1
|
Li H, Wang Y, Mustapha WAW, Zhang X, Zeng F, Liu J. Construction of fish scale (Cyprinus carpio L.) gelatin-fatty acid conjugate for loading curcumin: Effect of alkyl chain length on the interaction and stability. Int J Biol Macromol 2025; 304:140757. [PMID: 39922348 DOI: 10.1016/j.ijbiomac.2025.140757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/26/2025] [Accepted: 02/05/2025] [Indexed: 02/10/2025]
Abstract
A fish scale (FS) gelatin-fatty acid conjugate (GFC) with alkyl chain lengths of 8-18 was constructed to increase the aqueous solubility of curcumin. The effect of alkyl chain length on the interaction between GFC and curcumin was characterized by dynamic light scattering (DLS), X-ray photoelectron spectroscopy (XPS), fluorescence spectroscopy (FS), and isothermal titration calorimetry (ITC). The surface hydrophobicity (from 4987 ± 223.79 to 9982 ± 262.78) and curcumin loading capacity (from 8.20 ± 0.54 to 31.18 ± 1.41 μg/mg) of the GFC exhibited significant enhancements through increasing alkyl chain lengths from 8 to 18. This was accompanied by a reduction in particle size (from 661.5 ± 28.9 to 329.7 ± 6.6 nm) and ζ-potential (from -2.7 ± 0.92 to -26.8 ± 0.27). FS and ITC confirmed that GOC shared an optimal binding constant (Ka, 2.40 × 108 L·mol-1 and 3.47 × 105 M-1) and binding site (n, 1.45 and 2.276) with curcumin among GFCs. Increasing GFC's alkyl chain length also boosted the stability of entrapped curcumin against the thermal environment and ultraviolet radiation. These results could be beneficial for gelatin-based nanocarrier development and application.
Collapse
Affiliation(s)
- Haoxin Li
- School of Public Health, Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, China
| | - Yanxi Wang
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China; Institute of Food Processing Technology, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China
| | - Wan Aida Wan Mustapha
- Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Malaysia
| | - Xiaoping Zhang
- Guizhou Fishery Research Institute, Guizhou Academy of Agricultural Science, Guiyang 550025, China
| | - Fankui Zeng
- Research & Development Center for Eco-Material and Eco-Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Jia Liu
- School of Public Health, Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, China; Institute of Food Processing Technology, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China; Institute of Horticulture, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China.
| |
Collapse
|
2
|
Salazar-Bermeo J, Moreno-Chamba B, Hernández-García M, Saura D, Valero M, Martí N, Martínez-Madrid MC. Optimization of hypobaric and ultrasonic processing of persimmon rhamnogalacturonan-I to enhance drug-digestion interactions. Int J Biol Macromol 2025; 295:139453. [PMID: 39755300 DOI: 10.1016/j.ijbiomac.2025.139453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 12/24/2024] [Accepted: 01/01/2025] [Indexed: 01/06/2025]
Abstract
The biological activity of polysaccharides used for nutraceuticals/drug excipients has been a neglected area of study. This work deals with the preparation, optimization, characterization, and evaluation of persimmon (Diospyros kaki Thunb.) fruit by-products and the study of the resultant dietary fiber (DF) interaction with other compounds, using acetaminophen as a model. Processing conditions for persimmon by-products were optimized to enhance antioxidant activity, with hypobaric, ultrasonic, and drying conditions tested at three levels of time and pH. The optimized DF was evaluated through in-vitro and ex-vivo release and permeation studies. Optimal conditions included three cycles of vacuum instantaneous expansion coupled with ultrasound waves (USEX), 42 min of ultrasound assisted extraction (UAE), and a pH of 1.5. After treatments, the antioxidant capacity (AC) increased six-fold, and zeta potential (ζ) analysis indicated polysaccharide aggregation at the optimized pH. The optimized polysaccharides, mainly formed by rhamnogalacturonan-I, displayed nuclear factor erythroid 2-related factor 2 (Nrf2)-dependent activity. In-vitro drug-DF interaction studies showed higher acetaminophen release during digestion. Permeation kinetics adhered to the Korsmeyer-Peppas model in both ex-vivo and in-vitro models, suggesting complex permeation mechanisms. Results suggest that the optimized DF enhances the bioavailability and controlled release of acetaminophen, indicating its potential for use in drug delivery systems and nutraceutical applications.
Collapse
Affiliation(s)
- Julio Salazar-Bermeo
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández, 03202 Elche, Alicante, Spain; Instituto Universitario de Ingeniería de Alimentos-FoodUPV, Universitat Politècnica de València, Avenida Fausto Elio s/n, Edificio 8E, Acceso F Planta 0, 46022 Valencia, Spain.
| | - Bryan Moreno-Chamba
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández, 03202 Elche, Alicante, Spain; Instituto Universitario de Ingeniería de Alimentos-FoodUPV, Universitat Politècnica de València, Avenida Fausto Elio s/n, Edificio 8E, Acceso F Planta 0, 46022 Valencia, Spain.
| | - Marta Hernández-García
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández, 03202 Elche, Alicante, Spain.
| | - Domingo Saura
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández, 03202 Elche, Alicante, Spain.
| | - Manuel Valero
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández, 03202 Elche, Alicante, Spain.
| | - Nuria Martí
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández, 03202 Elche, Alicante, Spain.
| | - María Concepción Martínez-Madrid
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández, 03202 Elche, Alicante, Spain.
| |
Collapse
|
3
|
Han A, Baek Y, Lee HG. Impact of Encapsulation Position in Pickering Emulsions on Color Stability and Intensity Turmeric Oleoresin. Foods 2025; 14:385. [PMID: 39941977 PMCID: PMC11816578 DOI: 10.3390/foods14030385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/17/2025] [Accepted: 01/22/2025] [Indexed: 02/16/2025] Open
Abstract
The emulsification of natural pigment is a widely utilized strategy to enhance its stability in the food industry. However, high turbidity in emulsions often causes color fading, limiting their application. Here, we developed a comprehensive Pickering emulsion (PE) system to improve the color intensity and stability of turmeric oleoresin (Tur) under various food processing conditions. Specifically, the effects of two encapsulation positions within the PE were compared: the inner oil phase (Tur-IPE) and the outer solid particle layer (Tur-OPE). Lysozyme and carboxymethyl cellulose nanoparticles (NPs) were used as natural solid particle surfactants, with their successful formation confirmed through physical property analysis and FTIR spectroscopy. The optimal oil fraction (φ) for suitable physical properties of PE was determined to be 0.2. Interestingly, Tur-OPE significantly exceeded Tur-conventional emulsions (Tur-CE) and Tur-IPE in terms of color vividness, exhibiting higher redness and lower lightness (p < 0.05). During thermal processing at 70 and 90 °C, all emulsions demonstrated significantly enhanced heat resistance, retaining 1.3 to 1.6 times more Tur, respectively, compared to unencapsulated Tur (free Tur) (p < 0.05). Furthermore, Tur's pH instability was significantly overcome by encapsulation in all emulsion systems (p < 0.05). During 4 weeks of storage period, Tur-OPE demonstrated the highest retention rates, with the half-life of Tur increasing in the following order: free Tur < Tur-CE < Tur-IPE < Tur-OPE. Thus, we highlighted the important role of encapsulation position in PEs in improving and maintaining the color stability and vividness of natural pigments under various food processing conditions.
Collapse
Affiliation(s)
| | | | - Hyeon Gyu Lee
- Department of Food and Nutrition, Hanyang University, 222, Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea; (A.H.); (Y.B.)
| |
Collapse
|
4
|
Liu X, Dong Y, Wang C, Guo Z. Application of chitosan as nano carrier in the treatment of inflammatory bowel disease. Int J Biol Macromol 2024; 278:134899. [PMID: 39187100 DOI: 10.1016/j.ijbiomac.2024.134899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 08/13/2024] [Accepted: 08/18/2024] [Indexed: 08/28/2024]
Abstract
Inflammatory bowel disease (IBD), encompassing ulcerative colitis (UC) and Crohn's disease (CD), is characterized by persistent and recurrent gastrointestinal inflammation. Conventional IBD therapies often involve the use of antibiotics, NSAIDs, biological agents, and immunomodulators. While these medications can mitigate acute inflammatory symptoms, their long-term efficacy is frequently compromised due to cumulative toxic effects. In recent years, significant attention has shifted toward nanoparticle (NP)-based therapies as potential alternatives for IBD management. Various drug delivery strategies, including those targeting microbiota interactions, ligand-receptor binding, pH sensitivity, biodegradability, pressure response, and specific charge and size parameters, have been explored and optimized in animal studies. This review provides a comprehensive overview of the current landscape of chitosan NP-mediated drug delivery systems for IBD treatment. Additionally, it will discuss the prevailing challenges and propose future research directions to advance chitosan NP-based therapeutic strategies for IBD.
