1
|
Paparella A, Schirone M, López CC. The Health Impact of Cocoa from Cultivation to the Formation of Biogenic Amines: An Updated Review. Foods 2025; 14:255. [PMID: 39856922 PMCID: PMC11764846 DOI: 10.3390/foods14020255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 01/12/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
Cocoa and chocolate are known for their health benefits, which depend on factors like cocoa variety, post-harvest practices, and manufacturing processes, including fermentation, drying, roasting, grinding, and refining. These processing methods can influence the concentration and bioavailability of bioactive compounds, such as polyphenols that are linked to cardiovascular health and antioxidant effects. Recent scientific research has led to the development of cocoa-based products marketed as functional foods. However, despite the growing interest in the functional potential of cocoa, the literature lacks crucial information about the properties of different varieties of cocoa and their possible implications for human health. Moreover, climate change is affecting global cocoa production, potentially altering product composition and health-related characteristics. In addition to polyphenols, other compounds of interest are biogenic amines, due to their role and potential toxic effects on human health. Based on toxicological data and recent research on the complex relationship between biogenic amines and cocoa fermentation, setting limits or standards for biogenic amines in cocoa and chocolate could help ensure product safety. Finally, new trends in research on biogenic amines in chocolate suggest that these compounds might also be used as quality markers, and that product formulation and process conditions could change content and diversity of the different amines.
Collapse
Affiliation(s)
| | - Maria Schirone
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (A.P.); (C.C.L.)
| | | |
Collapse
|
2
|
Chang H, Gu C, Wang M, Chen J, Yue M, Zhou J, Chang Z, Zhang C, Liu F, Feng Z. Screening and characterizing indigenous yeasts, lactic acid bacteria, and acetic acid bacteria from cocoa fermentation in Hainan for aroma Development. J Food Sci 2025; 90:e17612. [PMID: 39812519 DOI: 10.1111/1750-3841.17612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/26/2024] [Accepted: 12/01/2024] [Indexed: 01/16/2025]
Abstract
Fermentation is crucial for inducing desirable flavor and aroma profiles in cocoa products. This research focused on identifying microbial strains isolated from spontaneous cocoa fermentation in Hainan through 16S and Internal Transcribed Spacer (ITS) sequencing. Pectinase activity was screened, and metabolic dynamics of sugars and organic acids were analyzed using high-performance liquid chromatography. Additionally, gas chromatography-mass spectrometry was employed for the quantification of volatile compounds. The fermentation potentials of isolated yeast, lactic acid bacteria, and acetic acid bacteria were analyzed from multiple perspectives. Pichia fermentans XY23.1 and Hanseniaspora uvarum XY23.1 exhibited significant pectinolytic activity, essential for breaking down pectin in cocoa pulp. Moreover, H. uvarum XY23.1, H. occidentalis XY23.1, Saccharomyces cerevisiae XY23.2, and P. fermentans XY23.1 were identified as producers of notable amounts of alcohols and esters, contributing sweet and floral notes to the fermentation profile. Furthermore, Levilactobacillus brevis exhibited strong fructophilicity, and Lactiplantibacillus plantarum strains showed high metabolic rates and lactic acid production abilities, crucial for enhancing fermentation efficiency. Assessment of growth rate and acid production performance revealed that Gluconobacter potus XY23.2 and Acetobacter oryzifermentans XY23.1 can produce less acid during rapid growth, avoiding flavor defects caused by excessive acidity. This study demonstrates the impact of various flavor compounds on the flavor characteristics of cocoa pulp. It highlights the potential of these microbial strains for use in starter culture cocktails, which can significantly improve the quality of cocoa products by enhancing desirable flavor and aroma profiles while maintaining balanced acidity. PRACTICAL APPLICATION: This study screened and characterized microorganisms isolated from the fermentation of Hainan cocoa (Trinitario) through a series of experiments, providing new insights for the future selection of cocoa fermentation starters.
Collapse
Affiliation(s)
- Haode Chang
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, China
- College of Food Science, Northeast Agricultural University, Harbin, China
| | - Chunhe Gu
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, China
| | - Mengrui Wang
- College of Food Science, Northeast Agricultural University, Harbin, China
| | - Junxia Chen
- College of Food Science, Northeast Agricultural University, Harbin, China
| | - Mingzhe Yue
- College of Food Science, Northeast Agricultural University, Harbin, China
| | - Junping Zhou
- College of Food Science, Northeast Agricultural University, Harbin, China
| | - Ziqing Chang
- College of Food Science, Northeast Agricultural University, Harbin, China
| | - Chao Zhang
- College of Food Science, Northeast Agricultural University, Harbin, China
| | - Fei Liu
- College of Food Science, Northeast Agricultural University, Harbin, China
| | - Zhen Feng
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, China
| |
Collapse
|
3
|
Coria-Hinojosa LM, Velásquez-Reyes D, Alcázar-Valle M, Kirchmayr MR, Calva-Estrada S, Gschaedler A, Mojica L, Lugo E. Exploring volatile compounds and microbial dynamics: Kluyveromyces marxianus and Hanseniaspora opuntiae reduce Forastero cocoa fermentation time. Food Res Int 2024; 193:114821. [PMID: 39160038 DOI: 10.1016/j.foodres.2024.114821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/02/2024] [Accepted: 07/21/2024] [Indexed: 08/21/2024]
Abstract
Traditional cocoa bean fermentation is a spontaneous process and can result in heterogeneous sensory quality. For this reason, yeast-integrated starter cultures may be an option for creating consistent organoleptic profiles. This study proposes the mixture of Hanseniaspora opuntiae and Kluyveromyces marxianus (from non-cocoa fermentation) as starter culture candidates. The microorganisms and volatile compounds were analyzed during the cocoa fermentation process, and the most abundant were correlated with predominant microorganisms. Results showed that Kluyveromyces marxianus, isolated from mezcal fermentation, was identified as the dominant yeast by high-throughput DNA sequencing. A total of 63 volatile compounds identified by HS-SPME-GC-MS were correlated with the more abundant bacteria and yeast using Principal Component Analysis and Agglomerative Hierarchical Clustering. This study demonstrates that yeasts from other fermentative processes can be used as starter cultures in cocoa fermentation and lead to the formation of more aromatic esters, decrease the acetic acid content.
Collapse
Affiliation(s)
- Lizbeth M Coria-Hinojosa
- Food Technology Department, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), A.C., Camino Arenero 1227, 45019 El Bajío, Zapopan, Jalisco, Mexico
| | - Dulce Velásquez-Reyes
- Food Technology Department, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), A.C., Camino Arenero 1227, 45019 El Bajío, Zapopan, Jalisco, Mexico
| | - Montserrat Alcázar-Valle
- Food Technology Department, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), A.C., Camino Arenero 1227, 45019 El Bajío, Zapopan, Jalisco, Mexico
| | - Manuel R Kirchmayr
- Industrial Biotechnology Department, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), A.C., Camino Arenero 1227, 45019 El Bajío, Zapopan, Jalisco, Mexico
| | - Sergio Calva-Estrada
- Food Technology Department, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), A.C., Camino Arenero 1227, 45019 El Bajío, Zapopan, Jalisco, Mexico
| | - Anne Gschaedler
- Industrial Biotechnology Department, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), A.C., Camino Arenero 1227, 45019 El Bajío, Zapopan, Jalisco, Mexico
| | - Luis Mojica
- Food Technology Department, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), A.C., Camino Arenero 1227, 45019 El Bajío, Zapopan, Jalisco, Mexico
| | - Eugenia Lugo
- Food Technology Department, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), A.C., Camino Arenero 1227, 45019 El Bajío, Zapopan, Jalisco, Mexico.
| |
Collapse
|
4
|
Haruna L, Abano EE, Teye E, Tukwarlba I, Yeboah W, Agyei KJ, Lukeman M. Effects of Predrying and Spontaneous Fermentation Treatments on Nib Acidification, Fermentation Quality, and Flavour Attributes of Ghanaian Cocoa ( Theobroma cacao) Beans. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2024; 2024:5198607. [PMID: 39145148 PMCID: PMC11323989 DOI: 10.1155/2024/5198607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 03/22/2024] [Accepted: 05/20/2024] [Indexed: 08/16/2024]
Abstract
Cocoa bean acidification, fermentation, and flavour quality are intricately shaped by pulp preconditioning and fermentation treatments. This study investigates the impact of predrying and subsequent fermentation on key parameters such as pH, titratable acidity, fermentation quality (% purity), fermentation index (FI), and overall flavour quality (global quality (GQ)) of cocoa beans. Extended predrying periods and fermentation durations demonstrated a significant enhancement in bean acidification, reflected in the rise of nib pH (6.61-7.33) and the decline in nib acidity (0.023-0.013 meg NaOH/100 g). Notably, the cut test underscored the substantial improvement in % purity, reaching 75.6-99.7% for beans predried at 2-8 hours followed by a 6-day of fermentation. FI increased significantly from 1.026 to a peak of 1.067, followed by a decline to 0.098 in the control, 6 hours, and 8 hours of predried beans, respectively. Sensory evaluation showed substantial improvement in the GQ (40.1-44.6) of beans predried at 2-8 hours and fermented for 6 days, compared to the control (38.3). In addition, a significantly higher preference was shown for cocoa liquor made from the beans predried for 4-6 hours and fermented for 6 days. Principal component analysis clustered samples according to the predrying time, fermentation duration, and quality parameters measured. Optimal conditions for enhanced nib acidification, fermentation quality, and flavour attributes were identified at 6-hour predrying and 6-day fermentation using the response surface methodology. The study highlights the potential of predrying as a pulp preconditioning technique for enhancing fermentative and final bean quality.
Collapse
Affiliation(s)
- Lukeman Haruna
- Department of Agricultural EngineeringUniversity of Cape Coast, Cape Coast, Ghana
- Quality Control Company (QCC) LimitedWestern North Regional Office, Sefwi Wiawso, Ghana
| | - Ernest E. Abano
- Department of Agricultural EngineeringUniversity of Cape Coast, Cape Coast, Ghana
| | - Ernest Teye
- Department of Agricultural EngineeringUniversity of Cape Coast, Cape Coast, Ghana
| | - Isaac Tukwarlba
- Department of Agricultural EngineeringUniversity of Cape Coast, Cape Coast, Ghana
| | - Wilson Yeboah
- Quality Control Company (QCC) LimitedWestern North Regional Office, Sefwi Wiawso, Ghana
| | - Kesse J. Agyei
- Department of PlantationCocoa Research Institute of Ghana (CRIG), New Tafo, Ghana
| | - Mary Lukeman
- Food and Drugs AuditFood and Drugs Authority (FDA) of Ghana, Accra, Ghana
| |
Collapse
|
5
|
Zhao S, Sai Y, Liu W, Zhao H, Bai X, Song W, Zheng Y, Yue X. Flavor Characterization of Traditional Fermented Soybean Pastes from Northeast China and Korea. Foods 2023; 12:3294. [PMID: 37685226 PMCID: PMC10486791 DOI: 10.3390/foods12173294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 08/28/2023] [Accepted: 08/31/2023] [Indexed: 09/10/2023] Open
Abstract
This study compares the physicochemical properties, taste, and volatile compounds of Northeastern Chinese dajiang (C) and Korean doenjang (K) and distinguishes the discriminant volatile metabolites between them. The result revealed that compared to group C, group K exhibited more similar physicochemical properties and had lower pH, moisture, and amino acid nitrogen content, while demonstrating higher titratable acidity, salt content, and reduced sugar content. The electronic tongue analysis showed that the saltiness and umami of soybean pastes had high response values, enabling clear differentiation of the overall taste between the two types of soybean pastes. A total of 71 volatile substances from the soybean pastes were identified through solid-phase microextraction gas chromatography-mass spectrometry. Furthermore, orthogonal partial least squares discriminant analysis revealed 19 volatile compounds as differentially flavored metabolites. Our study provides a basis for explaining the differences in flavor difference of Northeastern Chinese dajiang and Korean doenjang from the perspective of volatile metabolites.
Collapse
Affiliation(s)
- Shanshan Zhao
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Yuhang Sai
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Wanting Liu
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Huiwen Zhao
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Xue Bai
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Wanying Song
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Yan Zheng
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Xiqing Yue
- Shenyang Key Laboratory of Animal Product Processing, Shenyang Agricultural University, Shenyang 110866, China
| |
Collapse
|
6
|
Du R, Jiang J, Qu G, Wu Q, Xu Y. Directionally controlling flavor compound profile based on the structure of synthetic microbial community in Chinese liquor fermentation. Food Microbiol 2023; 114:104305. [PMID: 37290868 DOI: 10.1016/j.fm.2023.104305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/20/2023] [Accepted: 05/10/2023] [Indexed: 06/10/2023]
Abstract
Most traditional fermented foods are produced by spontaneous fermentation. It is difficult to produce traditional fermented foods with desired flavor compound profile. In this study, using Chinese liquor fermentation as a case, we aimed to directionally control flavor compound profile in food fermentation. Twenty key flavor compounds were identified in 80 Chinese liquor fermentations. Six microbial strains, identified as high producers of these key flavor compounds, were used to generate the minimal synthetic microbial community. A mathematical model was established to link the structure of the minimal synthetic microbial community and the profile of these key flavor compounds. This model could generate the optimal structure of synthetic microbial community to produce flavor compounds with desired profile. This work provided a strategy to realize the directional control of flavor compound profile via controlling the structure of the synthetic microbial community in Chinese liquor fermentation.
