1
|
Zhang Y, Amin K, Zhang Q, Yu Z, Jing W, Wang Z, Lyu B, Yu H. The application of dietary fibre as microcapsule wall material in food processing. Food Chem 2025; 463:141195. [PMID: 39276558 DOI: 10.1016/j.foodchem.2024.141195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 08/11/2024] [Accepted: 09/06/2024] [Indexed: 09/17/2024]
Abstract
In the food industry, functional ingredients derived from active substances of natural sources and microbiological resources are gaining acceptance and demand due to their beneficial health properties. However, the inherent instability of these constituents poses a challenge in utilizing their functional properties. Microencapsulation with dietary fibre as wall material technology offers a promising solution, providing convenient manipulability and effective safeguarding of encapsulated substances. This paper presents a comprehensive overview of the current state of research on dietary fibre-based microcapsules in food processing. It examines their functional attributes, the preparation technology, and their applications within the food industry. Furthermore, the constraints associated with industrial production are discussed, as well as potential future developments. This article offers researchers a reference point and a theoretical basis for the selection of innovative food ingredients, the high-value utilisation of dietary fibre, and the design of conservation strategies for functional substances in food production.
Collapse
Affiliation(s)
- Ying Zhang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun 130118, China
| | - Khalid Amin
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun 130118, China
| | - Qiang Zhang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun 130118, China
| | - Ziyue Yu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun 130118, China
| | - Wendan Jing
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun 130118, China
| | - Zhaohui Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun 130118, China
| | - Bo Lyu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun 130118, China.
| | - Hansong Yu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun 130118, China.
| |
Collapse
|
2
|
Wang Z, Sun X, Xu X, Zhou D, Wen C. Effect of microencapsulated canthaxanthin and apo-ester on egg yolk color and antioxidant capacity in laying hens. Poult Sci 2024; 103:104302. [PMID: 39306952 PMCID: PMC11447402 DOI: 10.1016/j.psj.2024.104302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/24/2024] [Accepted: 09/03/2024] [Indexed: 10/06/2024] Open
Abstract
This study was conducted to evaluate the effects of common canthaxanthin (CC) or microencapsulated canthaxanthin (MC) combined with apo-ester (AE) on productive performance, egg yolk color and antioxidant capacity in laying hens. A total of 270 Hyline Brown laying hens at 56 wk of age were allocated to 3 groups with 6 replicates, and fed a wheat-soybean meal basal diet or the same diet supplemented with CC+AE or MC+AE at 5 mg/kg feed for each supplement. The productive performance was not affected by dietary treatments. The 2 test groups had higher (P < 0.05) yolk color score in fresh eggs than the control group, but the yolk color score of CC+AE group significantly declined (P < 0.05) with time, and a slight decline was also observed in the MC+AE group at 36 d. The MC+AE group had higher (P < 0.05) yolk color score of fried and boiled eggs than the other 2 groups. Higher (P < 0.05) feed canthaxanthin concentration was found in the MC+AE group at the end of experiment, which also had higher yolk canthaxanthin concentration in fresh eggs at 24 and 36 d as well as in fried, boiled and stored (4°C and 25°C) eggs. The 2 test groups had higher (P < 0.05) total antioxidant capacity in serum than the control group, and lower (P < 0.05) MDA content was observed in the MC+AE group. The mRNA level of cluster determinant 36 in jejunum was increased by the 2 test groups, and the same increase was also found in liver only in the MC+AE group. In conclusion, MC was more efficient in promoting yolk color and antioxidant capacity than CC when combined with AE.
Collapse
Affiliation(s)
- Zhaoping Wang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaowei Sun
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xinde Xu
- Department of Production and Technology, Zhejiang Medicine Co., Ltd Xinchang Pharmaceutical Factory, Shaoxing, 312500, China
| | - Di Zhou
- Department of Production and Technology, Zhejiang Medicine Co., Ltd Xinchang Pharmaceutical Factory, Shaoxing, 312500, China
| | - Chao Wen
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
3
|
da Silva AF, Moreira AF, Miguel SP, Coutinho P. Recent advances in microalgae encapsulation techniques for biomedical applications. Adv Colloid Interface Sci 2024; 333:103297. [PMID: 39226799 DOI: 10.1016/j.cis.2024.103297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 08/28/2024] [Indexed: 09/05/2024]
Abstract
Microalgae are microorganisms that are rich in bioactive compounds, including pigments, proteins, lipids, and polysaccharides. These compounds can be utilized for a number of biomedical purposes, including drug delivery, wound healing, and tissue engineering. Nevertheless, encapsulating microalgae cells and microalgae bioactive metabolites is vital to protect them and prevent premature degradation. This also enables the development of intelligent controlled release strategies for the bioactive compounds. This review outlines the most employed encapsulation techniques for microalgae, with a particular focus on their biomedical applications. These include ionic gelation, oil-in-water emulsions, and spray drying. Such techniques have been widely explored, due to their ability to protect sensitive compounds from degradation, enhance their stability, extend their shelf life, mask undesirable tastes or odours, control the release of bioactive compounds, and enable targeted delivery to specific sites within the body or environment. Moreover, a patent landscape analysis is also provided, allowing an overview of the microalgae encapsulation technology development applied to a variety of fields, including pharmaceuticals, cosmetics, food, and agriculture.