Collapse
Affiliation(s)
- Xiaoming Liu
- Department of Gastroenterology, Huaihe Hospital of Henan University, 115 Ximen Street, Kaifeng 475000, Henan, China
| | - Yunrui Dong
- Hubei University of Science and Technology, 88 Xianning Road, Xianning 437100, Hubei, China
| | - Chenyu Wang
- Department of General Surgery, Huaihe Hospital of Henan University, 115 Ximen Street, Kaifeng 475000, Henan, China
| | - Zhiguo Guo
- Department of Gastroenterology, Suzhou Hospital of Anhui Medical University (Suzhou Municipal Hospital of Anhui Province), No.616 Bianyangsan Road, Suzhou 234000, Anhui, China.
| |
Collapse
|
5
|
Cao C, Tian L, Li J, Raveendran R, Stenzel MH. Mix and Shake: A Mild Way to Drug-Loaded Lysozyme Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2024; 16:27177-27186. [PMID: 38753304 DOI: 10.1021/acsami.4c05497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Biocompatible nanoparticles as drug carriers can improve the therapeutic efficiency of hydrophobic drugs. However, the synthesis of biocompatible and biodegradable polymeric nanoparticles can be time-consuming and often involves toxic solvents. Here, a simple method for protein-based stable drug-loaded particles with a narrow polydispersity is introduced. In this process, lysozyme is mixed with hydrophobic drugs (curcumin, ellipticine, and dasatinib) and fructose to prepare lysozyme-based drug particles of around 150 nm in size. Fructose is mixed with the drug to generate nanoparticles that serve as templates for the lysozyme coating. The effect of lysozyme on the physicochemical properties of these nanoparticles is studied by transmission electron microscopy (TEM) and scattering techniques (e.g., dynamic light scattering (DLS) and small-angle X-ray scattering (SAXS)). We observed that lysozyme significantly stabilized the curcumin fructose particles for 7 days. Moreover, additional drugs, such as ellipticine and dasatinib, can be loaded to form dual-drug particles with narrow polydispersity and spherical morphology. The results also reveal that lysozyme dual ellipticine/dasatinib curcumin particles enhance the cytotoxicity and uptake on MCF-7 cells, RAW 264.7 cells, and U-87 MG cells due to the larger and rigid hydrophobic core. In summary, lysozyme in combination with fructose and curcumin can serve as a powerful combination to form protein-based stable particles for the delivery of hydrophobic drugs.
Collapse
Affiliation(s)
- Cheng Cao
- School of Chemistry, The University of New South Wales, Sydney 2052, Australia
| | - Linqing Tian
- School of Chemistry, The University of New South Wales, Sydney 2052, Australia
| | - Joanna Li
- School of Chemistry, The University of New South Wales, Sydney 2052, Australia
| | - Radhika Raveendran
- School of Chemistry, The University of New South Wales, Sydney 2052, Australia
| | - Martina H Stenzel
- School of Chemistry, The University of New South Wales, Sydney 2052, Australia
| |
Collapse
|
6
|
Gu X, Li W, Jiang X, Chang C, Wu J. Pectin-coated whey protein isolate/zein self-aggregated nanoparticles as curcumin delivery vehicles: Effects of heating, pH, and adding sequence. Int J Biol Macromol 2024; 258:128892. [PMID: 38134988 DOI: 10.1016/j.ijbiomac.2023.128892] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/15/2023] [Accepted: 12/17/2023] [Indexed: 12/24/2023]
Abstract
In this work, pectin was employed as a coating material to fabricate zein/whey protein isolate (WPI)/pectin complex nanoparticles via a pH-adjusted and heat-induced electrostatic adsorption process for potential oral administration applications of curcumin. Factors such as the order of raw material addition, heating temperature and pH, and zein concentration were comprehensively examined. In addition to electrostatic interactions, Fourier transform infrared and fluorescence spectroscopy indicated that hydrophobic interactions and hydrogen bonds were also involved in the development of complex nanoparticles. The complex nanoparticles obtained not only improved the antioxidant activity of curcumin in aqueous phase, but also contributed to its controlled release under gastrointestinal conditions. Our findings revealed that the heating pH and adding sequence of raw materials had a notable impact on the properties of complex nanoparticles, and that pectin coating had an exceptional stabilizing effect on complex nanoparticles under gastrointestinal circumstances. This study provides novel insights and perspectives for the preparation of polysaccharide-protein complex nanoparticles, signifying the potential use of zein/WPI/pectin complex nanoparticles as delivery vehicles in the functional food and pharmaceutical industries.
Collapse
Affiliation(s)
- Xiaolian Gu
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Wanbing Li
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Xiaoyu Jiang
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Chao Chang
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; Key Laboratory of Intensive Processing of Staple Grain and Oil, Ministry of Education, Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, Hubei, China.
| | - Jine Wu
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; Key Laboratory of Intensive Processing of Staple Grain and Oil, Ministry of Education, Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, Hubei, China.
| |
Collapse
|
7
|
Shen D, Chen H, Li M, Yu L, Li X, Liu H, Hu Q, Lu Y. Effects of Different Molecular Weight Oxidized Dextran as Crosslinkers on Stability and Antioxidant Capacity of Curcumin-Loaded Nanoparticles. Foods 2023; 12:2533. [PMID: 37444270 DOI: 10.3390/foods12132533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/03/2023] [Accepted: 06/09/2023] [Indexed: 07/15/2023] Open
Abstract
Curcumin is a polyphenolic compound that has been widely investigated for its health benefits. However, the clinical relevance of curcumin is limited due to its low water solubility and inefficient absorption. Therefore, curcumin is often encapsulated in nanocarriers to improve its delivery and function. In this study, composite nanoparticles composed of stearic acid-modified chitosan (SA-CS) and sodium caseinate (NaCas) were formed using sodium periodate-oxidized dextran with different molecular weights as a crosslinking agent. The effects of oxidized dextran (Odex) with different molecular weights on the composite nanoparticles were compared. The optimal SA-CS/NaCas/Odex composite nanoparticle (NPO) was obtained using an Odex (150 kDa)-to-SA-CS mass ratio of 2:1. Its size, polydispersity index (PDI), and zeta potential (ZP) were 130.2 nm, 0.149, and 25.4 mV, respectively. The particles were highly stable in simulated gastric fluid (SGF) in vitro, and their size and PDI were 172.3 nm and 0.263, respectively. The encapsulation rate of NPO loaded with curcumin (Cur-NPO) was 93% under optimal ultrasonic conditions. Compared with free curcumin, the sustained release of Cur-NPO significantly reduced to 17.9%, and free-radical-scavenging ability improved to 78.7%. In general, the optimal prepared NPO exhibited good GI stability and has potential applications in the formulation of orally bioactive hydrophobic drugs.
Collapse
Affiliation(s)
- Dongyan Shen
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, 3 Wenyuan Road, Nanjing 210023, China
| | - Hongzhou Chen
- Anhui Guotaizhongxin Testing Technology Co., Ltd., 22nd Floor, Huishang Square, Hefei 230041, China
| | - Mingwei Li
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, 3 Wenyuan Road, Nanjing 210023, China
| | - Ling Yu
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, 3 Wenyuan Road, Nanjing 210023, China
| | - Xiangfei Li
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, 3 Wenyuan Road, Nanjing 210023, China
| | - Huawei Liu
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, 3 Wenyuan Road, Nanjing 210023, China
| | - Qiaobin Hu
- College of Health Solutions, Arizona State University, 850 N 5th Street, Phoenix, AZ 85004, USA
| | - Yingjian Lu
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, 3 Wenyuan Road, Nanjing 210023, China
| |
Collapse
|
8
|
Huang SM, Liu SM, Tseng HY, Chen WC. Development and In Vitro Analysis of Layer-by-Layer Assembled Membranes for Potential Wound Dressing: Electrospun Curcumin/Gelatin as Middle Layer and Gentamicin/Polyvinyl Alcohol as Outer Layers. MEMBRANES 2023; 13:564. [PMID: 37367768 PMCID: PMC10304541 DOI: 10.3390/membranes13060564] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/29/2023] [Accepted: 05/29/2023] [Indexed: 06/28/2023]
Abstract
Nanofibrous membranes made of hydrogels have high specific surface areas and are suitable as drug carriers. Multilayer membranes fabricated by continuous electrospinning could delay drug release by increasing diffusion pathways, which is beneficial for long-term wound care. In this experiment, polyvinyl alcohol (PVA) and gelatin were used as membrane substrates, and a sandwich PVA/gelatin/PVA structure of layer-by-layer membranes was prepared by electrospinning under different drug loading concentrations and spinning times. The outer layers on both sides were citric-acid-crosslinked PVA membranes loaded with gentamicin as an electrospinning solution, and the middle layer was a curcumin-loaded gelatin membrane for the study of release behavior, antibacterial activity, and biocompatibility. According to the in vitro release results, the multilayer membrane could release curcumin slowly; the release amount was about 55% less than that of the single layer within 4 days. Most of the prepared membranes showed no significant degradation during immersion, and the phosphonate-buffered saline absorption rate of the multilayer membrane was about five to six times its weight. The results of the antibacterial test showed that the multilayer membrane loaded with gentamicin had a good inhibitory effect on Staphylococcus aureus and Escherichia coli. In addition, the layer-by-layer assembled membrane was non-cytotoxic but detrimental to cell attachment at all gentamicin-carrying concentrations. This feature could be used as a wound dressing to reduce secondary damage to the wound when changing the dressing. This multilayer wound dressing could be applied to wounds in the future to reduce the risk of bacterial infection and help wounds heal.