Collapse
Affiliation(s)
- Rubing Du
- Lab of Brewing Microbiology and Applied Enzymology, Key Laboratory of Industrial Biotechnology of Ministry of Education, State Key Laboratory of Food Science and Technology, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Jian Jiang
- Lab of Brewing Microbiology and Applied Enzymology, Key Laboratory of Industrial Biotechnology of Ministry of Education, State Key Laboratory of Food Science and Technology, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Guanyi Qu
- Lab of Brewing Microbiology and Applied Enzymology, Key Laboratory of Industrial Biotechnology of Ministry of Education, State Key Laboratory of Food Science and Technology, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Qun Wu
- Lab of Brewing Microbiology and Applied Enzymology, Key Laboratory of Industrial Biotechnology of Ministry of Education, State Key Laboratory of Food Science and Technology, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, 214122, China.
| | - Yan Xu
- Lab of Brewing Microbiology and Applied Enzymology, Key Laboratory of Industrial Biotechnology of Ministry of Education, State Key Laboratory of Food Science and Technology, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| |
Collapse
|
7
|
Jia Y, Zhou W, Yang Z, Zhou Q, Wang Y, Liu Y, Jia Y, Li D. A critical assessment of the Candida strains isolated from cigar tobacco leaves. Front Bioeng Biotechnol 2023; 11:1201957. [PMID: 37691904 PMCID: PMC10485251 DOI: 10.3389/fbioe.2023.1201957] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 08/15/2023] [Indexed: 09/12/2023] Open
Abstract
Introduction: Candida genus plays a crucial role in cigar fermentation, and strains from different sources might have differences in metabolic characteristics. Therefore, this study conducted directional isolation of Candida strains from cigar tobacco leaves and compared their fermentabilities to screen suitable strains for cigar fermentation, thereby improving the cigar quality. Methods: First, the Candida strains from cigars tobacco leaves in different production areas were directionally isolated by pure culture. Then, the isolated strains were screened based on chemical indexes and flavor component contents. Finally, the fermentabilities of preferred strains were verified by sensory evaluation. Results: Five strains of C. parapsilosis and four strains of C. metapsilosis were obtained through directional isolation. By comparing the physicochemical indexes of nine strains of Candida, it was found that C. parapsilosis P1 and C. metapsilosis M4 not only reduced the alkaloids content (by 25.3% and 32.6%, respectively) but also increased the flavor components content (by 25.2% and 18.9%, respectively). Among them, P1 could raise the content of chlorophyll degradation products, carotenoid degradation products, and Maillard reaction products, and enhance the beany and nutty flavor of cigars. M4 could raise the content of chlorophyll degradation products, cembranoids degradation products, and Maillard reaction products, and improve the baking, nutty, cocoa, and honey flavor of the cigar. Discussion: In this study, the Candida strains were directionally isolated from cigars tobacco leaves in different production areas, and two functional strains suitable for cigar fermentation were screened based on physicochemical indexes and sensory evaluation, which would contribute to the directed regulation of cigar quality and flavor diversification.
Collapse
Affiliation(s)
- Yun Jia
- Cigar Fermentation Technology Key Laboratory of China Tobacco, China Tobacco Sichuan Industrial Co Ltd., Chengdu, Sichuan, China
- Industry Efficient Utilization to Domestic Cigar Tobacco Key Laboratory of Sichuan Province, China Tobacco Sichuan Industrial Co Ltd., Shifang, Sichuan, China
| | - Wen Zhou
- Industry Efficient Utilization to Domestic Cigar Tobacco Key Laboratory of Sichuan Province, China Tobacco Sichuan Industrial Co Ltd., Shifang, Sichuan, China
| | - Zhen Yang
- Cigar Fermentation Technology Key Laboratory of China Tobacco, China Tobacco Sichuan Industrial Co Ltd., Chengdu, Sichuan, China
| | - Quanwei Zhou
- Cigar Fermentation Technology Key Laboratory of China Tobacco, China Tobacco Sichuan Industrial Co Ltd., Chengdu, Sichuan, China
| | - Yue Wang
- Cigar Fermentation Technology Key Laboratory of China Tobacco, China Tobacco Sichuan Industrial Co Ltd., Chengdu, Sichuan, China
| | - Yi Liu
- Industry Efficient Utilization to Domestic Cigar Tobacco Key Laboratory of Sichuan Province, China Tobacco Sichuan Industrial Co Ltd., Shifang, Sichuan, China
| | - Yuhong Jia
- Industry Efficient Utilization to Domestic Cigar Tobacco Key Laboratory of Sichuan Province, China Tobacco Sichuan Industrial Co Ltd., Shifang, Sichuan, China
| | - Dongliang Li
- Cigar Fermentation Technology Key Laboratory of China Tobacco, China Tobacco Sichuan Industrial Co Ltd., Chengdu, Sichuan, China
| |
Collapse
|
8
|
Van de Voorde D, Díaz-Muñoz C, Hernandez CE, Weckx S, De Vuyst L. Yeast strains do have an impact on the production of cured cocoa beans, as assessed with Costa Rican Trinitario cocoa fermentation processes and chocolates thereof. Front Microbiol 2023; 14:1232323. [PMID: 37621398 PMCID: PMC10445768 DOI: 10.3389/fmicb.2023.1232323] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/20/2023] [Indexed: 08/26/2023] Open
Abstract
The microbiological and metabolic outcomes of good cocoa fermentation practices can be standardized and influenced through the addition of starter culture mixtures composed of yeast and bacterial strains. The present study performed two spontaneous and 10 starter culture-initiated (SCI) cocoa fermentation processes (CFPs) in Costa Rica with local Trinitario cocoa. The yeast strains Saccharomyces cerevisiae IMDO 050523, Hanseniaspora opuntiae IMDO 020003, and Pichia kudriavzevii IMDO 060005 were used to compose starter culture mixtures in combination with the lactic acid bacterium strain Limosilactobacillus fermentum IMDO 0611222 and the acetic acid bacterium strain Acetobacter pasteurianus IMDO 0506386. The microbial community and metabolite dynamics of the cocoa pulp-bean mass fermentation, the metabolite dynamics of the drying cocoa beans, and the volatile organic compound (VOC) profiles of the chocolate production were assessed. An amplicon sequence variant approach based on full-length 16S rRNA gene sequencing instead of targeting the V4 region led to a highly accurate monitoring of the starter culture strains added, in particular the Liml. fermentum IMDO 0611222 strain. The latter strain always prevailed over the background lactic acid bacteria. A similar approach, based on the internal transcribed spacer (ITS1) region of the fungal rRNA transcribed unit, was used for yeast strain monitoring. The SCI CFPs evolved faster when compared to the spontaneous ones. Moreover, the yeast strains applied did have an impact. The presence of S. cerevisiae IMDO 050523 was necessary for successful fermentation of the cocoa pulp-bean mass, which was characterized by the production of higher alcohols and esters. In contrast, the inoculation of H. opuntiae IMDO 020003 as the sole yeast strain led to underfermentation and a poor VOC profile, mainly due to its low competitiveness. The P. kudriavzevii IMDO 060005 strain tested in the present study did not contribute to a richer VOC profile. Although differences in VOCs could be revealed in the cocoa liquors, no significant effect on the final chocolates could be obtained, mainly due to a great impact of cocoa liquor processing during chocolate-making. Hence, optimization of the starter culture mixture and cocoa liquor processing seem to be of pivotal importance.
Collapse
Affiliation(s)
- Dario Van de Voorde
- Research Group of Industrial Microbiology and Food Biotechnology, Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Cristian Díaz-Muñoz
- Research Group of Industrial Microbiology and Food Biotechnology, Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Carlos Eduardo Hernandez
- Laboratorio de Calidad e Innovación Agroalimentaria, Escuela de Ciencias Agrarias, Universidad Nacional de Costa Rica, Heredia, Costa Rica
| | - Stefan Weckx
- Research Group of Industrial Microbiology and Food Biotechnology, Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Luc De Vuyst
- Research Group of Industrial Microbiology and Food Biotechnology, Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
9
|
Guzmán-Armenteros TM, Ramos-Guerrero LA, Guerra LS, Weckx S, Ruales J. Optimization of cacao beans fermentation by native species and electromagnetic fields. Heliyon 2023; 9:e15065. [PMID: 37077687 PMCID: PMC10106516 DOI: 10.1016/j.heliyon.2023.e15065] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/23/2023] [Accepted: 03/27/2023] [Indexed: 04/21/2023] Open
Abstract
Acid and bitter notes of the cocoa clone Cacao Castro Naranjal 51 (CCN 51) negatively affect the final quality of the chocolate. Thence, the fermentative process of cocoa beans using native species and electromagnetic fields (EMF) was carried out to evaluate the effect on the yield and quality of CCN 51 cocoa beans. The variables magnetic field density (D), exposure time (T), and inoculum concentration (IC) were optimized through response surface methodology to obtain two statistically validated second-order models, explaining 88.39% and 92.51% of the variability in the yield and quality of the beans, respectively. In the coordinate: 5 mT(D), 22.5 min (T), and 1.6% (CI), yield and bean quality improved to 110% and 120% above the control (without magnetic field). The metagenomic analysis showed that the changes in the microbial communities favored the aroma profile at low and intermediate field densities (5-42 mT) with high yields and floral, fruity, and nutty notes. Conversely, field densities (80 mT) were evaluated with low yields and undesirable notes of acidity and bitterness. The findings revealed that EMF effectively improves the yield and quality of CCN 51 cocoa beans with future applications in the development and quality of chocolate products.
Collapse
Affiliation(s)
- Tania María Guzmán-Armenteros
- Departamento de Ciencia de Alimentos y Biotecnología (DECAB), Escuela Politécnica Nacional (EPN), Quito, Ecuador
- Corresponding author.