Collapse
Affiliation(s)
- Ana Freire da Silva
- BRIDGES - Biotechnology Research, Innovation, and Design of Health Products, Polytechnic of Guarda, Av. Dr. Francisco Sá Carneiro, 50, 6300-559 Guarda, Portugal
| | - André F Moreira
- BRIDGES - Biotechnology Research, Innovation, and Design of Health Products, Polytechnic of Guarda, Av. Dr. Francisco Sá Carneiro, 50, 6300-559 Guarda, Portugal
| | - Sónia P Miguel
- BRIDGES - Biotechnology Research, Innovation, and Design of Health Products, Polytechnic of Guarda, Av. Dr. Francisco Sá Carneiro, 50, 6300-559 Guarda, Portugal
| | - Paula Coutinho
- BRIDGES - Biotechnology Research, Innovation, and Design of Health Products, Polytechnic of Guarda, Av. Dr. Francisco Sá Carneiro, 50, 6300-559 Guarda, Portugal.
| |
Collapse
|
4
|
Yadav S, Malik K, Moore JM, Kamboj BR, Malik S, Malik VK, Arya S, Singh K, Mahanta S, Bishnoi DK. Valorisation of Agri-Food Waste for Bioactive Compounds: Recent Trends and Future Sustainable Challenges. Molecules 2024; 29:2055. [PMID: 38731546 PMCID: PMC11085133 DOI: 10.3390/molecules29092055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 04/23/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
Worldwide, a massive amount of agriculture and food waste is a major threat to the environment, the economy and public health. However, these wastes are important sources of phytochemicals (bioactive), such as polyphenols, carotenoids, carnitine, coenzymes, essential oils and tocopherols, which have antioxidant, antimicrobial and anticarcinogenic properties. Hence, it represents a promising opportunity for the food, agriculture, cosmetics, textiles, energy and pharmaceutical industries to develop cost effective strategies. The value of agri-food wastes has been extracted from various valuable bioactive compounds such as polyphenols, dietary fibre, proteins, lipids, vitamins, carotenoids, organic acids, essential oils and minerals, some of which are found in greater quantities in the discarded parts than in the parts accepted by the market used for different industrial sectors. The value of agri-food wastes and by-products could assure food security, maintain sustainability, efficiently reduce environmental pollution and provide an opportunity to earn additional income for industries. Furthermore, sustainable extraction methodologies like ultrasound-assisted extraction, pressurized liquid extraction, supercritical fluid extraction, microwave-assisted extraction, pulse electric field-assisted extraction, ultrasound microwave-assisted extraction and high hydrostatic pressure extraction are extensively used for the isolation, purification and recovery of various bioactive compounds from agri-food waste, according to a circular economy and sustainable approach. This review also includes some of the critical and sustainable challenges in the valorisation of agri-food wastes and explores innovative eco-friendly methods for extracting bioactive compounds from agri-food wastes, particularly for food applications. The highlights of this review are providing information on the valorisation techniques used for the extraction and recovery of different bioactive compounds from agricultural food wastes, innovative and promising approaches. Additionally, the potential use of these products presents an affordable alternative towards a circular economy and, consequently, sustainability. In this context, the encapsulation process considers the integral and sustainable use of agricultural food waste for bioactive compounds that enhance the properties and quality of functional food.