Collapse
Affiliation(s)
- Ssu-Meng Huang
- Advanced Medical Devices and Composites Laboratory, Department of Fiber and Composite Materials, Feng Chia University, Taichung 407, Taiwan; (S.-M.H.); (S.-M.L.); (H.-Y.T.)
| | - Shih-Ming Liu
- Advanced Medical Devices and Composites Laboratory, Department of Fiber and Composite Materials, Feng Chia University, Taichung 407, Taiwan; (S.-M.H.); (S.-M.L.); (H.-Y.T.)
| | - Hua-Yi Tseng
- Advanced Medical Devices and Composites Laboratory, Department of Fiber and Composite Materials, Feng Chia University, Taichung 407, Taiwan; (S.-M.H.); (S.-M.L.); (H.-Y.T.)
| | - Wen-Cheng Chen
- Advanced Medical Devices and Composites Laboratory, Department of Fiber and Composite Materials, Feng Chia University, Taichung 407, Taiwan; (S.-M.H.); (S.-M.L.); (H.-Y.T.)
- Department of Fragrance and Cosmetic Science, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Dental Medical Devices and Materials Research Center, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
9
|
Ouyang Y, Zhao J, Wang S. Multifunctional hydrogels based on chitosan, hyaluronic acid and other biological macromolecules for the treatment of inflammatory bowel disease: A review. Int J Biol Macromol 2023; 227:505-523. [PMID: 36495992 DOI: 10.1016/j.ijbiomac.2022.12.032] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/28/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022]
Abstract
Hydrogel is a three-dimensional network polymer material rich in water. It is widely used in the biomedical field because of its unique physical and chemical properties and good biocompatibility. In recent years, the incidence of inflammatory bowel disease (IBD) has gradually increased, and the disadvantages caused by traditional drug treatment of IBD have emerged. Therefore, there is an urgent need for new treatments to alleviate IBD. Hydrogel has become a potential therapeutic platform. However, there is a lack of comprehensive review of functional hydrogels for IBD treatment. This paper first summarizes the pathological changes in IBD sites. Then, the action mechanisms of hydrogels prepared from chitosan, sodium alginate, hyaluronic acid, functionalized polyethylene glycol, cellulose, pectin, and γ-polyglutamic acid on IBD were described from aspects of drug delivery, peptide and protein delivery, biologic therapies, loading probiotics, etc. In addition, the advanced functions of IBD treatment hydrogels were summarized, with emphasis on adhesion, synergistic therapy, pH sensitivity, particle size, and temperature sensitivity. Finally, the future development direction of IBD treatment hydrogels has been prospected.
Collapse
Affiliation(s)
- Yongliang Ouyang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai 200093,China
| | - Jiulong Zhao
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, No. 168 Changhai Road, Shanghai 200433, China
| | - Shige Wang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai 200093,China.
| |
Collapse
|
10
|
Effects of the molecular weight of hyaluronan on the conformation and release kinetics of self-assembled 5-fluorouracil-loaded lysozyme-hyaluronan colloidal nanoparticles. Int J Biol Macromol 2022; 223:87-99. [PMID: 36347364 DOI: 10.1016/j.ijbiomac.2022.11.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/28/2022] [Accepted: 11/01/2022] [Indexed: 11/07/2022]
Abstract
Lysozyme (LYS) and hyaluronan with low (HA1: 3 kDa), medium (HA2: 120 kDa), and high (HA3: 1200 kDa) molecular weights were used to fabricate lysozyme-hyaluronan colloidal nanoparticles using a green self-assembly method. Fourier transform infrared spectroscopy indicated that hydrogen bonding, hydrophobic and electrostatic interactions promoted the formation of the colloidal nanoparticles. The hydrophobic area of prepared colloidal nanoparticles was quantified using a pyrene fluorescent probe, and the results showed that the LYS-HA3 nanoparticles had the strongest hydrophobic capacity. Furthermore, 5-fluorouracil (5-Fu) was used to evaluate encapsulation performance, demonstrating that the LYS-HA3 nanoparticles had the highest encapsulation ability (>90 %). All prepared 5-Fu-loaded lysozyme-hyaluronan (5-Fu@LYS-HA) colloidal nanoparticles exhibited excellent long-term storage stability at 4 °C for 60 days. Cellular uptake and in vitro release results indicated that the LYS-HA2 nanoparticles exhibited the highest cellular uptake efficiency, and the LYS-HA3 nanoparticles had the best slow-release effect, while the release process was mainly controlled by the combination of Fickian diffusion and structural relaxation, respectively. This study demonstrates the influence of molecular weight on the conformational and structural properties of colloidal nanoparticles, which has implications for the design of insoluble drug self-assembly systems.
Collapse
|
11
|
Zhang Y, Yan H, Su R, Li P, Wen F, Lv Y, Cai J, Su W. Photoactivated multifunctional nanoplatform based on lysozyme-Au nanoclusters-curcumin conjugates with FRET effect and multiamplified antimicrobial activity. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
12
|
Tao X, Shi H, Cao A, Cai L. Understanding of physicochemical properties and antioxidant activity of ovalbumin-sodium alginate composite nanoparticle-encapsulated kaempferol/tannin acid. RSC Adv 2022; 12:18115-18126. [PMID: 35874031 PMCID: PMC9245490 DOI: 10.1039/d2ra02708a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/09/2022] [Indexed: 11/21/2022] Open
Abstract
In this research, ovalbumin (OVA) and sodium alginate (SA) were used as the materials to prepare an OVA–SA composite carrier, which protected and encapsulated the hydrophobic kaempferol (KAE) and the hydrophilic tannic acid (TA) (OVA–SA, OVA–TA–SA, OVA–KAE–SA, and OVA–TA–KAE–SA). Results showed that the observation of small diffraction peaks in carriers proved the successful encapsulation of KAE/TA. The protein conformation of the composite nanoparticles changed. OVA–TA–SA composite nanoparticles had the highest α-helix content and the fewest random coils, so the protein structure of it had the strongest stability. OVA–TA–KAE–SA composite nanoparticles had the strongest system stability and thermal stability, which might be due to the synergistic effect of the two polyphenols, suggesting the encapsulation of KAE/TA increased the system stability and the thermal stability of OVA–SA composite nanoparticles. Additionally, the composite nanoparticles were endowed with antioxidant ability and antibacterial ability (against Staphylococcus aureus and Escherichia coli) in the order OVA–TA–SA > OVA–TA–KAE–SA > OVA–KAE–SA based on the difference in antibacterial diameter (D, mm) and square (S, mm2), indicating that polyphenols enhanced the antibacterial and antioxidant ability of OVA–SA composite nanoparticles, and the enhancement effect of TA was stronger than that of KAE. These results provide a theoretical basis for the application of OVA–SA composite nanoparticles in the delivery of bioactive compounds. Ovalbumin (OVA) and sodium alginate (SA) were used as materials to prepare an OVA–SA composite carrier, which encapsulated the hydrophobic kaempferol (KAE) and the hydrophilic tannic acid (TA) (OVA–SA, OVA–TA–SA, OVA–KAE–SA, and OVA–TA–KAE–SA).![]()
Collapse
Affiliation(s)
- Xiaoya Tao
- Ningbo Research Institute, College of Biosystems Engineering and Food Science, Zhejiang University Ningbo 315100 China +86 571 88982726 +86 571 88982726.,Institute for Innovative Development of Food Industry, Institute for Advanced Study, Shenzhen University Shenzhen 518060 China
| | - Hang Shi
- College of Food Science and Engineering, Bohai University Jinzhou 121013 China
| | - Ailing Cao
- Hangzhou Customs District Hangzhou 310007 China
| | - Luyun Cai
- Ningbo Research Institute, College of Biosystems Engineering and Food Science, Zhejiang University Ningbo 315100 China +86 571 88982726 +86 571 88982726
| |
Collapse
|
13
|
Tao X, Shi H, Cao A, Cai L. Influence of polyphenol-metal ion-coated ovalbumin/sodium alginate composite nanoparticles on the encapsulation of kaempferol/tannin acid. Int J Biol Macromol 2022; 209:1288-1297. [PMID: 35460758 DOI: 10.1016/j.ijbiomac.2022.04.108] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 04/10/2022] [Accepted: 04/15/2022] [Indexed: 11/20/2022]
Abstract
In this research, ovalbumin (OVA) and sodium alginate (SA) were used as the materials to prepare OVA-SA composite carriers, which protected and encapsulated the hydrophobic kaempferol (KAE) and the hydrophilic tannic acid (TA). To achieve the purpose of targeted delivery, the TA-Fe3+ coating film was prepared. Results showed that the observation of small diffraction peaks in carriers proved the formation of TA/Fe3+ coating film on the surface of four composite nanoparticles (pOVA, pOVA-SA, pOVA-KAE-SA, and pOVA-KAE-TA-SA). The protein structure of the composite nanoparticles coated with TA/Fe3+ changed, and the order of the changes was pOVA-KAE > pOVA > pOVA-KAE-SA > pOVA-KAE-TA-SA > pOVA-SA. This phenomenon is due to the fact that the chromophore -C=O and the auxo-chromophore -OH are in the opposite position in the benzene ring of TA, and the two substituents have opposite effects and synergize, resulting in the different degrees of redshift of the composite nanoparticle λmax. Additionally, pOVA-SA had the highest α-helix content and the lowest random coils, conferring the protein structure the strongest stability. The coating of TA/Fe3+ increased the system stability and the thermal stability of the composite nanoparticles. Additionally, the carriers were endowed with antioxidant activity, and their antibacterial ability against Staphylococcus aureus and Escherichia coli was pOVA-KAE-TA-SA > pOVA-KAE-SA > pOVA-KAE > pOVA-SA > pOVA based on the difference in antibacterial diameter (D, mm) and square (S, mm2). pOVA-KAE-TA-SA had the strongest antioxidant activity and antibacterial ability, which improved the bioavailability of TA/KAE. These results provide a theoretical basis for the application of OVA-SA composite nanoparticles in the delivery of bioactive compounds.