| | | | - Luis Santiago Guerra
- Department of Pathology, Faculty of Medical Sciences, Universidad Central del Ecuador (UCE), Capus El Dorador, Quito, Ecuador
| | - Stefan Weckx
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel (VUB), Pleinlaan 2, B-1050, Brussels, Belgium
| | - Jenny Ruales
- Departamento de Ciencia de Alimentos y Biotecnología (DECAB), Escuela Politécnica Nacional (EPN), Quito, Ecuador
| |
Collapse
|
10
|
Criollo Nuñez J, Ramirez-Toro C, Bolivar G, Sandoval A AP, Lozano Tovar MD. Effect of microencapsulated inoculum of Pichia kudriavzevii on the fermentation and sensory quality of cacao CCN51 genotype. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:2425-2435. [PMID: 36606570 DOI: 10.1002/jsfa.12433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 12/22/2022] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Microencapsulated yeasts are a novel alternative as a delivery matrix for microbiological starters. This technology aims to protect the active compounds from adverse environmental conditions and prolong their useful life and could also improve the conditions of the starters for cocoa fermentation. The present study established the effective dose to apply the microencapsulated yeast Pichia kudriavzevii as a microbiological starter of fermentation and biotechnological strategy for promoting the biochemical dynamics and sensory expression of the cocoa variety CCN-51. For this, 0.5%, 1%, 2%, and 3% of microencapsulated P. kudriavzevii yeast insolated from the artisanal fermentation process of cocoa was added to the cocoa mass to be fermented and studied on a laboratory scale. RESULTS The partial least squares regression of fermentation was related in four quartiles, comprising the hedonic judgments of the sensory evaluation with the biochemical traits of the cocoa liquor, finding a high correlation between the physicochemical variables total phenols, percentage of insufficiently fermented grains, and percentage of total acidity, with a level of bitterness and defects found in liquors with the addition of 0.5% of microencapsulated starter. The treatments with the addition of 2% and 3% of the inoculum showed a high correlation between the variables pH, total anthocyanins, cocoa, fruity and floral aromas, sweet taste, and general aroma perception. CONCLUSION The higher presence of volatile compounds such as 2,3-butanediol associated with cocoa aroma and 1-phenyl-2-ethanol and acetophenone associated with aromatic descriptors of fruity and floral series allowed establishment in 2% of microencapsulated P. kudriavzevii yeast, comprising the effective dose for promoting the biochemical dynamics of laboratory-scale fermentation and the development of cocoa, as well as the fruity and floral aromas of cocoa CCN-51 liquor. The microencapsulation is suitable for cocoa starters. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jenifer Criollo Nuñez
- Centro de Investigación Nataima, Corporación Colombiana de Investigación Agropecuaria - AGROSAVIA, Tolima, Colombia
- Facultad de Ingeniería, Escuela de Ingeniería de Alimentos, Universidad del Valle, Cali, Colombia
| | - Cristina Ramirez-Toro
- Facultad de Ingeniería, Escuela de Ingeniería de Alimentos, Universidad del Valle, Cali, Colombia
| | - German Bolivar
- Facultad de Ciencias Naturales y Exactas, Biología Marina, Universidad del Valle, Cali, Colombia
| | | | - María D Lozano Tovar
- Centro de Investigación Nataima, Corporación Colombiana de Investigación Agropecuaria - AGROSAVIA, Tolima, Colombia
| |
Collapse
|
11
|
Jia Y, Liu Y, Hu W, Cai W, Zheng Z, Luo C, Li D. Development of Candida autochthonous starter for cigar fermentation via dissecting the microbiome. Front Microbiol 2023; 14:1138877. [PMID: 36910204 PMCID: PMC9998997 DOI: 10.3389/fmicb.2023.1138877] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 02/08/2023] [Indexed: 03/14/2023] Open
Abstract
Introduction The main goal of tobacco fermentation technology is to minimize the alkaloid content while improving flavor substance content. Methods This study revealed the microbial community structure and their metabolic functions during cigar leaf fermentation by high-throughput sequencing and correlation analysis, and evaluated the fermentation performance of functional microbes based on in vitro isolation and bioaugmentation fermentation. Results The relative abundance of Staphylococcus and Aspergillus increased first but then decreased during the fermentation, and would occupy the dominant position of bacterial and fungal communities, respectively, on the 21st day. Correlation analysis predicted that Aspergillus, Staphylococcus and Filobasidium could contribute to the formation of saccharide compounds, Bacillus might have degradation effects on nitrogenous substances. In particular, Candida, as a co-occurring taxa and biomarker in the later stage of fermentation, could not only degrade nitrogenous substrates and synthesize flavor substances, but also contribute to maintaining the stability of microbial community. Moreover, based on in vitro isolation and bioaugmentation inoculation, it was found that Candida parapsilosis and Candida metapsilosis could significantly reduce the alkaloids content and increase the content of flavor components in tobacco leaves. Discussion This study found and validated the critical role of Candida in the fermentation of cigar tobacco leaves through high-throughput sequencing and bioaugmentation inoculation, which would help guide the development of microbial starters and directional regulation of cigar tobacco quality.
Collapse
Affiliation(s)
- Yun Jia
- Cigar Fermentation Technology Key Laboratory of China Tobacco, China Tobacco Industrial Co., Ltd., Chengdu, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Yuanfa Liu
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Wanrong Hu
- Cigar Fermentation Technology Key Laboratory of China Tobacco, China Tobacco Industrial Co., Ltd., Chengdu, China
| | - Wen Cai
- Cigar Fermentation Technology Key Laboratory of China Tobacco, China Tobacco Industrial Co., Ltd., Chengdu, China
| | - Zhaojun Zheng
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Cheng Luo
- Cigar Fermentation Technology Key Laboratory of China Tobacco, China Tobacco Industrial Co., Ltd., Chengdu, China
| | - Dongliang Li
- Cigar Fermentation Technology Key Laboratory of China Tobacco, China Tobacco Industrial Co., Ltd., Chengdu, China
| |
Collapse
|
12
|
LEAL JUNIOR GA, TITO TM, MARQUES MBM, SILVA APMD, OLIVEIRA MPMD, GOMES LH, COELHO IDS, FIGUEIRA A. Fermentation box cleaning can impair cacao seed fermentation. FOOD SCIENCE AND TECHNOLOGY 2023. [DOI: 10.1590/fst.109322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
13
|
Miguel GA, Carlsen S, Arneborg N, Saerens SM, Laulund S, Knudsen GM. Non-Saccharomyces yeasts for beer production: Insights into safety aspects and considerations. Int J Food Microbiol 2022; 383:109951. [DOI: 10.1016/j.ijfoodmicro.2022.109951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 09/14/2022] [Accepted: 09/22/2022] [Indexed: 11/05/2022]
|
14
|
Kouassi ADD, Koné KM, Assi-Clair BJ, Lebrun M, Maraval I, Boulanger R, Fontana A, Guehi TS. Effect of spontaneous fermentation location on the fingerprint of volatile compound precursors of cocoa and the sensory perceptions of the end-chocolate. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2022; 59:4466-4478. [PMID: 36193455 PMCID: PMC9525491 DOI: 10.1007/s13197-022-05526-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 09/28/2021] [Accepted: 01/10/2022] [Indexed: 05/27/2023]
Abstract
Cocoa pod-opening delay and bean fermentation promote the organoleptic quality of chocolate. The present research investigated the changes in the volatile fingerprint of cocoa harvested at a traditional plantation. Cocoa beans extracted from 2-days pod-opening delay were simultaneously fermented for 5 days using container and then sun-dried to 7-8% moisture content at five different locations: Akoupé, San Pedro, Soubré, Djekanou and Daloa. The aromatic analysis were done on cocoa using the HS-SPME-GC/MS technique. Professional panelists evaluated the sensory perceptions of the chocolate. The results shows that cocoa fermented in both Daloa and Soubré regions were differentiated by 2,3-butanediol while those processed in other regions presented highest acetoin content. However, fermented cocoa from Soubré region exhibited most amount of 2,3-butanediol, diacetate A whereas 2,3,5,6-tetramethylpyrazine differentiated those from Daloa region. Sensory properties of chocolate were not linked to the aromatic compound precursors profile of beans. The fermentation performed in San Pédro region promote both the generation of more desirable aromatic compounds of cocoa and sensory attributes of the finished chocolate. The fermentation location generates a greater differentiation of the volatile fingerprint of cocoa and the sensory perceptions of the finished chocolate.
Collapse
Affiliation(s)
- Ange Didier D. Kouassi
- Food Sciences and Technology Department, UFR-STA, Université Nangui Abrogoua, 02 Bp 801 Abidjan 02, Côte d’Ivoire
| | - Koumba M. Koné
- Food Sciences and Technology Department, UFR-STA, Université Nangui Abrogoua, 02 Bp 801 Abidjan 02, Côte d’Ivoire
| | - Brice J. Assi-Clair
- Food Sciences and Technology Department, UFR-STA, Université Nangui Abrogoua, 02 Bp 801 Abidjan 02, Côte d’Ivoire
| | - Marc Lebrun
- CIRAD, UMR Qualisud, TA B 96/16, 75 Av JF Breton, 34398 Montpellier cedex 5, France
- Qualisud, Univ Montpellier, CIRAD, Université d’Avignon, Université de la Réunion, Montpellier SupAgro, Montpellier, France
| | - Isabelle Maraval
- CIRAD, UMR Qualisud, TA B 96/16, 75 Av JF Breton, 34398 Montpellier cedex 5, France
- Qualisud, Univ Montpellier, CIRAD, Université d’Avignon, Université de la Réunion, Montpellier SupAgro, Montpellier, France
| | - Renaud Boulanger
- CIRAD, UMR Qualisud, TA B 96/16, 75 Av JF Breton, 34398 Montpellier cedex 5, France
- Qualisud, Univ Montpellier, CIRAD, Université d’Avignon, Université de la Réunion, Montpellier SupAgro, Montpellier, France
| | - Angélique Fontana
- CIRAD, UMR Qualisud, TA B 96/16, 75 Av JF Breton, 34398 Montpellier cedex 5, France
- Qualisud, Univ Montpellier, CIRAD, Université d’Avignon, Université de la Réunion, Montpellier SupAgro, Montpellier, France
| | - Tagro S. Guehi
- Food Sciences and Technology Department, UFR-STA, Université Nangui Abrogoua, 02 Bp 801 Abidjan 02, Côte d’Ivoire
| |
Collapse
|
15
|
Lamarche A, Lessard MH, Viel C, Turgeon SL, St-Gelais D, Labrie S. Quantitative PCR reveals the frequency and distribution of 3 indigenous yeast species across a range of specialty cheeses. J Dairy Sci 2022; 105:8677-8687. [PMID: 36114057 DOI: 10.3168/jds.2022-21949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 05/26/2022] [Indexed: 11/19/2022]
Abstract
Indigenous microorganisms are important components of the complex ecosystem of many dairy foods including cheeses, and they are potential contributors to the development of a specific cheese's sensory properties. Among these indigenous microorganisms are the yeasts Cyberlindnera jadinii, Pichia kudriavzevii, and Kazachstania servazzii, which were previously detected using traditional microbiological methods in both raw milk and some artisanal specialty cheeses produced in the province of Québec, Canada. However, their levels across different cheese varieties are unknown. A highly specific and sensitive real-time quantitative PCR assay was developed to quantitate these yeast species in a variety of specialty cheeses (bloomy-rind, washed-rind, and natural-rind cheeses from raw, thermized, and pasteurized milks). The specificity of the quantitative PCR assay was validated, and it showed no cross-amplification with 11 other fungal microorganisms usually found in bloomy-rind and washed-rind cheeses. Cyberlindnera jadinii and P. kudriavzevii were found in the majority of the cheeses analyzed (25 of 29 and 24 of 29 cheeses, respectively) in concentrations up to 104 to 108 gene copies/g in the cheese cores, which are considered oxygen-poor environments, and 101 to 104 gene copies/cm2 in the rind. However, their high abundance was not observed in the same samples. Whereas C. jadinii was present and dominant in all core and rind samples, P. kudriavzevii was mostly present in cheese cores. In contrast, K. servazzii was present in the rinds of only 2 cheeses, in concentrations ranging from 101 to 103 gene copies/cm2, and in 1 cheese core at 105 gene copies/g. Thus, in the ecosystems of specialty cheeses, indigenous yeasts are highly frequent but variable, with certain species selectively present in specific varieties. These results shed light on some indigenous yeasts that establish during the ripening of specialty cheeses.
Collapse
Affiliation(s)
- A Lamarche
- Department of Food Sciences, Institute of Nutrition and Functional Foods (INAF), STELA Dairy Research Centre, Université Laval, Québec, G1V 0A6, Canada; Laboratoire de mycologie alimentaire (LMA), Université Laval, Québec, G1V 0A6, Canada
| | - M-H Lessard
- Department of Food Sciences, Institute of Nutrition and Functional Foods (INAF), STELA Dairy Research Centre, Université Laval, Québec, G1V 0A6, Canada; Laboratoire de mycologie alimentaire (LMA), Université Laval, Québec, G1V 0A6, Canada
| | - C Viel
- Department of Food Sciences, Institute of Nutrition and Functional Foods (INAF), STELA Dairy Research Centre, Université Laval, Québec, G1V 0A6, Canada; Laboratoire de mycologie alimentaire (LMA), Université Laval, Québec, G1V 0A6, Canada
| | - S L Turgeon
- Department of Food Sciences, Institute of Nutrition and Functional Foods (INAF), STELA Dairy Research Centre, Université Laval, Québec, G1V 0A6, Canada
| | - D St-Gelais
- Department of Food Sciences, Institute of Nutrition and Functional Foods (INAF), STELA Dairy Research Centre, Université Laval, Québec, G1V 0A6, Canada; Agriculture and Agri-Food Canada, Saint-Hyacinthe Research and Development Centre, Saint-Hyacinthe, J2S 8E3, Canada
| | - S Labrie
- Department of Food Sciences, Institute of Nutrition and Functional Foods (INAF), STELA Dairy Research Centre, Université Laval, Québec, G1V 0A6, Canada; Laboratoire de mycologie alimentaire (LMA), Université Laval, Québec, G1V 0A6, Canada.
| |
Collapse
|
16
|
Taylor AJ, Cardenas-Torres E, Miller MJ, Zhao SD, Engeseth NJ. Microbes associated with spontaneous cacao fermentations - A systematic review and meta-analysis. Curr Res Food Sci 2022; 5:1452-1464. [PMID: 36119372 PMCID: PMC9478497 DOI: 10.1016/j.crfs.2022.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/26/2022] [Accepted: 08/15/2022] [Indexed: 11/29/2022] Open
Abstract
Chocolate is a product of the fermentation of cacao beans. Performed on-farm or at local cooperatives, these are spontaneous cacao fermentations (SCFs). To better understand SCFs, this study sought to identify SCF microbes, their interrelationships, and other key parameters that influence fermentation. This is important because differences in fermentation can have an impact on final product quality. In this study, a systematic data extraction was performed, searching for literature that identified microbes from SCFs. Each unique microbe, whether by location or by fermentation material, was extracted from the articles, along with parameters associated with fermentation. Data were collected and analyzed for three interactions: microbe-to-geography, microbe-to-fermentation method, and microbe-to-microbe. The goal was to attribute microbes to geographical locations, fermentation materials, or to other microbes. Statistically significant relationships will reveal target areas for future research. Over 1700 microbes (440 unique species) were identified across 60 articles. The top three countries represented are Brazil (22 articles, n = 612 microbes), the Ivory Coast (14 articles, n = 237), and Ghana (10 articles, n = 257). Several countries were far less, or never represented, and should be considered for future research. No specific relationship was identified with microbes to either geographical location or fermentation method. Using a Presence-Absence chart, 127 microbe-to-microbe interactions were identified as statistically significant. Data extraction into SCF research has revealed major gaps of knowledge for the cacao microbiome. By better understanding the cacao microbiome, researchers will be able to identify key microbes and fermentation parameters to better influence the fermentation.
