yogurt production. Int J Food Sci Technol 2016. [DOI: 10.1111/ijfs.13208] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Abdol-Samad Abedi
- Department of Food Science and Technology; National Nutrition and Food Technology Research Institute; Shahid Beheshti University of Medical Sciences; Tehran Iran
| | - Marjan Rismanchi
- Department of Food Science and Technology; National Nutrition and Food Technology Research Institute; Shahid Beheshti University of Medical Sciences; Tehran Iran
| | - Mehrnoush Shahdoostkhany
- Department of Food Science and Technology; National Nutrition and Food Technology Research Institute; Shahid Beheshti University of Medical Sciences; Tehran Iran
| | - Abdorreza Mohammadi
- Department of Food Science and Technology; National Nutrition and Food Technology Research Institute; Shahid Beheshti University of Medical Sciences; Tehran Iran
| | - Hedayat Hosseini
- Department of Food Science and Technology; National Nutrition and Food Technology Research Institute; Shahid Beheshti University of Medical Sciences; Tehran Iran
| |
Collapse
|
45
|
Shi Y, Wang SJ, Tu ZC, Wang H, Li RY, Zhang L, Huang T, Su T, Li C. Quality evaluation of peony seed oil spray-dried in different combinations of wall materials during encapsulation and storage. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2016; 53:2597-605. [PMID: 27478215 PMCID: PMC4951412 DOI: 10.1007/s13197-016-2225-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 03/29/2016] [Accepted: 04/01/2016] [Indexed: 10/21/2022]
Abstract
This study aimed at evaluating the performance of peony seed oil microencapsulated by spray drying during encapsulation and storage. Four different combinations of gum arabic (GA), corn syrup (CS), whey protein concentrate (WPC) and sodium caseinate (CAS) were used to encapsulate peony seed oil. The best encapsulation efficiency was obtained for CAS/CS followed by the CAS/GA/CS combination with the encapsulation ratio of 93.71 and 92.80 %, respectively, while the lowest encapsulation efficiency was obtained for WPC/GA/CS (85.96 %). Scanning electron microscopy and confocal laser scanning microscopy revealed that the particles were spherical in shape and did not exhibit apparent cracks or fissures, and gum arabic was uniformly distributed across the wall of the microcapsules. Oxidative stability study indicated that the CAS/GA/CS combination presented the best protection against lipid oxidation and the smallest loss of polyunsaturated fatty acid content among all of the formulas as measured by gas chromatography. Therefore, CAS/GA/CS could be promising materials encapsulate peony seed oil with high encapsulation efficiency and minimal lipid oxidation.
Collapse
Affiliation(s)
- Yan Shi
- />State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047 China
| | - Shu-jie Wang
- />State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047 China
| | - Zong-cai Tu
- />State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047 China
- />College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi 330022 China
| | - Hui Wang
- />State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047 China
| | - Ru-yi Li
- />State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047 China
| | - Lu Zhang
- />College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi 330022 China
| | - Tao Huang
- />State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047 China
| | - Ting Su
- />State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047 China
| | - Cui Li
- />State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047 China
| |
Collapse
|
46
|
Bakry AM, Abbas S, Ali B, Majeed H, Abouelwafa MY, Mousa A, Liang L. Microencapsulation of Oils: A Comprehensive Review of Benefits, Techniques, and Applications. Compr Rev Food Sci Food Saf 2015; 15:143-182. [DOI: 10.1111/1541-4337.12179] [Citation(s) in RCA: 423] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 09/15/2015] [Accepted: 09/17/2015] [Indexed: 12/12/2022]
Affiliation(s)
- Amr M. Bakry
- the State Key Laboratory of Food Science and Technology, School of Food Science and Technology; Jiangnan Univ; Wuxi Jiangsu 214122 PR China
- the Dept. of Dairy Science, Faculty of Agriculture; Suez Canal Univ; Ismailia 41522 Egypt
| | - Shabbar Abbas
- the State Key Laboratory of Food Science and Technology, School of Food Science and Technology; Jiangnan Univ; Wuxi Jiangsu 214122 PR China
- the Dept. of Biosciences; COMSATS Inst. of Information Technology; Park Road Islamabad 45550 Pakistan
| | - Barkat Ali
- the State Key Laboratory of Food Science and Technology, School of Food Science and Technology; Jiangnan Univ; Wuxi Jiangsu 214122 PR China
| | - Hamid Majeed
- the State Key Laboratory of Food Science and Technology, School of Food Science and Technology; Jiangnan Univ; Wuxi Jiangsu 214122 PR China
| | - Mohamed Y. Abouelwafa
- the State Key Laboratory of Food Science and Technology, School of Food Science and Technology; Jiangnan Univ; Wuxi Jiangsu 214122 PR China
- the Dept. of Dairy Science, Faculty of Agriculture; Suez Canal Univ; Ismailia 41522 Egypt
| | - Ahmed Mousa
- the State Key Laboratory of Food Science and Technology, School of Food Science and Technology; Jiangnan Univ; Wuxi Jiangsu 214122 PR China
- the Dept. of Dairy Science, Faculty of Environmental Agricultural Science; Suez Canal Univ; 45516 El Arish Egypt
| | - Li Liang
- the State Key Laboratory of Food Science and Technology, School of Food Science and Technology; Jiangnan Univ; Wuxi Jiangsu 214122 PR China
| |
Collapse
|
47
|
Freiberger EB, Kaufmann KC, Bona E, Hermes de Araújo PH, Sayer C, Leimann FV, Gonçalves OH. Encapsulation of roasted coffee oil in biocompatible nanoparticles. Lebensm Wiss Technol 2015. [DOI: 10.1016/j.lwt.2015.05.039] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
48
|
Stoll L, Costa TMH, Jablonski A, Flôres SH, de Oliveira Rios A. Microencapsulation of Anthocyanins with Different Wall Materials and Its Application in Active Biodegradable Films. FOOD BIOPROCESS TECH 2015. [DOI: 10.1007/s11947-015-1610-0] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
49
|
Rajabi H, Ghorbani M, Jafari SM, Sadeghi Mahoonak A, Rajabzadeh G. Retention of saffron bioactive components by spray drying encapsulation using maltodextrin, gum Arabic and gelatin as wall materials. Food Hydrocoll 2015. [DOI: 10.1016/j.foodhyd.2015.05.033] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
50
|
|