Collapse
Affiliation(s)
- Xiaoya Tao
- Ningbo Research Institute, Zhejiang University, Ningbo 315100, China; College of Biosystems Engineering and Food Science, National & Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China
| | - Hang Shi
- College of Food Science and Engineering, Bohai University, Jinzhou 121013, China
| | - Ailing Cao
- Hangzhou Customs District, Hangzhou 310007, China.
| | - Luyun Cai
- Ningbo Research Institute, Zhejiang University, Ningbo 315100, China; College of Biosystems Engineering and Food Science, National & Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
14
|
Maillard-Type Protein-Polysaccharide Conjugates and Electrostatic Protein-Polysaccharide Complexes as Delivery Vehicles for Food Bioactive Ingredients: Formation, Types, and Applications. Gels 2022; 8:gels8020135. [PMID: 35200516 PMCID: PMC8871776 DOI: 10.3390/gels8020135] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 12/29/2022] Open
Abstract
Due to their combination of featured properties, protein and polysaccharide-based carriers show promising potential in food bioactive ingredient encapsulation, protection, and delivery. The formation of protein–polysaccharide complexes and conjugates involves non-covalent interactions and covalent interaction, respectively. The common types of protein–polysaccharide complex/conjugate-based bioactive ingredient delivery systems include emulsion (conventional emulsion, nanoemulsion, multiple emulsion, multilayered emulsion, and Pickering emulsion), microcapsule, hydrogel, and nanoparticle-based delivery systems. This review highlights the applications of protein–polysaccharide-based delivery vehicles in common bioactive ingredients including polyphenols, food proteins, bioactive peptides, carotenoids, vitamins, and minerals. The loaded food bioactive ingredients exhibited enhanced physicochemical stability, bioaccessibility, and sustained release in simulated gastrointestinal digestion. However, limited research has been conducted in determining the in vivo oral bioavailability of encapsulated bioactive compounds. An in vitro simulated gastrointestinal digestion model incorporating gut microbiota and a mucus layer is suggested for future studies.
Collapse
|
15
|
Zagury Y, David S, Edelman R, Hazan Brill R, Livney YD. Sugar beet pectin as a natural carrier for curcumin, a water-insoluble bioactive for food and beverage enrichment: Formation and characterization. INNOV FOOD SCI EMERG 2021. [DOI: 10.1016/j.ifset.2021.102858] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
16
|
Rahman MS, Hasan MS, Nitai AS, Nam S, Karmakar AK, Ahsan MS, Shiddiky MJA, Ahmed MB. Recent Developments of Carboxymethyl Cellulose. Polymers (Basel) 2021; 13:1345. [PMID: 33924089 PMCID: PMC8074295 DOI: 10.3390/polym13081345] [Citation(s) in RCA: 205] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/15/2021] [Accepted: 04/16/2021] [Indexed: 12/22/2022] Open
Abstract
Carboxymethyl cellulose (CMC) is one of the most promising cellulose derivatives. Due to its characteristic surface properties, mechanical strength, tunable hydrophilicity, viscous properties, availability and abundance of raw materials, low-cost synthesis process, and likewise many contrasting aspects, it is now widely used in various advanced application fields, for example, food, paper, textile, and pharmaceutical industries, biomedical engineering, wastewater treatment, energy production, and storage energy production, and storage and so on. Many research articles have been reported on CMC, depending on their sources and application fields. Thus, a comprehensive and well-organized review is in great demand that can provide an up-to-date and in-depth review on CMC. Herein, this review aims to provide compact information of the synthesis to the advanced applications of this material in various fields. Finally, this article covers the insights of future CMC research that could guide researchers working in this prominent field.
Collapse
Affiliation(s)
- Md. Saifur Rahman
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Md. Saif Hasan
- Department of Applied Chemistry and Chemical Engineering, University of Rajshahi, Rajshahi 6205, Bangladesh; (M.S.H.); (A.S.N.); (A.K.K.); (M.S.A.)
| | - Ashis Sutradhar Nitai
- Department of Applied Chemistry and Chemical Engineering, University of Rajshahi, Rajshahi 6205, Bangladesh; (M.S.H.); (A.S.N.); (A.K.K.); (M.S.A.)
| | - Sunghyun Nam
- United States Department of Agriculture, Agricultural Research Service, Southern Regional Research Center, 1100 Robert E. Lee Boulevard, New Orleans, LA 70124, USA;
| | - Aneek Krishna Karmakar
- Department of Applied Chemistry and Chemical Engineering, University of Rajshahi, Rajshahi 6205, Bangladesh; (M.S.H.); (A.S.N.); (A.K.K.); (M.S.A.)
| | - Md. Shameem Ahsan
- Department of Applied Chemistry and Chemical Engineering, University of Rajshahi, Rajshahi 6205, Bangladesh; (M.S.H.); (A.S.N.); (A.K.K.); (M.S.A.)
| | - Muhammad J. A. Shiddiky
- School of Environment and Science (ESC) and Queensland Micro- and Nanotechnology Centre (QMNC), Griffith University, Nathan 4111, Australia;
| | - Mohammad Boshir Ahmed
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
| |
Collapse
|
17
|
Understanding the effects of carboxymethyl cellulose on the bioactivity of lysozyme at different mass ratios and thermal treatments. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106446] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
18
|
Zhang Q, Zhou Y, Yue W, Qin W, Dong H, Vasanthan T. Nanostructures of protein-polysaccharide complexes or conjugates for encapsulation of bioactive compounds. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.01.026] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
19
|
Wu C, Dong H, Wang P, Xu X, Zhang Y, Li Y. Insight into the effect of charge regulation on the binding mechanism of curcumin to myofibrillar protein. Food Chem 2021; 352:129395. [PMID: 33677211 DOI: 10.1016/j.foodchem.2021.129395] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 02/10/2021] [Accepted: 02/15/2021] [Indexed: 10/22/2022]
Abstract
Myofibrillar proteins (MPs), as a food-grade material, have the potential to improve the solubility and bioavailability of curcumin. However, the interaction mechanism between MPs and curcumin under charge regulation induced by alkaline pH and NaCl was unclear. In this study, the binding between curcumin and MPs at pH 12 was confirmed by the fluorescence quenching under different NaCl concentration (0, 0.3, 0.6 and 0.9 mol/L). Further kinetic experiments showed, MPs possessed a higher affinity to bind curcumin in the presence of NaCl, especially at 0.6 M NaCl. Followed pH shifting from 12 to 7 does not affect UV-Vis absorption spectra of protein-curcumin dispersions. The secondary structure of MPs was not affected by binding with curcumin. Formation of this stable complex can be explained by hydrophobic other than electrostatic interaction. Therefore, the presence of NaCl facilitated exposure of hydrophobic pocket to improve the binding affinity between curcumin and MPs due to the importance of hydrophobic interaction.