Collapse
Affiliation(s)
- Alexander J. Taylor
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, USA
| | | | - Michael J. Miller
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, USA
| | - Sihai Dave Zhao
- Department of Statistics, University of Illinois at Urbana-Champaign, USA
| | - Nicki J. Engeseth
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, USA
| |
Collapse
|
17
|
Ferreira ODS, Chagas‐Junior GCA, Chisté RC, Martins LHDS, Andrade EHDA, Nascimento LDD, Lopes AS. Saccharomyces cerevisiae
and
Pichia manshurica
from Amazonian biome affect the parameters of quality and aromatic profile of fermented and dried cocoa beans. J Food Sci 2022; 87:4148-4161. [DOI: 10.1111/1750-3841.16282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 07/05/2022] [Accepted: 07/20/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Osienne de Sousa Ferreira
- Graduate Program in Food Science and Technology Institute of Technology (ITEC), Federal University of Pará (UFPA) Belém Pará Brazil
| | - Gilson C. A. Chagas‐Junior
- Graduate Program in Food Science and Technology Institute of Technology (ITEC), Federal University of Pará (UFPA) Belém Pará Brazil
| | - Renan Campos Chisté
- Graduate Program in Food Science and Technology Institute of Technology (ITEC), Federal University of Pará (UFPA) Belém Pará Brazil
- Faculty of Food Engineering (FEA) Institute of Technology (ITEC), Federal University of Pará (UFPA) Belém Pará Brazil
| | - Luiza Helena da Silva Martins
- Graduate Program in Food Science and Technology Institute of Technology (ITEC), Federal University of Pará (UFPA) Belém Pará Brazil
- Institute of Animal Health and Production Federal Rural University of the Amazon (UFRA) Belém Pará Brazil
| | | | | | - Alessandra Santos Lopes
- Graduate Program in Food Science and Technology Institute of Technology (ITEC), Federal University of Pará (UFPA) Belém Pará Brazil
- Faculty of Food Engineering (FEA) Institute of Technology (ITEC), Federal University of Pará (UFPA) Belém Pará Brazil
| |
Collapse
|
18
|
Yeasts as Producers of Flavor Precursors during Cocoa Bean Fermentation and Their Relevance as Starter Cultures: A Review. FERMENTATION 2022. [DOI: 10.3390/fermentation8070331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
During the fermentation of cocoa beans, the yeasts produce volatile organic compounds (VOCs). Through reactions associated with amino acid metabolism, yeasts generate important aroma precursors as acetate esters and fatty acid ethyl esters are essential in developing fruity flavors and aromas in the final product (usually chocolate). In addition, some yeasts may have pectinolytic and antifungal activity, which is desirable in the post-harvest process of cocoa. The main yeast species in cocoa fermentation are Saccharomyces cerevisiae, Pichia kudriavzevii, and Hanseniaspora opuntiae. These produce higher alcohols and acetyl-CoA to make acetate–esters, compounds that produce floral and fruity notes. However, there are still controversies in scientific reports because some mention that there are no significant differences in the sensory characteristics of the final product. Others mention that the fermentation of cocoa by yeast has a significant influence on improving the sensory attributes of the final product. However, using yeasts as starter cultures for cocoa bean fermentation is recommended to homogenize sensory attributes such as notes and flavors in chocolate.
Collapse
|
19
|
Alvarez-Villagomez K, Ledesma-Escobar C, Priego-Capote F, Robles-Olvera V, García-Alamilla P. Influence of the starter culture on the volatile profile of processed cocoa beans by gas chromatography–mass spectrometry in high resolution mode. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
20
|
Brysch-Herzberg M, Jia GS, Seidel M, Assali I, Du LL. Insights into the ecology of Schizosaccharomyces species in natural and artificial habitats. Antonie van Leeuwenhoek 2022; 115:661-695. [PMID: 35359202 PMCID: PMC9007792 DOI: 10.1007/s10482-022-01720-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 02/14/2022] [Indexed: 11/30/2022]
Abstract
The fission yeast genus Schizosaccharomyces contains important model organisms for biological research. In particular, S. pombe is a widely used model eukaryote. So far little is known about the natural and artificial habitats of species in this genus. Finding out where S. pombe and other fission yeast species occur and how they live in their habitats can promote better understanding of their biology. Here we investigate in which substrates S. pombe, S. octosporus, S. osmophilus and S. japonicus are present. To this end about 2100 samples consisting of soil, tree sap fluxes, fresh fruit, dried fruit, honey, cacao beans, molasses and other substrates were analyzed. Effective isolation methods that allow efficient isolation of the above mentioned species were developed. Based on the frequency of isolating different fission yeast species in various substrates and on extensive literature survey, conclusions are drawn on their ecology. The results suggest that the primary habitat of S. pombe and S. octosporus is honeybee honey. Both species were also frequently detected on certain dried fruit like raisins, mango or pineapple to which they could be brought by the honey bees during ripening or during drying. While S. pombe was regularly isolated from grape mash and from fermented raw cacao beans S. octosporus was never isolated from fresh fruit. The main habitat of S. osmophilus seems to be solitary bee beebread. It was rarely isolated from raisins. S. japonicus was mainly found in forest substrates although it occurs on fruit and in fruit fermentations, too.
Collapse
Affiliation(s)
- Michael Brysch-Herzberg
- Laboratory for Wine Microbiology, Department International Business, Heilbronn University, Max-Planck-Str. 39, 74081 Heilbronn, Germany
| | - Guo-Song Jia
- National Institute of Biological Sciences, Beijing, 102206 China
| | - Martin Seidel
- Laboratory for Wine Microbiology, Department International Business, Heilbronn University, Max-Planck-Str. 39, 74081 Heilbronn, Germany
| | - Imen Assali
- Department of Bioengineering, National Engineering School of Sfax, University of Sfax, Soukra, km 4, 3038 Sfax, Tunisia
| | - Li-Lin Du
- National Institute of Biological Sciences, Beijing, 102206 China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 102206 China
| |
Collapse
|
21
|
Tigrero-Vaca J, Maridueña-Zavala MG, Liao HL, Prado-Lince M, Zambrano-Vera CS, Monserrate-Maggi B, Cevallos-Cevallos JM. Microbial Diversity and Contribution to the Formation of Volatile Compounds during Fine-Flavor Cacao Bean Fermentation. Foods 2022; 11:foods11070915. [PMID: 35407002 PMCID: PMC8997610 DOI: 10.3390/foods11070915] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/17/2022] [Accepted: 03/17/2022] [Indexed: 01/22/2023] Open
Abstract
Cacao demand is continuously increasing, and variations in cacao prices have been associated with the aroma of fermented cacao beans. However, the role of microorganisms in the formation of volatile-aroma compounds during fermentation remains unclear. Microbial diversity in Nacional × Trinitario cacao was characterized during spontaneous fermentation by using culture-based methods and next-generation sequencing (NGS) of DNA amplicons. Cacao beans that were spontaneously fermented for 0, 24, 48, 72 and 96 h were UV-sterilized prior to the inoculation of the microbial isolates obtained by the culture-based methods. The volatile formation in inoculated cacao beans was evaluated by GC-MS. The species isolated during fermentation included yeast, such as Saccharomyces cerevisiae and Candida metapsilosis; lactic acid bacteria (LAB), such as Limosilactobacillus fermentum and Liquorilactobacillus nagelii; acetic acid bacteria (AAB), such as Acetobacter pasteurianus, Acetobacter ghanensis and Acetobacter syzygii, as well as other species, such as Bacillus subtilis and Bacillus amyloliquefaciens. Additionally, NGS revealed an abundance of environmental microorganisms, including Escherichia spp., Pantoea spp., Staphylococcus spp., Botrytis spp., Tetrapisispora spp. and Pichia spp., among others. During the lab-scale fermentation, the inoculation of S. cerevisiae mostly yielded alcohols, while LAB and AAB produced volatiles associated with floral, almond and fruity notes throughout the fermentation, but AAB also produced acetic acid with a sour aroma. Similarly, the inoculation of C. metapsilosis and Bacillus spp. in 96 h fermented cacao beans yielded esters with floral aromas. This is the first report describing the role of microorganisms in volatile formation during fine-flavor cacao fermentation.
Collapse
Affiliation(s)
- Joel Tigrero-Vaca
- Escuela Superior Politécnica del Litoral, ESPOL, Centro de Investigaciones Biotecnológicas del Ecuador, Campus Gustavo Galindo Km. 30.5 Vía Perimetral, Guayaquil P.O. Box 09-01-5863, Ecuador; (J.T.-V.); (M.G.M.-Z.); (M.P.-L.); (C.S.Z.-V.); (B.M.-M.)
| | - María Gabriela Maridueña-Zavala
- Escuela Superior Politécnica del Litoral, ESPOL, Centro de Investigaciones Biotecnológicas del Ecuador, Campus Gustavo Galindo Km. 30.5 Vía Perimetral, Guayaquil P.O. Box 09-01-5863, Ecuador; (J.T.-V.); (M.G.M.-Z.); (M.P.-L.); (C.S.Z.-V.); (B.M.-M.)
| | - Hui-Ling Liao
- Department of Soil Sciences, University of Florida, Gainesville, FL 32611, USA;
| | - Mónica Prado-Lince
- Escuela Superior Politécnica del Litoral, ESPOL, Centro de Investigaciones Biotecnológicas del Ecuador, Campus Gustavo Galindo Km. 30.5 Vía Perimetral, Guayaquil P.O. Box 09-01-5863, Ecuador; (J.T.-V.); (M.G.M.-Z.); (M.P.-L.); (C.S.Z.-V.); (B.M.-M.)
| | - Cynthia Sulay Zambrano-Vera
- Escuela Superior Politécnica del Litoral, ESPOL, Centro de Investigaciones Biotecnológicas del Ecuador, Campus Gustavo Galindo Km. 30.5 Vía Perimetral, Guayaquil P.O. Box 09-01-5863, Ecuador; (J.T.-V.); (M.G.M.-Z.); (M.P.-L.); (C.S.Z.-V.); (B.M.-M.)
| | - Bertha Monserrate-Maggi
- Escuela Superior Politécnica del Litoral, ESPOL, Centro de Investigaciones Biotecnológicas del Ecuador, Campus Gustavo Galindo Km. 30.5 Vía Perimetral, Guayaquil P.O. Box 09-01-5863, Ecuador; (J.T.-V.); (M.G.M.-Z.); (M.P.-L.); (C.S.Z.-V.); (B.M.-M.)
| | - Juan M. Cevallos-Cevallos
- Escuela Superior Politécnica del Litoral, ESPOL, Centro de Investigaciones Biotecnológicas del Ecuador, Campus Gustavo Galindo Km. 30.5 Vía Perimetral, Guayaquil P.O. Box 09-01-5863, Ecuador; (J.T.-V.); (M.G.M.-Z.); (M.P.-L.); (C.S.Z.-V.); (B.M.-M.)
- Correspondence:
| |
Collapse
|
22
|
Screening Wild Yeast Isolated from Cocoa Bean Fermentation Using Volatile Compounds Profile. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27030902. [PMID: 35164165 PMCID: PMC8838919 DOI: 10.3390/molecules27030902] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 01/13/2022] [Accepted: 01/13/2022] [Indexed: 12/03/2022]
Abstract
Yeasts are one of the main ingredients responsible for flavor precursors production associated with sensorial characteristics in chocolate. Using wild yeast isolated from cocoa beans fermentation is emerging as a strategy for developing starter cultures. However, the volatile compounds (VCs) produced by yeasts are not yet known. This study aimed to select wild yeasts with the potential to produce volatile compounds associated with desirable flavor attributes. A total of 150 wild yeasts strains were isolated from the spontaneous cocoa beans fermentation, of which 40 were identified by morphology and physiological features. VCs produced were identified and quantified using SPME-GC-MS and GC-FID and profiles were evaluated statistically by PCA and cluster analysis for the compounds that had a high odor threshold value. Thirty-six VCs produced by these yeasts were identified into six main families, namely esters, alcohols, acids, aldehydes, ketones, and pyrazines. PCA showed the separation of the yeasts into two main clusters. Strains, Y195 and Y246, belong to the first cluster and are the highest producers of alcohols related to floral perceptions. In the second cluster, thirty-three yeasts were grouped by their ability to produce esters. Of all of them, Y110MRS stood out for producing 2-phenyl ethyl acetate and isoamyl acetate associated with fruity perceptions. This screening allowed us to identify yeasts that produced VCs of technological interest and which could be used to develop a starter culture.
Collapse
|
23
|
Han Y, Wang C, Zhang X, Li X, Gao Y. Characteristic volatiles analysis of
Dongbei Suancai
across different fermentation stages based on HS‐GC‐IMS with PCA. J Food Sci 2022; 87:612-622. [DOI: 10.1111/1750-3841.16045] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 11/30/2021] [Accepted: 12/20/2021] [Indexed: 11/30/2022]
Affiliation(s)
- Yanqiu Han
- Institute of Food and Processing Liaoning Academy of Agricultural Sciences Shenyang Liaoning People's Republic of China
| | - Chen Wang
- Institute of Food and Processing Liaoning Academy of Agricultural Sciences Shenyang Liaoning People's Republic of China
| | - Xiaoli Zhang
- Institute of Food and Processing Liaoning Academy of Agricultural Sciences Shenyang Liaoning People's Republic of China
| | - Xiao Li
- Institute of Food and Processing Liaoning Academy of Agricultural Sciences Shenyang Liaoning People's Republic of China
| | - Ya Gao
- Institute of Food and Processing Liaoning Academy of Agricultural Sciences Shenyang Liaoning People's Republic of China
| |
Collapse
|
24
|
Bao Y, Zhang M, Chen W, Chen H, Chen W, Zhong Q. Screening and evaluation of suitable non-Saccharomyces yeast for aroma improvement of fermented mango juice. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
25
|
Ballester E, Ribes S, Barat JM, Fuentes A. Spoilage yeasts in fermented vegetables: conventional and novel control strategies. Eur Food Res Technol 2021. [DOI: 10.1007/s00217-021-03888-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
26
|
Díaz-Muñoz C, De Vuyst L. Functional yeast starter cultures for cocoa fermentation. J Appl Microbiol 2021; 133:39-66. [PMID: 34599633 PMCID: PMC9542016 DOI: 10.1111/jam.15312] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/02/2021] [Accepted: 09/17/2021] [Indexed: 01/04/2023]
Abstract
The quest to develop a performant starter culture mixture to be applied in cocoa fermentation processes started in the 20th century, aiming at achieving high‐quality, reproducible chocolates with improved organoleptic properties. Since then, different yeasts have been proposed as candidate starter cultures, as this microbial group plays a key role during fermentation of the cocoa pulp‐bean mass. Yeast starter culture‐initiated fermentation trials have been performed worldwide through the equatorial zone and the effects of yeast inoculation have been analysed as a function of the cocoa variety (Forastero, Trinitario and hybrids) and fermentation method (farm‐, small‐ and micro‐scale) through the application of physicochemical, microbiological and chemical techniques. A thorough screening of candidate yeast starter culture strains is sometimes done to obtain the best performing strains to steer the cocoa fermentation process and/or to enhance specific features, such as pectinolysis, ethanol production, citrate assimilation and flavour production. Besides their effects during cocoa fermentation, a significant influence of the starter culture mixture applied is often found on the cocoa liquors and/or chocolates produced thereof. Thus, starter culture‐initiated cocoa fermentation processes constitute a suitable strategy to elaborate improved flavourful chocolate products.
Collapse
Affiliation(s)
- Cristian Díaz-Muñoz
- Research Group of Industrial Microbiology and Food Biotechnology, Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Luc De Vuyst
- Research Group of Industrial Microbiology and Food Biotechnology, Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
27
|
Bioprospecting of indigenous yeasts involved in cocoa fermentation using sensory and chemical strategies for selecting a starter inoculum. Food Microbiol 2021; 101:103896. [PMID: 34579856 DOI: 10.1016/j.fm.2021.103896] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 07/11/2021] [Accepted: 09/01/2021] [Indexed: 01/21/2023]
Abstract
Cocoa fermentation is the key and most relevant process in the synthesis of aroma and flavor precursor molecules in dry beans or raw material for producing chocolate. Because this process occurs in an uncontrolled manner, the chemical and sensory quality of beans can vary and be negatively affected. One of the strategies for the standardization and improvement of the sensory quality of chocolate is the introduction of microbial starter cultures. Among these, yeasts involved in fermentation have been studied because of their pectinolytic and metabolic potential in the production of volatile compounds. This study was aimed at isolating and characterizing, both sensory and chemically, yeasts involved in cocoa fermentation that could be used as starter cultures from two agro-ecological regions for the cultivation of cocoa in Colombia. The microbiological analyses identified 22 species represented mostly by Saccharomyces cerevisiae, Wickerhamomyces anomalus and Pichia sp. The preliminary sensory analysis of eight of these species showed that Hanseniaspora thailandica and Pichia kluyveri presented sensory profiles characterized by high intensity levels of fruity notes, which could be ascribed to the production of ethyl acetate, isoamyl acetate, and 2-phenylethyl acetate.
Collapse
|
28
|
Dulce VR, Anne G, Manuel K, Carlos AA, Jacobo RC, Sergio de Jesús CE, Eugenia LC. Cocoa bean turning as a method for redirecting the aroma compound profile in artisanal cocoa fermentation. Heliyon 2021; 7:e07694. [PMID: 34401578 PMCID: PMC8353487 DOI: 10.1016/j.heliyon.2021.e07694] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/21/2021] [Accepted: 07/28/2021] [Indexed: 11/01/2022] Open
Abstract
Two artisanal fermentation processes for Criollo cocoa beans with different turning start times (24 h and 48 h) were studied. The aromatic profile of cocoa turned every 24 h (B1) displayed volatile compounds associated with fermented, bready, and fruity aromas. When cocoa beans were fermented with a different turning technique with a start time of 48 h (B2), they provided volatile compounds mainly associated with descriptors of floral, woody, sweet, fruity and chocolate aromas. The turning start time of 48 h stimulated a microbial profile dominated by yeast such as Hanseniaspora opuntiae, Pichia manshurica, and Meyerozyma carpophila, favoring the production of several key aroma markers associated with cocoa bean fermentation quality, such as phenylethyl acetate, 2-phenylacetaldehyde, 3-methylbutanal, 2-phenylethyl alcohol, 2,3-butanedione, 3-methylbutanoic acid, and 2-methylpropanoic acid, while an immediate turning start time (24 h) favored an aerobic environment that stimulated the rapid growth of Acetobacter pasteurianus, Bacillus subtilis and a higher biodiversity of lactic acid bacteria (LAB) (e.g., Lactobacillus plantarum and Pediococcus acidilactici), which increased the production of ethyl acetate and 3-hydroxy-2-butanone. Volatile compound generation and microbial populations were evaluated and analyzed by multivariate analysis (principal component analysis and partial least squares discriminant analysis) to find correlations and significant differences. This study shows that the method of turning Criollo cacao beans can lead to the formation of desirable aromatic compounds.
Collapse
Affiliation(s)
- Velásquez-Reyes Dulce
- Food Technology Department, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), A.C., Camino Arenero 1227, 45019 El Bajío, Zapopan, Jalisco, Mexico
| | - Gschaedler Anne
- Industrial Biotechnology Department, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), A.C., Camino Arenero 1227, 45019 El Bajío, Zapopan, Jalisco, Mexico
| | - Kirchmayr Manuel
- Industrial Biotechnology Department, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), A.C., Camino Arenero 1227, 45019 El Bajío, Zapopan, Jalisco, Mexico
| | - Avendaño-Arrazate Carlos
- Genetic Department, Instituto Nacional de Investigaciones Forestales Agricolas y Pecuarias (INIFAP), C. E. Rosario Izapa, Chiapas. Km. 18. Carretera Tapachula-Cacahoatán, 30780 Tuxtla Chico, Chiapas, Mexico
| | - Rodríguez-Campos Jacobo
- Food Technology Department, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), A.C., Camino Arenero 1227, 45019 El Bajío, Zapopan, Jalisco, Mexico
| | - Calva-Estrada Sergio de Jesús
- Food Technology Department, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), A.C., Camino Arenero 1227, 45019 El Bajío, Zapopan, Jalisco, Mexico
| | - Lugo-Cervantes Eugenia
- Food Technology Department, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), A.C., Camino Arenero 1227, 45019 El Bajío, Zapopan, Jalisco, Mexico
| |
Collapse
|
29
|
Influence of Taxonomic and Functional Content of Microbial Communities on the Quality of Fermented Cocoa Pulp-Bean Mass. Appl Environ Microbiol 2021; 87:e0042521. [PMID: 33990301 DOI: 10.1128/aem.00425-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Microbial metabolism drives changes in the physicochemical properties and, consequently, the sensory characteristics of fermented cocoa beans. In this context, information regarding the structure, function, and metabolic potential of microbial communities' present during cocoa pulp-bean mass fermentation is limited, especially concerning the formation of aromatic compounds. To bridge the gap, the metagenome of fermented cocoa pulp-bean mass (Criollo and Forastero) has been investigated using shotgun metagenomics coupled with physicochemical, microbiological, quality, and sensory analyses to explore the impact of microbial communities on the quality of fermented cocoa pulp-bean mass on one farm in one season and in one region under the same environmental conditions. Our findings showed that the metagenomic diversity in cocoa, the fermentation length, and the diversity and function of metagenome-assembled genomes (MAGs) greatly influence the resulting distinctive flavors. From the metabolic perspective, multiple indicators suggest that the heterolactic metabolism was more dominant in Criollo fermentations. KEGG genes were linked with the biosynthesis of acetic acid, ethanol, lactic acid, acetoin, and phenylacetaldehyde during Criollo and Forastero fermentations. MAGs belonging to Lactiplantibacillus plantarum, Limosilactobacillus reuteri, and Acetobacter pasteurianus were the most prevalent. Fermentation time and roasting are the most important determinants of cocoa quality, while the difference between the two varieties are relatively minor. The assessment of microbiological and chemical analysis is urgently needed for developing fermentation protocols according to regions, countries, and cocoa varieties to guarantee safety and desirable flavor development. IMPORTANCE Monitoring the composition, structure, functionalities, and metabolic potential encoded at the level of DNA of fermented cocoa pulp-bean mass metagenome is of great importance for food safety and quality implications.
Collapse
|
30
|
How Climatic Seasons of the Amazon Biome Affect the Aromatic and Bioactive Profiles of Fermented and Dried Cocoa Beans? Molecules 2021; 26:molecules26133759. [PMID: 34206169 PMCID: PMC8270247 DOI: 10.3390/molecules26133759] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/06/2021] [Accepted: 05/08/2021] [Indexed: 11/21/2022] Open
Abstract
In addition to the vast diversity of fauna and flora, the Brazilian Amazon has different climatic periods characterized by periods with greater and lesser rainfall. The main objective of this research was to verify the influence of climatic seasons in the Brazilian Amazon (northeast of Pará state) concerning the aromatic and bioactive profiles of fermented and dried cocoa seeds. About 200 kg of seeds was fermented using specific protocols of local producers. Physicochemical analyzes (total titratable acidity, pH, total phenolic compounds, quantification of monomeric phenolics and methylxanthines) and volatile compounds by GC-MS were carried out. We observed that: in the summer, the highest levels of aldehydes were identified, such as benzaldehyde (6.34%) and phenylacetaldehyde (36.73%), related to the fermented cocoa and honey aromas, respectively; and a total of 27.89% of this same class was identified during winter. There were significant differences (p ≤ 0.05, Tukey test) in the profile of bioactive compounds (catechin, epicatechin, caffeine, and theobromine), being higher in fermented almonds in winter. This study indicates that the climatic seasons in the Amazon affect the aromatic and bioactive profiles and could produce a new identity standard (summer and winter Amazon) for the cocoa almonds and their products.