Collapse
Affiliation(s)
- Changling Wu
- Key Laboratory of Animal Products Processing, Ministry of Agriculture, Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Jiangsu Synergetic Innovation Center of Meat Production and Processing, and College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Hualin Dong
- Key Laboratory of Animal Products Processing, Ministry of Agriculture, Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Jiangsu Synergetic Innovation Center of Meat Production and Processing, and College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Peng Wang
- Key Laboratory of Animal Products Processing, Ministry of Agriculture, Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Jiangsu Synergetic Innovation Center of Meat Production and Processing, and College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China.
| | - Xinglian Xu
- Key Laboratory of Animal Products Processing, Ministry of Agriculture, Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Jiangsu Synergetic Innovation Center of Meat Production and Processing, and College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Yue Zhang
- College of Food Science and Biotechnology, Zhejiang Gongshang University, People's Republic of China
| | - Yian Li
- Key Laboratory of Animal Products Processing, Ministry of Agriculture, Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Jiangsu Synergetic Innovation Center of Meat Production and Processing, and College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| |
Collapse
|
20
|
Song J, Li T, Gao J, Li C, Jiang S, Zhang X. Building an aprismatic enamel-like layer on a demineralized enamel surface by using carboxymethyl chitosan and lysozyme-encapsulated amorphous calcium phosphate nanogels. J Dent 2021; 107:103599. [PMID: 33561513 DOI: 10.1016/j.jdent.2021.103599] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 02/01/2021] [Accepted: 02/04/2021] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVES The purpose of this study was to prepare carboxymethyl chitosan (CMC) and lysozyme nanogels that could encapsulate amorphous calcium phosphate (ACP) for achieving its controlled delivery, thus forming an aprismatic enamel-like layer on the demineralized enamel surface. METHODS CMC/LYZ-ACP nanogels were developed, and the controlled delivery of ACP from the nanogels was induced by the presence of NaCl. The nanogel morphologies at various NaCl concentrations was measured by transmission electron microscopy (TEM). The particle sizes and zeta potentials (ζ-potential) of the samples were determined using a combined dynamic light scattering/particle electrophoresis instrument. Comparing the remineralization effect of the CMC/LYZ-ACP nanogels on the demineralized enamel surface with that of a fluoride treatment, the remineralization effect was examined by nanoindentation tests, X-ray diffraction (XRD), confocal laser scanning microscopy (CLSM), and scanning electron microscopy (SEM). RESULTS CMC/LYZ-ACP nanogels were negatively charged spherical structures with a particle size of approximately 300 nm. At high concentrations of NaCl (0.15 M), ACP was dissociated from the disassembled nanogels and transformed into hydroxyapatite (HAP). Groups treated with the CMC/LYZ-ACP nanogels showed the regeneration of an aprismatic enamel-like layer on an acid-etched enamel surface, which provided increased mechanical properties (P < 0.05) and a high impermeability (P < 0.01) compared to those of the fluoride-treated group. CONCLUSIONS This research provides a new idea for the stable and controllable delivery of ACP from CMC/LYZ-ACP nanogels, which can form an aprismatic enamel-like layer in situ on the surface of demineralized enamel. In regard to further clinical development, this material and method may be promising for treating early enamel caries.
Collapse
Affiliation(s)
- Jinhua Song
- School of Stomatology, Hospital of Stomatology, Tianjin Medical University, Tianjin 300070, China
| | - Tiancheng Li
- School of Stomatology, Hospital of Stomatology, Tianjin Medical University, Tianjin 300070, China
| | - Jian Gao
- School of Stomatology, Hospital of Stomatology, Tianjin Medical University, Tianjin 300070, China
| | - Changyi Li
- School of Stomatology, Hospital of Stomatology, Tianjin Medical University, Tianjin 300070, China; Institute of Stomatology, Tianjin Medical University, Tianjin 300070, China
| | - Shaoyun Jiang
- School of Stomatology, Hospital of Stomatology, Tianjin Medical University, Tianjin 300070, China; Department of Periodontology, Center of Stomatology, Shenzhen Hospital, Peking University, Shenzhen 518000, China.
| | - Xu Zhang
- School of Stomatology, Hospital of Stomatology, Tianjin Medical University, Tianjin 300070, China; Institute of Stomatology, Tianjin Medical University, Tianjin 300070, China.
| |
Collapse
|
21
|
Luo L, Wu Y, Liu C, Zou Y, Huang L, Liang Y, Ren J, Liu Y, Lin Q. Elaboration and characterization of curcumin-loaded soy soluble polysaccharide (SSPS)-based nanocarriers mediated by antimicrobial peptide nisin. Food Chem 2021; 336:127669. [PMID: 32758804 DOI: 10.1016/j.foodchem.2020.127669] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 07/16/2020] [Accepted: 07/23/2020] [Indexed: 12/18/2022]
Abstract
Curcumin was recently attracted great interest owing to its multiple bioactivities; however, the use of curcumin was hindered by its poor solubility and stability. In this study, curcumin-nisin-soy soluble polysaccharide nanoparticles (Cur-Nisin-SSPS-NPs, size = 118.76 nm) have been successfully elaborated to improve the application of curcumin. The formation of Cur-Nisin-SSPS-NPs was mediated by amphiphilic and positively charged nisin: SSPS encapsulated nisin, which was mainly driven by electrostatic attraction. And nisin-SSPS complex encapsulated curcumin mainly through hydrophobic interactions between nisin and curcumin. The encapsulation efficiency of curcumin (91.66%) in this novel nanocarriers was significantly higher than that in nanoparticles prepared by a single SSPS (31.82%) or nisin (41.69%), most likely because more hydrophobic regions of nisin were exposed after interacting with SSPS through electrostatic interaction. Consequently, this facile and green nanocarriers improved the solubility/dispersibility and stability of curcumin and nisin, as well as endowed SSPS-based nanoparticles with antioxidant and antimicrobial activities.
Collapse
Affiliation(s)
- Lijuan Luo
- National Engineering Laboratory for Rice and By-product Deep Processing, Hunan Key Laboratory of Processed Food For Special Medical Purpose, Hunan Key Laboratory of Edible Forestry Resources Safety and Processing Utilization, Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, School of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Ying Wu
- National Engineering Laboratory for Rice and By-product Deep Processing, Hunan Key Laboratory of Processed Food For Special Medical Purpose, Hunan Key Laboratory of Edible Forestry Resources Safety and Processing Utilization, Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, School of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Chun Liu
- National Engineering Laboratory for Rice and By-product Deep Processing, Hunan Key Laboratory of Processed Food For Special Medical Purpose, Hunan Key Laboratory of Edible Forestry Resources Safety and Processing Utilization, Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, School of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China.
| | - Yuan Zou
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology & Business University, Beijing 100048, China; College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Liang Huang
- National Engineering Laboratory for Rice and By-product Deep Processing, Hunan Key Laboratory of Processed Food For Special Medical Purpose, Hunan Key Laboratory of Edible Forestry Resources Safety and Processing Utilization, Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, School of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Ying Liang
- National Engineering Laboratory for Rice and By-product Deep Processing, Hunan Key Laboratory of Processed Food For Special Medical Purpose, Hunan Key Laboratory of Edible Forestry Resources Safety and Processing Utilization, Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, School of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Jiali Ren
- National Engineering Laboratory for Rice and By-product Deep Processing, Hunan Key Laboratory of Processed Food For Special Medical Purpose, Hunan Key Laboratory of Edible Forestry Resources Safety and Processing Utilization, Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, School of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Yingli Liu
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Qinlu Lin
- National Engineering Laboratory for Rice and By-product Deep Processing, Hunan Key Laboratory of Processed Food For Special Medical Purpose, Hunan Key Laboratory of Edible Forestry Resources Safety and Processing Utilization, Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, School of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China.
| |
Collapse
|
22
|
Wang Y, Zhang L, Wang P, Xu X, Zhou G. pH-shifting encapsulation of curcumin in egg white protein isolate for improved dispersity, antioxidant capacity and thermal stability. Food Res Int 2020; 137:109366. [PMID: 33233068 DOI: 10.1016/j.foodres.2020.109366] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 05/17/2020] [Accepted: 05/27/2020] [Indexed: 11/15/2022]
Abstract
Curcumin (Cur) has many functions, such as antioxidant and anti-inflammatory. However, its poor solubility and thermal stability at aqueous solutions limit its application in the food industry. In this study, egg white protein isolate (EPI) was complexed with Cur via a pH-shifting method. The effects of ultimate pH (from 5.0 to 7.0) on the physicochemical properties of the complex were studied. Cur could reach 84.4% encapsulation efficiency at pH 6.0. Meanwhile, the EPI complex could remain stable at pH 7.0 after 30 days and protect Cur from thermal degradation, thereby improving the Cur retention rate with the increasing ultimate pH. Compared with those of EPI and free Cur, the antioxidant capacity of the complex was enhanced effectively. The EPI-Cur complex was certified using UV-vis and fluorescence spectra. The fluorescence results indicated that Cur and EPI are combined through a static quenching and with a strong affinity of 1.8 × 105 M-1 at pH 6.0. In summary, this work provides a biocompatible and straightforward method for the development of nanoparticles based on egg white protein isolates, which can be used as a promising carrier for insoluble nutritional compounds.