Collapse
|
31
|
Viesser JA, de Melo Pereira GV, de Carvalho Neto DP, Favero GR, de Carvalho JC, Goés-Neto A, Rogez H, Soccol CR. Global cocoa fermentation microbiome: revealing new taxa and microbial functions by next generation sequencing technologies. World J Microbiol Biotechnol 2021; 37:118. [PMID: 34131809 DOI: 10.1007/s11274-021-03079-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 05/25/2021] [Indexed: 12/01/2022]
Abstract
This review provides an overview of the application of next-generation sequencing (NGS) technologies for microbiome analysis of cocoa beans fermentation. The cocoa-producing regions where NGS has been applied include Brazil, Ghana, Ivory Coast, Cameroon, Nicaragua, and Colombia. The data collected were processed by principal component analysis (PCA) and Venn diagrams to perform a multivariate association between microbial diversity and cocoa-producing regions. NGS studies have confirmed the dominance of three major microbial groups revealed by culture-dependent approaches, i.e., lactic acid bacteria, acetic acid bacteria, and yeasts. However, a more complex microbial diversity has been revealed, comprising sub-dominant populations, late-growing species, and uncultivable microorganisms. A total of 99 microbial genera and species were for the first time reported in cocoa beans fermentation, such as Brevibacillus sp., Halomonas meridiana, Methylobacterium sp., Novosphingobium sp., and Paenibacillus pabuli. PCA and Venn diagrams showed that species composition is rarely fixed and often experiences fluctuations of varying degrees and at varying frequencies between different cocoa-producing regions. Understanding these differences will provide further directions for exploring the functional and metabolic activity of rare and abundant taxa, as well as their use as starter cultures to obtain high-quality cocoa beans.
Collapse
Affiliation(s)
- Jéssica A Viesser
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná (UFPR), Curitiba, PR, Brazil
| | - Gilberto V de Melo Pereira
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná (UFPR), Curitiba, PR, Brazil.
| | | | - Gabriel R Favero
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná (UFPR), Curitiba, PR, Brazil
| | - Júlio Cesar de Carvalho
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná (UFPR), Curitiba, PR, Brazil
| | - Aristóteles Goés-Neto
- Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Hervé Rogez
- Centre for Valorisation of Amazonian Bioactive Compounds (CVACBA), Federal University of Pará, Belém, PA, Brazil
| | - Carlos R Soccol
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná (UFPR), Curitiba, PR, Brazil
| |
Collapse
|
32
|
Koné KM, Assi‐Clair BJ, Kouassi ADD, Yao AK, Ban‐Koffi L, Durand N, Lebrun M, Maraval I, Bonlanger R, Guehi TS. Pod storage time and spontaneous fermentation treatments and their impact on the generation of cocoa flavour precursor compounds. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.14890] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Koumba Maï Koné
- UFR‐STAUniversité Nangui Abrogoua Abidjan 0202 Bp 801Côte d'Ivoire
| | | | | | - Alfred Koffi Yao
- UFR‐STAUniversité Nangui Abrogoua Abidjan 0202 Bp 801Côte d'Ivoire
| | - Louis Ban‐Koffi
- Centre National de Recherche Agronomique (CNRA) Abidjan 0101 BP 1740Côte d’Ivoire
| | - Noël Durand
- CIRAD, UMR Qualisud TA B 96/16, 75 Av JF Breton Montpellier Cedex 534398France
- Qualisud, Univ Montpellier, CIRAD Université d’AvignonUniversité de la RéunionMontpellier SupAgro 1101 Avenue Agropolis Montpellier34090France
| | - Marc Lebrun
- CIRAD, UMR Qualisud TA B 96/16, 75 Av JF Breton Montpellier Cedex 534398France
- Qualisud, Univ Montpellier, CIRAD Université d’AvignonUniversité de la RéunionMontpellier SupAgro 1101 Avenue Agropolis Montpellier34090France
| | - Isabelle Maraval
- CIRAD, UMR Qualisud TA B 96/16, 75 Av JF Breton Montpellier Cedex 534398France
- Qualisud, Univ Montpellier, CIRAD Université d’AvignonUniversité de la RéunionMontpellier SupAgro 1101 Avenue Agropolis Montpellier34090France
| | - Renaud Bonlanger
- CIRAD, UMR Qualisud TA B 96/16, 75 Av JF Breton Montpellier Cedex 534398France
- Qualisud, Univ Montpellier, CIRAD Université d’AvignonUniversité de la RéunionMontpellier SupAgro 1101 Avenue Agropolis Montpellier34090France
| | | |
Collapse
|
33
|
Jia Y, Niu CT, Zheng FY, Liu CF, Wang JJ, Lu ZM, Xu ZH, Li Q. Development of a defined autochthonous starter through dissecting the seasonal microbiome of broad bean paste. Food Chem 2021; 357:129625. [PMID: 33864999 DOI: 10.1016/j.foodchem.2021.129625] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 02/16/2021] [Accepted: 03/14/2021] [Indexed: 10/21/2022]
Abstract
Bean-based fermentation foods are usually ripened in open environment, which would lead to inconsistencies in flavor and quality between batches. The physicochemical metabolism and microbial community of seasonal broad bean paste (BBP) were compared to distinguish discriminant metabolites and unique taxa, as well as their specific reasons for different flavor and quality in this study. Here, we found that environmental variables led to the seasonal distribution of microbiota, and differential microorganisms further contributed to the inconsistency of flavor quality, in which Lactobacillales was responsible for the higher titratable acid and amino acid nitrogen concentration in winter pei, while Saccharomycetales benefited the formation of volatile flavor substances in autumn pei. Additionally, we compared the effect of different combinations of Lactobacillales with Zygosaccharomyces rouxii on the quality of BBP, and found that W. confusa was more suitable for BBP fermentation rather than T. halophilus in terms of sensory characteristics and physicochemical metabolites.
Collapse
Affiliation(s)
- Yun Jia
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Cheng-Tuo Niu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Fei-Yun Zheng
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Chun-Feng Liu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Jin-Jing Wang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Zhen-Ming Lu
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China
| | - Zheng-Hong Xu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China.
| | - Qi Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; Synergetic Innovation Center of Jiangsu Modern Industrial Fermentation, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
34
|
De Vuyst L, Leroy F. Functional role of yeasts, lactic acid bacteria and acetic acid bacteria in cocoa fermentation processes. FEMS Microbiol Rev 2021; 44:432-453. [PMID: 32420601 DOI: 10.1093/femsre/fuaa014] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 05/16/2020] [Indexed: 01/07/2023] Open
Abstract
Cured cocoa beans are obtained through a post-harvest, batchwise process of fermentation and drying carried out on farms in the equatorial zone. Fermentation of cocoa pulp-bean mass is performed mainly in heaps or boxes. It is made possible by a succession of yeast, lactic acid bacteria (LAB) and acetic acid bacteria (AAB) activities. Yeasts ferment the glucose of the cocoa pulp into ethanol, perform pectinolysis and produce flavour compounds, such as (higher) alcohols, aldehydes, organic acids and esters. LAB ferment the glucose, fructose and citric acid of the cocoa pulp into lactic acid, acetic acid, mannitol and pyruvate, generate a microbiologically stable fermentation environment, provide lactate as carbon source for the indispensable growth of AAB, and contribute to the cocoa and chocolate flavours by the production of sugar alcohols, organic acids, (higher) alcohols and aldehydes. AAB oxidize the ethanol into acetic acid, which penetrates into the bean cotyledons to prevent seed germination. Destruction of the subcellular seed structure in turn initiates enzymatic and non-enzymatic conversions inside the cocoa beans, which provides the necessary colour and flavour precursor molecules (hydrophilic peptides, hydrophobic amino acids and reducing sugars) for later roasting of the cured cocoa beans, the first step of the chocolate-making.
Collapse
Affiliation(s)
- Luc De Vuyst
- Research Group of Industrial Microbiology and Food Biotechnology, Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Frédéric Leroy
- Research Group of Industrial Microbiology and Food Biotechnology, Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| |
Collapse
|
35
|
Verce M, Schoonejans J, Hernandez Aguirre C, Molina-Bravo R, De Vuyst L, Weckx S. A Combined Metagenomics and Metatranscriptomics Approach to Unravel Costa Rican Cocoa Box Fermentation Processes Reveals Yet Unreported Microbial Species and Functionalities. Front Microbiol 2021; 12:641185. [PMID: 33664725 PMCID: PMC7920976 DOI: 10.3389/fmicb.2021.641185] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 01/26/2021] [Indexed: 12/12/2022] Open
Abstract
Cocoa fermentation is the first step in the post-harvest processing chain of cocoa and is important for the removal of the cocoa pulp surrounding the beans and the development of flavor and color precursors. In the present study, metagenomic and metatranscriptomic sequencing were applied to Costa Rican cocoa fermentation processes to unravel the microbial diversity and assess the function and transcription of their genes, thereby increasing the knowledge of this spontaneous fermentation process. Among 97 genera found in these fermentation processes, the major ones were Acetobacter, Komagataeibacter, Limosilactobacillus, Liquorilactobacillus, Lactiplantibacillus, Leuconostoc, Paucilactobacillus, Hanseniaspora, and Saccharomyces. The most prominent species were Limosilactobacillus fermentum, Liquorilactobacillus cacaonum, and Lactiplantibacillus plantarum among the LAB, Acetobacter pasteurianus and Acetobacter ghanensis among the AAB, and Hanseniaspora opuntiae and Saccharomyces cerevisiae among the yeasts. Consumption of glucose, fructose, and citric acid, and the production of ethanol, lactic acid, acetic acid, and mannitol were linked to the major species through metagenomic binning and the application of metatranscriptomic sequencing. By using this approach, it was also found that Lacp. plantarum consumed mannitol and oxidized lactic acid, that A. pasteurianus degraded oxalate, and that species such as Cellvibrio sp., Pectobacterium spp., and Paucilactobacillus vaccinostercus could contribute to pectin degradation. The data generated and results presented in this study could enhance the ability to select and develop appropriate starter cultures to steer the cocoa fermentation process toward a desired course.
Collapse
Affiliation(s)
- Marko Verce
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussel, Belgium
| | - Jorn Schoonejans
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussel, Belgium
| | | | - Ramón Molina-Bravo
- Laboratory of Molecular Biology, School of Agrarian Sciences, Universidad Nacional de Costa Rica, Heredia, Costa Rica
| | - Luc De Vuyst
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussel, Belgium
| | - Stefan Weckx
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussel, Belgium
| |
Collapse
|
36
|
Díaz-Muñoz C, Van de Voorde D, Comasio A, Verce M, Hernandez CE, Weckx S, De Vuyst L. Curing of Cocoa Beans: Fine-Scale Monitoring of the Starter Cultures Applied and Metabolomics of the Fermentation and Drying Steps. Front Microbiol 2021; 11:616875. [PMID: 33505385 PMCID: PMC7829357 DOI: 10.3389/fmicb.2020.616875] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 12/14/2020] [Indexed: 01/04/2023] Open
Abstract
Starter culture-initiated cocoa fermentation processes can be applied to improve the quality of cured cocoa beans. However, an accurate monitoring of the microbial strains inoculated in fresh cocoa pulp-bean mass to assess their contribution to the cocoa bean curing process is still lacking. In the present study, eight different cocoa fermentation processes were carried out with Trinitario cocoa in vessels in Costa Rica to assess the contribution of two candidate yeast starter culture strains, namely Saccharomyces cerevisiae IMDO 050523 and Pichia kudriavzevii IMDO 020508, inoculated in combination with Limosilactobacillus fermentum IMDO 0611222 and Acetobacter pasteurianus IMDO 0506386. A multiphasic approach, consisting of culture-dependent selective plating and incubation, rRNA-PCR-DGGE community profiling of agar plate washes, and culture-independent high-throughput amplicon sequencing, combined with a metabolite target analysis of non-volatile and volatile organic compounds (VOCs), was performed on samples from the fermentation and/or drying steps. The different starter culture mixtures applied effectively steered the cocoa fermentation processes performed. Moreover, the use of an amplicon sequence variant (ASV) approach, aligning these ASVs to the whole-genome sequences of the inoculated strains, allowed the monitoring of these inoculated strains and their differentiation from very closely related variants naturally present in the background or spontaneous fermentation processes. Further, traits such as malolactic fermentation during the fermentation step and acetoin and tetramethylpyrazine formation during the drying step could be unraveled. Finally, the yeast strains inoculated influenced the substrate consumption and metabolite production during all starter culture-initiated fermentation processes. This had an impact on the VOC profiles of the cured cocoa beans. Whereas the P. kudriavzevii strain produced a wide range of VOCs in the cocoa pulp, the S. cerevisiae strain mostly influenced the VOC composition of the cured cocoa beans.
Collapse
Affiliation(s)
- Cristian Díaz-Muñoz
- Research Group of Industrial Microbiology and Food Biotechnology, Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Dario Van de Voorde
- Research Group of Industrial Microbiology and Food Biotechnology, Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Andrea Comasio
- Research Group of Industrial Microbiology and Food Biotechnology, Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Marko Verce
- Research Group of Industrial Microbiology and Food Biotechnology, Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Carlos Eduardo Hernandez
- Laboratorio de Calidad e Innovación Agroalimentaria, Escuela de Ciencias Agrarias, Universidad Nacional de Costa Rica, Heredia, Costa Rica
| | - Stefan Weckx
- Research Group of Industrial Microbiology and Food Biotechnology, Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Luc De Vuyst
- Research Group of Industrial Microbiology and Food Biotechnology, Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
37
|
Chagas Junior GCA, Ferreira NR, Andrade EHDA, do Nascimento LD, de Siqueira FC, Lopes AS. Profile of Volatile Compounds of On-Farm Fermented and Dried Cocoa Beans Inoculated with Saccharomyces cerevisiae KY794742 and Pichia kudriavzevii KY794725. Molecules 2021; 26:molecules26020344. [PMID: 33440885 PMCID: PMC7827241 DOI: 10.3390/molecules26020344] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 11/28/2020] [Accepted: 12/02/2020] [Indexed: 02/08/2023] Open
Abstract
This study aimed to identify the volatile compounds in the fermented and dried cocoa beans conducted with three distinct inoculants of yeast species due to their high fermentative capacity: Saccharomyces cerevisiae, Pichia kudriavzevii, the mixture in equal proportions 1:1 of both species, and a control fermentation (with no inoculum application). Three starter cultures of yeasts, previously isolated and identified in cocoa fermentation in the municipality of Tomé-Açu, Pará state, Brazil. The seeds with pulp were removed manually and placed in wooden boxes for the fermentation process that lasted from 6 to 7 days. On the last day of fermentation, the almonds were packaged properly and placed to dry (36 °C), followed by preparation for the analysis of volatile compounds by GC-MS technique. In addition to the control fermentation, a high capacity for the formation of desirable compounds in chocolate by the inoculants with P. kudriavzevii was observed, which was confirmed through multivariate analyses, classifying these almonds with the highest content of aldehydes, esters, ketones and alcohols and low concentration of off-flavours. We conclude that the addition of mixed culture starter can be an excellent alternative for cocoa producers, suggesting obtaining cocoa beans with desirable characteristics for chocolate production, as well as creating a product identity for the producing region.
Collapse
Affiliation(s)
- Gilson Celso Albuquerque Chagas Junior
- Laboratório de Processos Biotecnológicos (LABIOTEC), Programa de Pós-graduação em Ciência e Tecnologia de Alimentos (PPGCTA), Instituto de Tecnologia (ITEC), Universidade Federal do Pará (UFPA), Belém 66075-110, Brazil;
- Correspondence: (G.C.A.C.J.); (N.R.F.); (A.S.L.)
| | - Nelson Rosa Ferreira
- Laboratório de Processos Biotecnológicos (LABIOTEC), Programa de Pós-graduação em Ciência e Tecnologia de Alimentos (PPGCTA), Instituto de Tecnologia (ITEC), Universidade Federal do Pará (UFPA), Belém 66075-110, Brazil;
- Correspondence: (G.C.A.C.J.); (N.R.F.); (A.S.L.)
| | - Eloisa Helena de Aguiar Andrade
- Laboratório Adolpho Ducke, Coordenação de Botânica, Museu Paraense Emílio Goeldi, Av. Perimetral, 1900, Terra Firme, Belém 66077-830, Brazil; (E.H.d.A.A.); (L.D.d.N.)
| | - Lidiane Diniz do Nascimento
- Laboratório Adolpho Ducke, Coordenação de Botânica, Museu Paraense Emílio Goeldi, Av. Perimetral, 1900, Terra Firme, Belém 66077-830, Brazil; (E.H.d.A.A.); (L.D.d.N.)
| | - Francilia Campos de Siqueira
- Laboratório de Processos Biotecnológicos (LABIOTEC), Programa de Pós-graduação em Ciência e Tecnologia de Alimentos (PPGCTA), Instituto de Tecnologia (ITEC), Universidade Federal do Pará (UFPA), Belém 66075-110, Brazil;
| | - Alessandra Santos Lopes
- Laboratório de Processos Biotecnológicos (LABIOTEC), Programa de Pós-graduação em Ciência e Tecnologia de Alimentos (PPGCTA), Instituto de Tecnologia (ITEC), Universidade Federal do Pará (UFPA), Belém 66075-110, Brazil;
- Correspondence: (G.C.A.C.J.); (N.R.F.); (A.S.L.)
| |
Collapse
|
38
|
Delgado-Ospina J, Acquaticci L, Molina-Hernandez JB, Rantsiou K, Martuscelli M, Kamgang-Nzekoue AF, Vittori S, Paparella A, Chaves-López C. Exploring the Capability of Yeasts Isolated from Colombian Fermented Cocoa Beans to Form and Degrade Biogenic Amines in a Lab-Scale Model System for Cocoa Fermentation. Microorganisms 2020; 9:microorganisms9010028. [PMID: 33374114 PMCID: PMC7823927 DOI: 10.3390/microorganisms9010028] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/25/2020] [Accepted: 11/28/2020] [Indexed: 11/16/2022] Open
Abstract
Yeast starters for cocoa fermentation are usually tested according to their enzymatic activities in terms of mucilage degradation and flavor improvement, disregarding their influence on the production or elimination of toxic compounds as biogenic amines (BAs), important for human health. In this work, we tested 145 strains belonging to 12 different yeast species and isolated from the Colombian fermented cocoa beans (CB) for their capability of producing BAs in vitro. Sixty-five strains were able to decarboxylate at least one of the amino acids tested. Pichia kudriavzevii ECA33 (Pk) and Saccharomyces cerevisiae 4 (Sc) were selected to evaluate their potential to modulate BAs, organic acids, and volatile organic compounds (VOCs) accumulation during a simulated cocoa fermentation. The growth of Sc or Pk in the presence of CB caused a significant reduction (p < 0.05) of 2-phenylethylamine (84% and 37%) and cadaverine (58% and 51%), and a significant increase of tryptamine and putrescine with a strong influence of temperature in BA formation and degradation. In addition, our findings pointed out that Pk induced a major production of fatty acid- and amino acid-derived VOCs, while Sc induced more VOCs derived from fatty acids metabolism. Our results suggest the importance of considering BA production in the choice of yeast starters for cocoa fermentation.
Collapse
Affiliation(s)
- Johannes Delgado-Ospina
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy
- Grupo de Investigación Biotecnología, Facultad de Ingeniería, Universidad de San Buenaventura Cali, Carrera 122 # 6-65, Cali 76001, Colombia
| | - Laura Acquaticci
- School of Pharmacy, University of Camerino, Via Sant' Agostino 1, 62032 Camerino, Italy
| | - Junior Bernardo Molina-Hernandez
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy
| | - Kalliopi Rantsiou
- Department of Agricultural, Forestry and Food Sciences, University of Turin, Largo Paolo Braccini 2, 10095 Grugliasco, Torino, Italy
| | - Maria Martuscelli
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy
| | | | - Sauro Vittori
- School of Pharmacy, University of Camerino, Via Sant' Agostino 1, 62032 Camerino, Italy
| | - Antonello Paparella
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy
| | - Clemencia Chaves-López
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy
| |
Collapse
|
39
|
Chemical implications and time reduction of on-farm cocoa fermentation by Saccharomyces cerevisiae and Pichia kudriavzevii. Food Chem 2020; 338:127834. [PMID: 32810810 DOI: 10.1016/j.foodchem.2020.127834] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 08/10/2020] [Accepted: 08/11/2020] [Indexed: 12/15/2022]
Abstract
The use of starters during fermentation has been gaining momentum as it can warrant high-quality chocolate. The objective of this study was to investigate the influence of Saccharomyces cerevisiae (Sc) and Pichia kudriavzevii (Pk) during on-farm fermentation on physico-chemical and microbiological characteristics and levels of methylxanthines and bioactive amines of cocoa. Four treatments were used: ScPk (1:1), only Sc, only Pk, and no starter (control). The starters lead to changes throughout fermentation, but provided fermented cocoa with similar pH, titratable acidity, reducing sugars and phenolic compounds. ScPk shortened fermentation time by 24 h. The ScPk fermented and dried cocoa had higher levels of monomeric phenols, methylxanthines, phenylethylamine and lower levels of the putrefactive amines - putrescine and cadaverine (p < 0.05). The results were confirmed by multivariate analysis. Based on these results, the mixture of both yeasts species is a promising starter for cocoa fermentation decreasing duration time and modulating high-quality components.
Collapse
|
40
|
Chagas Junior GCA, Ferreira NR, Lopes AS. The microbiota diversity identified during the cocoa fermentation and the benefits of the starter cultures use: an overview. Int J Food Sci Technol 2020. [DOI: 10.1111/ijfs.14740] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Gilson Celso Albuquerque Chagas Junior
- Laboratório de Processos Biotecnológicos (LABIOTEC) Programa de Pós‐graduação em Ciência e Tecnologia de Alimentos (PPGCTA) Instituto de Tecnologia (ITEC) Universidade Federal do Pará (UFPA) 66075‐110 Belém Pará Brazil
| | - Nelson Rosa Ferreira
- Laboratório de Processos Biotecnológicos (LABIOTEC) Programa de Pós‐graduação em Ciência e Tecnologia de Alimentos (PPGCTA) Instituto de Tecnologia (ITEC) Universidade Federal do Pará (UFPA) 66075‐110 Belém Pará Brazil
| | - Alessandra Santos Lopes
- Laboratório de Processos Biotecnológicos (LABIOTEC) Programa de Pós‐graduação em Ciência e Tecnologia de Alimentos (PPGCTA) Instituto de Tecnologia (ITEC) Universidade Federal do Pará (UFPA) 66075‐110 Belém Pará Brazil
| |
Collapse
|
41
|
Functional Biodiversity of Yeasts Isolated from Colombian Fermented and Dry Cocoa Beans. Microorganisms 2020; 8:microorganisms8071086. [PMID: 32708172 PMCID: PMC7409280 DOI: 10.3390/microorganisms8071086] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 07/15/2020] [Accepted: 07/17/2020] [Indexed: 12/16/2022] Open
Abstract
Yeasts play an important role in the cocoa fermentation process. Although the most relevant function is the degradation of sugars and the production of ethanol, there is little understanding of the enzyme activities and attributes that allow them to survive even after drying. The present study explored the functional biodiversity of yeasts associated with Criollo Colombian cocoa fermented beans, able to survive after drying. Twelve species belonging to 10 genera of osmo-, acid-, thermo-, and desiccation-tolerant yeasts were isolated and identified from fermented and dry cocoa beans, with Pichia kudriavzevii and Saccharomyces cerevisiae standing out as the most frequent. For the first time, we reported the presence of Zygosaccharomyces bisporus in cocoa fermented beans. It was found that resistance to desiccation is related to the different degradation capacities of fermentation substrates, which suggests that associative relationships may exist between the different yeast species and their degradation products. Besides, the increased thermotolerance of some species was related to the presence of polyphenols in the medium, which might play a fundamental role in shaping the microbial community composition.
Collapse
|
42
|
Choińska R, Piasecka-Jóźwiak K, Chabłowska B, Dumka J, Łukaszewicz A. Biocontrol ability and volatile organic compounds production as a putative mode of action of yeast strains isolated from organic grapes and rye grains. Antonie van Leeuwenhoek 2020; 113:1135-1146. [PMID: 32372375 PMCID: PMC7334268 DOI: 10.1007/s10482-020-01420-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 04/17/2020] [Indexed: 01/02/2023]
Abstract
The inhibiting activity of three yeast strains belonging to Pichia kudriavzevii, Pichia occidentalis, and Meyerozyma quilliermondii/Meyerozyma caribbica genera against common plant pathogens representing Mucor spp., Penicillium chrysogenum, Penicillium expansum, Aspergillus flavus, Fusarium cereals, Fusarium poae, as well as Botrytis cinerea genera was investigated. The yeast strains tested had a positive impact on growth inhibition of all target plant pathogens. The degree of inhibition was more than 50% and varied depending on both the yeast antagonist and the mold. Ethyl esters of medium-chain fatty acids, phenylethyl alcohol, and its acetate ester prevailed among the analyzed volatile organic compounds (VOCs) emitted by yeasts in the presence of the target plant pathogens. Due to the method used, assuming no contact between the antagonist and the pathogen, the antagonistic activity of the yeast strains studied resulted mainly from the production of biologically active VOCs. Moreover, the antagonistic activity was not only restricted to a single plant pathogen but effective towards molds of different genera, making the yeast strains studied very useful for potential application in biological control.