Collapse
Affiliation(s)
- Yuexi Wang
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Synergetic Innovation Center of Food Safety and Nutrition, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Li Zhang
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Synergetic Innovation Center of Food Safety and Nutrition, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Peng Wang
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Synergetic Innovation Center of Food Safety and Nutrition, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xinglian Xu
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Synergetic Innovation Center of Food Safety and Nutrition, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Guanghong Zhou
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Synergetic Innovation Center of Food Safety and Nutrition, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
23
|
Zhang S, Kang L, Hu S, Hu J, Fu Y, Hu Y, Yang X. Carboxymethyl chitosan microspheres loaded hyaluronic acid/gelatin hydrogels for controlled drug delivery and the treatment of inflammatory bowel disease. Int J Biol Macromol 2020; 167:1598-1612. [PMID: 33220374 DOI: 10.1016/j.ijbiomac.2020.11.117] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 10/31/2020] [Accepted: 11/16/2020] [Indexed: 12/12/2022]
Abstract
A major drawback of oral treatment of inflammatory bowel disease (IBD) is the non-specific distribution of drugs during long-term treatment. Despite its effectiveness as an anti-inflammatory drug, curcumin (CUR) is limited by its low bioavailability in IBD treatment. Herein, a pH-sensitive composite hyaluronic acid/gelatin (HA/GE) hydrogel drug delivery system containing carboxymethyl chitosan (CC) microspheres loaded with CUR was fabricated for IBD treatment. The composition and structure of the composite system were optimized and the physicochemical properties were characterized using infrared spectroscopy, X-ray diffraction, swelling, and release behavior studies. In vitro, the formulation exhibited good sustained release property and the drug release rate was 65% for 50 h. In vivo pharmacokinetic experiments indicated that high level of CUR was maintained in the colon tissue for more than 24 h; it also played an anti-inflammatory role by evaluating the histopathological changes through hematoxylin and eosin (H&E), myeloperoxidase (MPO), and immunofluorescent staining. Additionally, the formulation substantially inhibited the level of the main pro-inflammatory cytokines of interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) secreted by macrophages, compared to the control group. The pharmacodynamic experiment showed that the formulation group of CUR@gels had the best therapeutic effect on colitis in mice. The composite gel delivery system has potential for the effective delivery of CUR in the treatment of colitis. This study also provides a reference for the design and preparation of a new oral drug delivery system with controlled release behavior.
Collapse
Affiliation(s)
- Shangwen Zhang
- School of Pharmaceutical Science, South-Central University for Nationalities, Wuhan 430074, China; National Demonstration Center for Experimental Ethnopharmacology Education, South-Central University for Nationalities, Wuhan 430074, China
| | - Li Kang
- School of Pharmaceutical Science, South-Central University for Nationalities, Wuhan 430074, China; National Demonstration Center for Experimental Ethnopharmacology Education, South-Central University for Nationalities, Wuhan 430074, China
| | - Sheng Hu
- School of Pharmaceutical Science, South-Central University for Nationalities, Wuhan 430074, China; National Demonstration Center for Experimental Ethnopharmacology Education, South-Central University for Nationalities, Wuhan 430074, China
| | - Jie Hu
- School of Pharmaceutical Science, South-Central University for Nationalities, Wuhan 430074, China; National Demonstration Center for Experimental Ethnopharmacology Education, South-Central University for Nationalities, Wuhan 430074, China
| | - Yanping Fu
- School of Pharmaceutical Science, South-Central University for Nationalities, Wuhan 430074, China; National Demonstration Center for Experimental Ethnopharmacology Education, South-Central University for Nationalities, Wuhan 430074, China
| | - Yan Hu
- School of Pharmaceutical Science, South-Central University for Nationalities, Wuhan 430074, China; National Demonstration Center for Experimental Ethnopharmacology Education, South-Central University for Nationalities, Wuhan 430074, China.
| | - Xinzhou Yang
- School of Pharmaceutical Science, South-Central University for Nationalities, Wuhan 430074, China; National Demonstration Center for Experimental Ethnopharmacology Education, South-Central University for Nationalities, Wuhan 430074, China.
| |
Collapse
|
24
|
Wang L, Li L, Xu N, Sun W, Ding B, Xu W, Li Z. Effect of carboxymethylcellulose on the affinity between lysozyme and liposome monolayers:evidence for its bacteriostatic mechanism. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2019.105263] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
25
|
Influence of carboxymethylcellulose on the interaction between ovalbumin and tannic acid via noncovalent bonds and its effects on emulsifying properties. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2019.108778] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
26
|
Shahgholian N, Rajabzadeh G. Preparation of BSA nanoparticles and its binary compounds via ultrasonic piezoelectric oscillator for curcumin encapsulation. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.101323] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
27
|
de Oliveira ACF, Neves ICO, Saraiva JAM, de Carvalho MFF, Batista GA, Veríssimo LAA, Resende JVD. Capture of lysozyme on macroporous cryogels by hydrophobic affinity chromatography. SEP SCI TECHNOL 2019. [DOI: 10.1080/01496395.2019.1617743] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
28
|
Xu W, Huang L, Jin W, Ge P, Shah BR, Zhu D, Jing J. Encapsulation and release behavior of curcumin based on nanoemulsions-filled alginate hydrogel beads. Int J Biol Macromol 2019; 134:210-215. [PMID: 31071402 DOI: 10.1016/j.ijbiomac.2019.04.200] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 04/20/2019] [Accepted: 04/30/2019] [Indexed: 02/05/2023]
Abstract
To provide the bilateral advantages of emulsions and hydrogels, a facile approach was used to fabricate nanoemulsions filled hydrogel beads through combining the method of self-emulsification and sodium alginate (SA) ionic gelation. The encapsulation and release behavior of curcumin (Cur) were further investigated. The results indicated that Cur packaged nanoemulsions were with the size of 24.26 ± 0.22 nm. The nanoemulsions filled SA hydrogel beads were spherical shell with the diameter of 0.46 ± 0.02 mm. For Cur, the EE and LC of emulsion filled SA hydrogel beads were 99.15 ± 0.85% and 7.25 ± 3.16 mg/g respectively. The release behavior could be regulated by external pH condition. The release behavior at pH 9.0 displayed a higher release rate than that at pH 7.0. Cur released behavior well followed the Hixcon-Crowell model which indicated that Cur was released in a diffusion-controlled model. Comparatively investigation of microstructure using field emission scanning electron microscope (FE-SEM) further investigates the corrosion behavior of SA gel beads during Cur release. The worth-while endeavor provided a practical combined technique of emulsions and ionic gelation to fabricate hybrid hydrogel beads that have potential in delivery system for hydrophobic composition.
Collapse
Affiliation(s)
- Wei Xu
- College of Life Science, Xinyang Normal University, Xinyang 464000, China; Tea Plant Biology Key Laboratory of Henan Province, Xinyang 464000, China.
| | - Lu Huang
- College of Life Science, Xinyang Normal University, Xinyang 464000, China
| | - Weiping Jin
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Peipei Ge
- College of Life Science, Xinyang Normal University, Xinyang 464000, China
| | - Bakht Ramin Shah
- University of South Bohemian in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Institute of Aquaculture and protection of Waters, Na Sádkách 1780, 37005, Czech Republic
| | - Dandan Zhu
- College of Life Science, Xinyang Normal University, Xinyang 464000, China
| | - Junxiang Jing
- College of Life Science, Xinyang Normal University, Xinyang 464000, China
| |
Collapse
|
29
|
Chang C, Meikle TG, Su Y, Wang X, Dekiwadia C, Drummond CJ, Conn CE, Yang Y. Encapsulation in egg white protein nanoparticles protects anti-oxidant activity of curcumin. Food Chem 2019; 280:65-72. [DOI: 10.1016/j.foodchem.2018.11.124] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 11/21/2018] [Accepted: 11/22/2018] [Indexed: 11/15/2022]
|
30
|
Pei Y, Li Z, McClements DJ, Li B. Comparison of structural and physicochemical properties of lysozyme/carboxymethylcellulose complexes and microgels. Food Res Int 2019; 122:273-282. [PMID: 31229081 DOI: 10.1016/j.foodres.2019.03.071] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 03/27/2019] [Accepted: 03/30/2019] [Indexed: 10/27/2022]
Abstract
Proteins and polysaccharides can be used to assemble colloidal delivery systems suitable for industrial applications, such as functional foods, supplements, pharmaceuticals, and personal care products. The purpose of this work was to compare the physicochemical and structural properties of colloidal delivery systems prepared from lysozyme and carboxymethyl cellulose (CMC) at different biopolymer ratios, pH values, and salt levels. Specifically, the performance of unheated ("complexes") and heated ("microgels") lysozyme-CMC systems were compared. Isothermal turbidity-pH titrations indicated that the critical pH value for complex formation was lower for microgels than for complexes. Complexes were prone to dissociation when the pH or ionic strength was altered due to weakening of electrostatic interactions between the CMC and lysozyme. Conversely, microgels remained intact when the pH or ionic strength was altered, exhibiting swelling or shrinkage rather than dissociation. These results have important implications for the selection of the most appropriate protein/polysaccharide systems to achieve specific functional requirements. Complexes may be more suitable for pH- or salt-based triggered release whereas microgels may be more suitable for sustained release.