Collapse
Affiliation(s)
- Renata Choińska
- Department of Fermentation Technology, Institute of Agricultural and Food Biotechnology, 36 Rakowiecka, 02-532, Warsaw, Poland.
| | - Katarzyna Piasecka-Jóźwiak
- Department of Fermentation Technology, Institute of Agricultural and Food Biotechnology, 36 Rakowiecka, 02-532, Warsaw, Poland
| | - Beata Chabłowska
- Department of Fermentation Technology, Institute of Agricultural and Food Biotechnology, 36 Rakowiecka, 02-532, Warsaw, Poland
| | - Justyna Dumka
- Department of Fermentation Technology, Institute of Agricultural and Food Biotechnology, 36 Rakowiecka, 02-532, Warsaw, Poland
| | - Aneta Łukaszewicz
- Department of Fermentation Technology, Institute of Agricultural and Food Biotechnology, 36 Rakowiecka, 02-532, Warsaw, Poland
| |
Collapse
|
43
|
De Carvalho Neto DP, Vinícius De Melo Pereira G, Finco AMO, Rodrigues C, Carvalho JCD, Soccol CR. Microbiological, physicochemical and sensory studies of coffee beans fermentation conducted in a yeast bioreactor model. FOOD BIOTECHNOL 2020. [DOI: 10.1080/08905436.2020.1746666] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Dão Pedro De Carvalho Neto
- Bioprocess Engineering and Biotechnology Department, Federal University of Paraná (UFPR), Curitiba-PR, Brazil
| | | | - Ana Maria Oliveira Finco
- Bioprocess Engineering and Biotechnology Department, Federal University of Paraná (UFPR), Curitiba-PR, Brazil
| | - Cristine Rodrigues
- Bioprocess Engineering and Biotechnology Department, Federal University of Paraná (UFPR), Curitiba-PR, Brazil
| | - Júlio Cesar De Carvalho
- Bioprocess Engineering and Biotechnology Department, Federal University of Paraná (UFPR), Curitiba-PR, Brazil
| | - Carlos Ricardo Soccol
- Bioprocess Engineering and Biotechnology Department, Federal University of Paraná (UFPR), Curitiba-PR, Brazil
| |
Collapse
|
44
|
Deuscher Z, Gourrat K, Repoux M, Boulanger R, Labouré H, Le Quéré JL. Key Aroma Compounds of Dark Chocolates Differing in Organoleptic Properties: A GC-O Comparative Study. Molecules 2020; 25:E1809. [PMID: 32326405 PMCID: PMC7221797 DOI: 10.3390/molecules25081809] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/10/2020] [Accepted: 04/12/2020] [Indexed: 02/04/2023] Open
Abstract
Dark chocolate samples were previously classified into four sensory categories. The classification was modelled based on volatile compounds analyzed by direct introduction mass spectrometry of the chocolates' headspace. The purpose of the study was to identify the most discriminant odor-active compounds that should characterize the four sensory categories. To address the problem, a gas chromatography-olfactometry (GC-O) study was conducted by 12 assessors using a comparative detection frequency analysis (cDFA) approach on 12 exemplary samples. A nasal impact frequency (NIF) difference threshold combined with a statistical approach (Khi² test on k proportions) revealed 38 discriminative key odorants able to differentiate the samples and to characterize the sensory categories. A heatmap emphasized the 19 most discriminant key odorants, among which heterocyclic molecules (furanones, pyranones, lactones, one pyrrole, and one pyrazine) played a prominent role with secondary alcohols, acids, and esters. The initial sensory classes were retrieved using the discriminant key volatiles in a correspondence analysis (CA) and a hierarchical cluster analysis (HCA). Among the 38 discriminant key odorants, although previously identified in cocoa products, 21 were formally described for the first time as key aroma compounds of dark chocolate. Moreover, 13 key odorants were described for the first time in a cocoa product.
Collapse
Affiliation(s)
- Zoé Deuscher
- Centre des Sciences du Goût et de l’Alimentation (CSGA), AgroSup Dijon, CNRS, INRAE, Université de Bourgogne Franche-Comté, F-21000 Dijon, France
- CIRAD, UMR Qualisud, F-34398 Montpellier, France
| | - Karine Gourrat
- Centre des Sciences du Goût et de l’Alimentation (CSGA), AgroSup Dijon, CNRS, INRAE, Université de Bourgogne Franche-Comté, F-21000 Dijon, France
- ChemoSens Platform, CSGA, F-21000 Dijon, France
| | - Marie Repoux
- Valrhona, 14 av. du Président Roosevelet, F-26602 Tain l’Hermitage, France
| | - Renaud Boulanger
- CIRAD, UMR Qualisud, F-34398 Montpellier, France
- Qualisud, Univ Montpellier, CIRAD, Montpellier SupAgro, Univ d’Avignon, Univ de La Réunion, F-34000 Montpellier, France
| | - Hélène Labouré
- Centre des Sciences du Goût et de l’Alimentation (CSGA), AgroSup Dijon, CNRS, INRAE, Université de Bourgogne Franche-Comté, F-21000 Dijon, France
| | - Jean-Luc Le Quéré
- Centre des Sciences du Goût et de l’Alimentation (CSGA), AgroSup Dijon, CNRS, INRAE, Université de Bourgogne Franche-Comté, F-21000 Dijon, France
| |
Collapse
|
45
|
Ordoñez-Araque RH, Landines-Vera EF, Urresto-Villegas JC, Caicedo-Jaramillo CF. Microorganisms during cocoa fermentation: systematic review. FOODS AND RAW MATERIALS 2020. [DOI: 10.21603/2308-4057-2020-1-155-162] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Introduction. Cocoa (Theobroma cacao L.) originates from Ecuador. It is one of the oldest foods in the world. The fact that cocoa is the main component in chocolate industry makes it one of the most quoted raw materials today. The chemical, physical, microbiological, and sensory properties of cocoa determine its quality and, as a result, economic and nutritional value. The research objective was to conduct a detailed analysis of cocoa fermentation process and to study the transformations this raw material is subjected to during processing.
Study objects and methods. The present article introduces a substantial bibliographic review based on three databases: Science Direct, Scopus, and Medline. The scientific publications were selected according to several factors. First, they had to be relevant in terms of cocoa fermentation. Second, they were written in English or Spanish. Third, the papers were indexed in high-impact journals. The initial selection included 350 articles, while the final list of relevant publications featured only 50 works that met all the requirements specified above.
Results and discussion. The main characteristics of yeasts, lactic bacteria, and acetic bacteria were analyzed together with their main parameters to describe their activities during different stages of alcoholic, lactic, and acetic fermentation. A thorough analysis of the main enzyme-related processes that occur during fermentation makes it possible to optimize the use of substrates, temperature, time, pH, acidity, and nutrients. As a result, the finished product contains an optimal concentration of volatile compounds that are formed in the beans during fermentation. The study featured the main strains of fermentation-related microorganisms, their activities, main reactions, and products.
Conclusion. This study makes it possible to improve the process of fermentation to obtain beans with a better chemical composition.
Collapse
|
46
|
Ooi T, Ting A, Siow L. Influence of selected native yeast starter cultures on the antioxidant activities, fermentation index and total soluble solids of Malaysia cocoa beans: A simulation study. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2019.108977] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
47
|
Ouattara HG, Elias RJ, Dudley EG. Microbial synergy between Pichia kudriazevii YS201 and Bacillus subtilis BS38 improves pulp degradation and aroma production in cocoa pulp simulation medium. Heliyon 2020; 6:e03269. [PMID: 31993527 PMCID: PMC6971349 DOI: 10.1016/j.heliyon.2020.e03269] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 10/22/2019] [Accepted: 01/16/2020] [Indexed: 11/21/2022] Open
Abstract
Interactions between two major microorganisms from Ivorian cocoa fermentation, namely Bacillus subtilis BS38 and Pichia kudriazevii YS201, were investigated during fermentation in cocoa pulp simulation medium. The strains were mutually inhibitory, with Bacillus being more susceptible to this antagonistic effect than Pichia. However, both strains yielded different pulp-degrading enzymes, namely polygalacturonase (PG) from Pichia and pectate lyase (Pel) from Bacillus, that cooperate to efficiently breakdown pectin and vegetable pulp. The quantification of aromas from microbial cultures using Gas Chromatography-Mass Spectroscopy (GC-MS) coupled with headspace microextration (SPME) method, showed that P. kudriazevii produce mainly alcohols such as ethanol (63.165 g/L), phenylethanol (1.005 g/L), methylbutanol (0.138 g/L) and esters, notably ethyl acetate (0.037 g/L) and isoamyl acetate (0.032 g/L). The volatile fraction produced by Bacillus was dominated by butanediol (5.707 g/L), acetoin (1.933 g/L), phenylethanol (0.035 g/L) and acetic acid (0.034 g/L). In co-culture, Bacillus produced low levels of aroma compounds whereas a moderate decrease in the production of these compounds was observed in the yeasts strain. Thus, the dominant aromas present in the co-culture were mainly those from the yeasts strain; however, a 1.37 fold increase of ethanol production was observed in co-culture indicating a synergy between the strains. This study showed that cooperation between B. subtilis BS38 and P. kudriazevii YS201 leads principally to increasing pulp degradation and ethanol production, known as desirable properties for a well processing of cocoa fermentation.
Collapse
Affiliation(s)
- Honoré G. Ouattara
- Laboratory of Biotechnology, UFR Biosciences, University Felix Houphouet-Boigny, Abidjan, Cote d'Ivoire
- Department of Food Science, College of Agricultural Sciences, The Pennsylvania State University, United States
| | - Ryan J. Elias
- Department of Food Science, College of Agricultural Sciences, The Pennsylvania State University, United States
| | - Edward G. Dudley
- Department of Food Science, College of Agricultural Sciences, The Pennsylvania State University, United States
| |
Collapse
|
48
|
Utrilla-Vázquez M, Rodríguez-Campos J, Avendaño-Arazate CH, Gschaedler A, Lugo-Cervantes E. Analysis of volatile compounds of five varieties of Maya cocoa during fermentation and drying processes by Venn diagram and PCA. Food Res Int 2019; 129:108834. [PMID: 32036902 DOI: 10.1016/j.foodres.2019.108834] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 11/12/2019] [Accepted: 11/18/2019] [Indexed: 02/01/2023]
Abstract
Fermented cocoa beans can be described as a complex matrix that integrates the chemical history of beans, their processing, and environmental factors. This study presents an analysis that aims to identify volatile compounds of five varieties of fine-aroma cocoa types. The cocoa types studied were Carmelo, Rojo Samuel, Lagarto, Arcoiris, Regalo de Dios, that grow in the Maya lands of Chiapas, Mexico. Profile of volatile compounds was obtained from each cacao type during fermentation and drying process. This profile of volatile compounds also was compared with beans unfermented, using a statistical analysis of Venn diagram and a multivariate Analysis of Principal Components (PCA). One hundred nine different compounds were identified by SPME-HS GC-MS, these compounds mainly related to desirable aromatic notes generated by esters, aldehydes, ketones, and alcohols. The differences in chemical composition of the volatile compounds were associated mainly with the process and not to cocoa varieties. Fermented dry cocoa beans showed a higher content of esters, aldehydes, pyrazines, alcohols, some acids, and furans where Lagarto (CL), Rojo Samuel (CR), and Regalo de Dios (TRD) cocoas type showed a more interesting aromatic profile. On the other hand, as expected dry unfermented cocoas presented a few numbers of aroma compounds, in the five cacao types, where alcohols, ketones and hydrocarbons predominated.
Collapse
Affiliation(s)
- Marycarmen Utrilla-Vázquez
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Unidad de Tecnología Alimentaria, Camino Arenero 1227, El Bajío del Arenal, 45019 Guadalajara, Mexico
| | - Jacobo Rodríguez-Campos
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Unidad de Tecnología Alimentaria, Camino Arenero 1227, El Bajío del Arenal, 45019 Guadalajara, Mexico
| | - Carlos Hugo Avendaño-Arazate
- Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias-INIFAP, Campo experimental Rosario Izapa, Carretera Tapachula-Cacahoatán Km. 18, 30780 Rosario Izapa, Chiapas, Mexico
| | - Anne Gschaedler
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Unidad de Tecnología Alimentaria, Camino Arenero 1227, El Bajío del Arenal, 45019 Guadalajara, Mexico
| | - Eugenia Lugo-Cervantes
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Unidad de Tecnología Alimentaria, Camino Arenero 1227, El Bajío del Arenal, 45019 Guadalajara, Mexico.
| |
Collapse
|
49
|
Yang X, Hu W, Jiang A, Xiu Z, Ji Y, Guan Y, Sarengaowa, Yang X. Effect of salt concentration on quality of Chinese northeast sauerkraut fermented by Leuconostoc mesenteroides and Lactobacillus plantarum. FOOD BIOSCI 2019. [DOI: 10.1016/j.fbio.2019.100421] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
50
|
Dynamics of volatile compounds and flavor precursors during spontaneous fermentation of fine flavor Trinitario cocoa beans. Eur Food Res Technol 2019. [DOI: 10.1007/s00217-019-03307-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|