Collapse
Affiliation(s)
- Yaqiong Pei
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, 430070, China
| | - Zhenshun Li
- College of Life Science, Yangtze University, Jingzhou 434025, China
| | | | - Bin Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, 430070, China.
| |
Collapse
|
31
|
Horn JM, Kapelner RA, Obermeyer AC. Macro- and Microphase Separated Protein-Polyelectrolyte Complexes: Design Parameters and Current Progress. Polymers (Basel) 2019; 11:E578. [PMID: 30960562 PMCID: PMC6523202 DOI: 10.3390/polym11040578] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 03/18/2019] [Accepted: 03/23/2019] [Indexed: 01/02/2023] Open
Abstract
Protein-containing polyelectrolyte complexes (PECs) are a diverse class of materials, composed of two or more oppositely charged polyelectrolytes that condense and phase separate near overall charge neutrality. Such phase-separation can take on a variety of morphologies from macrophase separated liquid condensates, to solid precipitates, to monodispersed spherical micelles. In this review, we present an overview of recent advances in protein-containing PECs, with an overall goal of defining relevant design parameters for macro- and microphase separated PECs. For both classes of PECs, the influence of protein characteristics, such as surface charge and patchiness, co-polyelectrolyte characteristics, such as charge density and structure, and overall solution characteristics, such as salt concentration and pH, are considered. After overall design features are established, potential applications in food processing, biosensing, drug delivery, and protein purification are discussed and recent characterization techniques for protein-containing PECs are highlighted.
Collapse
Affiliation(s)
- Justin M Horn
- Department of Chemical Engineering, Columbia University, New York, NY 10027, USA.
| | - Rachel A Kapelner
- Department of Chemical Engineering, Columbia University, New York, NY 10027, USA.
| | - Allie C Obermeyer
- Department of Chemical Engineering, Columbia University, New York, NY 10027, USA.
| |
Collapse
|
32
|
Wu C, Li L, Zhong Q, Cai R, Wang P, Xu X, Zhou G, Han M, Liu Q, Hu T, Yin T. Myofibrillar protein–curcumin nanocomplexes prepared at different ionic strengths to improve oxidative stability of marinated chicken meat products. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2018.09.024] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
33
|
Souza CJF, Garcia-Rojas EE, Souza CSF, Vriesmann LC, Vicente J, de Carvalho MG, Petkowicz CLO, Favaro-Trindade CS. Immobilization of β-galactosidase by complexation: Effect of interaction on the properties of the enzyme. Int J Biol Macromol 2018; 122:594-602. [PMID: 30404027 DOI: 10.1016/j.ijbiomac.2018.11.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 11/02/2018] [Accepted: 11/02/2018] [Indexed: 12/14/2022]
Abstract
In the present work, we aimed to explore the molecular binding between alginate and β-galactosidase, as well as the effect of this interaction on the activity retention, thermal stability, and kinetic properties of the enzyme. The impact of pH and enzyme/alginate ratio on physicochemical properties (turbidity, morphology, particle size distribution, ζ-potential, FTIR, and isothermal titration calorimetry) was also evaluated. The ratio of biopolymers and pH of the system directly affected the critical pH of complex formation; however, a low alginate concentration (0.1 wt%) could achieve an electrical charge equivalence at pH 3.4 with 93.72% of yield. The binding between β-galactosidase and alginate was an equilibrium between enthalpic and entropic contributions, which promoted changes in the structure of the enzyme. Nevertheless, this conformational modification was reversible after the dissociation of the complex, which allowed the enzyme to regain its activity. These findings will likely broaden functional applications of enzyme immobilization.
Collapse
Affiliation(s)
- Clitor J F Souza
- Universidade de São Paulo, Faculdade de Zootecnia e Engenharia de Alimentos, Av. Duque de Caxias Norte, 225, CP 23, CEP 13535 900 Pirassununga, São Paulo, Brazil; Universidade Federal da Grande Dourados, Faculdade de Engenharia, Pós-graduação em Ciência e Tecnologia de Alimentos, PO Box 533, 79804-970 Dourados, Brazil
| | - Edwin E Garcia-Rojas
- Laboratório de Engenharia e Tecnologia Agroindustrial (LETA), Universidade Federal Fluminense (UFF), Av. dos Trabalhadores, 420, Volta Redonda, RJ 27255-125, Brazil
| | - Clyselen S F Souza
- Laboratório de Engenharia e Tecnologia Agroindustrial (LETA), Universidade Federal Fluminense (UFF), Av. dos Trabalhadores, 420, Volta Redonda, RJ 27255-125, Brazil
| | - Lúcia C Vriesmann
- Universidade Federal do Paraná, Departamento de Bioquímica e Biologia Molecular, CP 19046, 81531-980 Curitiba, PR, Brazil
| | - Juarez Vicente
- Programa de Pós-graduação em Ciência e Tecnologia de Alimentos (PPGCTA), Universidade Federal Rural do Rio de Janeiro (UFRRJ), Rodovia BR 465, Km 7, Seropédica, RJ 23890-000, Brazil
| | - Mario G de Carvalho
- Programa de Pós-Graduação em Química (PPGQ), Departamento de Química-ICE, Universidade Federal Rural do Rio de Janeiro (UFRRJ), Rodovia BR 465, Km 7, Seropédica, RJ 23890-000, Brazil
| | - Carmen L O Petkowicz
- Universidade Federal do Paraná, Departamento de Bioquímica e Biologia Molecular, CP 19046, 81531-980 Curitiba, PR, Brazil
| | - Carmen S Favaro-Trindade
- Universidade de São Paulo, Faculdade de Zootecnia e Engenharia de Alimentos, Av. Duque de Caxias Norte, 225, CP 23, CEP 13535 900 Pirassununga, São Paulo, Brazil.
| |
Collapse
|
34
|
Chen Y, Hu J, Yi X, Ding B, Sun W, Yan F, Wei S, Li Z. Interactions and emulsifying properties of ovalbumin with tannic acid. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2018.04.088] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
35
|
Yoshihara LM, Arêas EP. Protein/polyelectrolyte coacervation: Investigating its occurrence in the lysozyme- carboxymethylcellulose system. Biophys Chem 2018. [DOI: 10.1016/j.bpc.2018.03.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
36
|
Zhou M, Khen K, Wang T, Hu Q, Xue J, Luo Y. Chemical crosslinking improves the gastrointestinal stability and enhances nutrient delivery potentials of egg yolk LDL/polysaccharide nanogels. Food Chem 2018; 239:840-847. [DOI: 10.1016/j.foodchem.2017.07.019] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 05/13/2017] [Accepted: 07/05/2017] [Indexed: 12/22/2022]
|
37
|
Nanoparticulation of bovine serum albumin and poly-d-lysine through complex coacervation and encapsulation of curcumin. Colloids Surf B Biointerfaces 2017; 159:759-769. [DOI: 10.1016/j.colsurfb.2017.08.047] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2016] [Revised: 07/29/2017] [Accepted: 08/25/2017] [Indexed: 12/19/2022]
|
38
|
Ren D, Qi J, Xie A, Jia M, Yang X, Xiao H. Encapsulation in lysozyme/ A. Sphaerocephala Krasch polysaccharide nanoparticles increases stability and bioefficacy of curcumin. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.09.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
39
|
Yan JK, Qiu WY, Wang YY, Wu JY. Biocompatible Polyelectrolyte Complex Nanoparticles from Lactoferrin and Pectin as Potential Vehicles for Antioxidative Curcumin. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:5720-5730. [PMID: 28657749 DOI: 10.1021/acs.jafc.7b01848] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Polyelectrolyte complex nanoparticles (PEC NPs) were fabricated via electrostatic interactions between positively charged heat-denatured lactoferrin (LF) particles and negatively charged pectin. The obtained PEC NPs were then utilized as curcumin carriers. PEC NPs were prepared by mixing 1.0 mg/mL solutions of heat-denatured LF and pectin at a mass ratio of 1:1 (w/w) in the absence of NaCl at pH 4.50. PEC NPs that were prepared under optimized conditions were spherical in shape with a particle size of ∼208 nm and zeta potential of ∼-32 mV. Hydrophobic curcumin was successfully encapsulated into LF/pectin PEC NPs with high encapsulation efficiency (∼85.3%) and loading content (∼13.4%). The in vitro controlled release and prominent antioxidant activities of curcumin from LF/pectin PEC NPs were observed. The present work provides a facile and fast method to synthesize nanoscale food-grade delivery systems for the improved water solubility, controlled release, and antioxidant activity of hydrophobic curcumin.
Collapse
Affiliation(s)
- Jing-Kun Yan
- School of Food & Biological Engineering, Jiangsu University , Zhenjiang, 212013, China
- Department of Applied Biology & Chemical Technology, State Key Laboratory of Chinese Medicine and Molecular Pharmacology in Shenzhen, The Hong Kong Polytechnic University , Hung Hom, Kowloon, Hong Kong
| | - Wen-Yi Qiu
- School of Food & Biological Engineering, Jiangsu University , Zhenjiang, 212013, China
| | - Yao-Yao Wang
- School of Food & Biological Engineering, Jiangsu University , Zhenjiang, 212013, China
| | - Jian-Yong Wu
- Department of Applied Biology & Chemical Technology, State Key Laboratory of Chinese Medicine and Molecular Pharmacology in Shenzhen, The Hong Kong Polytechnic University , Hung Hom, Kowloon, Hong Kong
| |
Collapse
|
40
|
Biopolymer-based coacervates: Structures, functionality and applications in food products. Curr Opin Colloid Interface Sci 2017. [DOI: 10.1016/j.cocis.2017.03.006] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
41
|
Li Z, Wang Y, Pei Y, Xiong W, Xu W, Li B, Li J. Effect of substitution degree on carboxymethylcellulose interaction with lysozyme. Food Hydrocoll 2017. [DOI: 10.1016/j.foodhyd.2016.07.020] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
42
|
Bahrani S, Ghaedi M, Khoshnood Mansoorkhani MJ, Ostovan A. A highly selective nanocomposite based on MIP for curcumin trace levels quantification in food samples and human plasma following optimization by central composite design. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1040:129-135. [DOI: 10.1016/j.jchromb.2016.12.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 11/24/2016] [Accepted: 12/06/2016] [Indexed: 10/20/2022]
|
43
|
Zhou M, Hu Q, Wang T, Xue J, Luo Y. Effects of different polysaccharides on the formation of egg yolk LDL complex nanogels for nutrient delivery. Carbohydr Polym 2016; 153:336-344. [DOI: 10.1016/j.carbpol.2016.07.105] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 07/19/2016] [Accepted: 07/25/2016] [Indexed: 01/12/2023]
|
44
|
Carrillo W, Spindola H, Ramos M, Recio I, Carvalho JE. Anti-Inflammatory and Anti-Nociceptive Activities of Native and Modified Hen Egg White Lysozyme. J Med Food 2016; 19:978-982. [DOI: 10.1089/jmf.2015.0141] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Wilman Carrillo
- Research Institute of Food Science (CIAL), (CSIC-UAM), Cantoblanco Campus, Autonomous University of Madrid, Madrid, Spain
- Faculty of Science and Food Engineering, Technical University of Ambato, Ambato, Ecuador
| | - Humberto Spindola
- Chemical, Biological and Agricultural Pluridisciplinary Research Center, State University of Campinas (Unicamp), SP, Brazil
| | - Mercedes Ramos
- Research Institute of Food Science (CIAL), (CSIC-UAM), Cantoblanco Campus, Autonomous University of Madrid, Madrid, Spain
| | - Isidra Recio
- Research Institute of Food Science (CIAL), (CSIC-UAM), Cantoblanco Campus, Autonomous University of Madrid, Madrid, Spain
| | - Joao Ernesto Carvalho
- Chemical, Biological and Agricultural Pluridisciplinary Research Center, State University of Campinas (Unicamp), SP, Brazil
| |
Collapse
|
45
|
Hou L, Shi Y, Jiang G, Liu W, Han H, Feng Q, Ren J, Yuan Y, Wang Y, Shi J, Zhang Z. Smart nanocomposite hydrogels based on azo crosslinked graphene oxide for oral colon-specific drug delivery. NANOTECHNOLOGY 2016; 27:315105. [PMID: 27346852 DOI: 10.1088/0957-4484/27/31/315105] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
A safe and efficient nanocomposite hydrogel for colon cancer drug delivery was synthesized using pH-sensitive and biocompatible graphene oxide (GO) containing azoaromatic crosslinks as well as poly (vinyl alcohol) (PVA) (GO-N=N-GO/PVA composite hydrogels). Curcumin (CUR), an anti-cancer drug, was encapsulated successfully into the hydrogel through a freezing and thawing process. Fourier transform infrared spectroscopy, scanning electron microscopy and Raman spectroscopy were performed to confirm the formation and morphological properties of the nanocomposite hydrogel. The hydrogels exhibited good swelling properties in a pH-sensitive manner. Drug release studies under conditions mimicking stomach to colon transit have shown that the drug was protected from being released completely into the physiological environment of the stomach and small intestine. In vivo imaging analysis, pharmacokinetics and a distribution of the gastrointestinal tract experiment were systematically studied and evaluated as colon-specific drug delivery systems. All the results demonstrated that GO-N=N-GO/PVA composite hydrogels could protect CUR well while passing through the stomach and small intestine to the proximal colon, and enhance the colon-targeting ability and residence time in the colon site. Therefore, CUR loaded GO-N=N-GO/PVA composite hydrogels might potentially provide a theoretical basis for the treatment of colon cancer with high efficiency and low toxicity.
Collapse
Affiliation(s)
- Lin Hou
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Science Road, Zhengzhou 450001, People's Republic of China. Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Zhengzhou 450001, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Shahgholian N, Rajabzadeh G. Fabrication and characterization of curcumin-loaded albumin/gum arabic coacervate. Food Hydrocoll 2016. [DOI: 10.1016/j.foodhyd.2015.11.031] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
47
|
Cho H, Jung H, Lee H, Kwak HK, Hwang KT. Formation of electrostatic complexes using sodium caseinate with high-methoxyl pectin and carboxymethyl cellulose and their application in stabilisation of curcumin. Int J Food Sci Technol 2016. [DOI: 10.1111/ijfs.13137] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Hyunnho Cho
- Department of Food and Nutrition, and Research Institute of Human Ecology; Seoul National University; Seoul 08826 Korea
| | - Hana Jung
- Department of Food and Nutrition, and Research Institute of Human Ecology; Seoul National University; Seoul 08826 Korea
- Department of Home Economics; Korea National Open University; Seoul 03087 Korea
| | - HeeJae Lee
- Department of Food and Nutrition, and Research Institute of Human Ecology; Seoul National University; Seoul 08826 Korea
| | - Ho-Kyung Kwak
- Department of Home Economics; Korea National Open University; Seoul 03087 Korea
| | - Keum Taek Hwang
- Department of Food and Nutrition, and Research Institute of Human Ecology; Seoul National University; Seoul 08826 Korea
| |
Collapse
|
48
|
Hou L, Yang X, Ren J, Wang Y, Zhang H, Feng Q, Shi Y, Shan X, Yuan Y, Zhang Z. A novel redox-sensitive system based on single-walled carbon nanotubes for chemo-photothermal therapy and magnetic resonance imaging. Int J Nanomedicine 2016; 11:607-24. [PMID: 26917960 PMCID: PMC4751899 DOI: 10.2147/ijn.s98476] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Recently, nanomaterials with multiple functions, such as drug carrier, magnetic resonance imaging (MRI) and optical imaging, and photothermal therapy, have become more and more popular in cancer research. In this work, a novel redox-sensitive system constructed from hyaluronic acid (HA), single-walled carbon nanotubes (SWCNTs), doxorubicin (DOX), and gadolinium (Gd) was successfully developed. Herein, HA-modified SWCNTs (SWCNTs-HA) was first synthesized, and then DOX was conjugated with HA by disulfide bond (SWCNTs-HA-ss-DOX). Finally, MRI contrast agents, Gd3+-ion loading occurred through the sidewall defects of SWCNTs, whose cytotoxicity could be sequestered within the SWCNTs. In vitro release of DOX showed that this system accomplished much faster drug release under reducing condition. Confocal microscopy analysis confirmed that Gd/SWCNTs-HA-ss-DOX were capable of simultaneously delivering DOX and SWCNTs into Michigan Cancer Foundation-7 cells via HA receptor-mediated endocytosis followed by rapid transport of cargoes into the cytosol. Enhanced cytotoxicity of Gd/SWCNTs-HA-ss-DOX further proved that the sensitive system was more potent for intracellular drug delivery as compared with the insensitive control. Meanwhile, tumor cell killing potency was improved when Gd/SWCNTs-HA-ss-DOX were combined with near-infrared irradiation, with IC50 of 0.61 µg/mL at 48 hours. In vivo investigation demonstrated that Gd/SWCNTs-HA-ss-DOX could effectively accumulate in tumor sites and possessed the greatest synergistic antitumor efficacy, especially under the 808 nm laser irradiation. More importantly, this system could be used as a contrast agent for MRI to identify the location and extent of tumor tissues. These results suggested that Gd/SWCNTs-HA-ss-DOX might be a promising system for targeting chemo-photothermal therapy and MRI diagnosis in future clinical anticancer applications.
Collapse
Affiliation(s)
- Lin Hou
- School of Pharmaceutical Sciences, Zhengzhou University, Henan Province, Zhengzhou, People's Republic of China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Zhengzhou, People's Republic of China
| | - Xiaomin Yang
- School of Pharmaceutical Sciences, Zhengzhou University, Henan Province, Zhengzhou, People's Republic of China
| | - Junxiao Ren
- School of Pharmaceutical Sciences, Zhengzhou University, Henan Province, Zhengzhou, People's Republic of China
| | - Yongchao Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Henan Province, Zhengzhou, People's Republic of China
| | - Huijuan Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Henan Province, Zhengzhou, People's Republic of China
| | - Qianhua Feng
- School of Pharmaceutical Sciences, Zhengzhou University, Henan Province, Zhengzhou, People's Republic of China
| | - Yuyang Shi
- School of Pharmaceutical Sciences, Zhengzhou University, Henan Province, Zhengzhou, People's Republic of China
| | - Xiaoning Shan
- School of Pharmaceutical Sciences, Zhengzhou University, Henan Province, Zhengzhou, People's Republic of China
| | - Yujie Yuan
- School of Pharmaceutical Sciences, Zhengzhou University, Henan Province, Zhengzhou, People's Republic of China
| | - Zhenzhong Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Henan Province, Zhengzhou, People's Republic of China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Zhengzhou, People's Republic of China
| |
Collapse
|