Collapse
Affiliation(s)
- Sujeeta Yadav
- Department of Microbiology, CCS Haryana Agricultural University, Hisar 125 004, India;
| | - Kamla Malik
- Department of Microbiology, CCS Haryana Agricultural University, Hisar 125 004, India;
| | - Janie McClurkin Moore
- Department of Biological and Agricultural Engineering (BAEN), College of Agriculture and Life Sciences (COALS), Texas A&M University, College Station, TX 77843, USA;
| | - Baldev Raj Kamboj
- Department of Agronomy, CCS Haryana Agricultural University, Hisar 125 004, India
| | - Shweta Malik
- Department of Agronomy, CCS Haryana Agricultural University, Hisar 125 004, India
| | - Vinod Kumar Malik
- Department of Plant Pathology, CCS Haryana Agricultural University, Hisar 125 004, India
| | - Sandeep Arya
- Department of Forestry, CCS Haryana Agricultural University, Hisar 125 004, India
| | - Karmal Singh
- Department of Agronomy, CCS Haryana Agricultural University, Hisar 125 004, India
| | - Shikhadri Mahanta
- Department of Biological and Agricultural Engineering (BAEN), College of Agriculture and Life Sciences (COALS), Texas A&M University, College Station, TX 77843, USA;
| | - Dalip Kumar Bishnoi
- Department of Agricultural Economics, CCS Haryana Agricultural University, Hisar 125 004, India
| |
Collapse
|
5
|
Rodriguez-Amaya DB, Esquivel P, Meléndez-Martínez AJ. Comprehensive Update on Carotenoid Colorants from Plants and Microalgae: Challenges and Advances from Research Laboratories to Industry. Foods 2023; 12:4080. [PMID: 38002140 PMCID: PMC10670565 DOI: 10.3390/foods12224080] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/03/2023] [Accepted: 11/04/2023] [Indexed: 11/26/2023] Open
Abstract
The substitution of synthetic food dyes with natural colorants continues to be assiduously pursued. The current list of natural carotenoid colorants consists of plant-derived annatto (bixin and norbixin), paprika (capsanthin and capsorubin), saffron (crocin), tomato and gac fruit lycopene, marigold lutein, and red palm oil (α- and β-carotene), along with microalgal Dunaliella β-carotene and Haematococcus astaxanthin and fungal Blakeslea trispora β-carotene and lycopene. Potential microalgal sources are being sought, especially in relation to lutein, for which commercial plant sources are lacking. Research efforts, manifested in numerous reviews and research papers published in the last decade, have been directed to green extraction, microencapsulation/nanoencapsulation, and valorization of processing by-products. Extraction is shifting from conventional extraction with organic solvents to supercritical CO2 extraction and different types of assisted extraction. Initially intended for the stabilization of the highly degradable carotenoids, additional benefits of encapsulation have been demonstrated, especially the improvement of carotenoid solubility and bioavailability. Instead of searching for new higher plant sources, enormous effort has been directed to the utilization of by-products of the fruit and vegetable processing industry, with the application of biorefinery and circular economy concepts. Amidst enormous research activities, however, the gap between research and industrial implementation remains wide.
Collapse
Affiliation(s)
- Delia B. Rodriguez-Amaya
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas 13083-862, SP, Brazil
| | - Patricia Esquivel
- Centro Nacional de Ciencia y Tecnología (CITA), Universidad de Costa Rica, San José 11501, Costa Rica;
- Escuela de Tecnología de Alimentos, Universidad de Costa Rica, San José 11501, Costa Rica
| | | |
Collapse
|
6
|
Milivojević M, Popović A, Pajić-Lijaković I, Šoštarić I, Kolašinac S, Stevanović ZD. Alginate Gel-Based Carriers for Encapsulation of Carotenoids: On Challenges and Applications. Gels 2023; 9:620. [PMID: 37623075 PMCID: PMC10454207 DOI: 10.3390/gels9080620] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/22/2023] [Accepted: 07/25/2023] [Indexed: 08/26/2023] Open
Abstract
Sodium alginate is one of the most interesting and the most investigated and applied biopolymers due to its advantageous properties. Among them, easy, simple, mild, rapid, non-toxic gelation by divalent cations is the most important. In addition, it is abundant, low-cost, eco-friendly, bio-compatible, bio-adhesive, biodegradable, stable, etc. All those properties were systematically considered within this review. Carotenoids are functional components in the human diet with plenty of health benefits. However, their sensitivity to environmental and process stresses, chemical instability, easy oxidation, low water solubility, and bioavailability limit their food and pharmaceutical applications. Encapsulation may help in overcoming these limitations and within this review, the role of alginate-based encapsulation systems in improving the stability and bioavailability of carotenoids is explored. It may be concluded that all alginate-based systems increase carotenoid stability, but only those of micro- and nano-size, as well as emulsion-based, may improve their low bioaccessibility. In addition, the incorporation of other biopolymers may further improve encapsulation system properties. Furthermore, the main techniques for evaluating the encapsulation are briefly considered. This review critically and profoundly explains the role of alginates in improving the encapsulation process of carotenoids, suggesting the best alternatives for those systems. Moreover, it provides a comprehensive cover of recent advances in this field.
Collapse
Affiliation(s)
- Milan Milivojević
- Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11120 Belgrade, Serbia
| | - Aleksandra Popović
- Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11120 Belgrade, Serbia
| | - Ivana Pajić-Lijaković
- Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11120 Belgrade, Serbia
| | - Ivan Šoštarić
- Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia
| | - Stefan Kolašinac
- Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia
| | | |
Collapse
|
7
|
Rosa AD, Secco MC, De Cezaro AM, Fischer B, Cansian RL, Junges A, Franceschi E, Backes GT, Valduga E. Encapsulation of olive leaf (Olea europaea) extract using solution-enhanced dispersion by supercritical fluids (SEDS) technique. J Supercrit Fluids 2023. [DOI: 10.1016/j.supflu.2023.105922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
8
|
Procopio FR, Klettenhammer S, Ferrentino G, Scampicchio M, do Amaral Sobral PJ, Hubinger MD. Comparative Study of Cinnamon and Paprika Oleoresins Encapsulated by Spray Chilling and Particles from Gas Saturated Solutions Techniques: Evaluation of Physical Characteristics and Oleoresins Release in Food Simulated Media. FOOD BIOPROCESS TECH 2023. [DOI: 10.1007/s11947-023-03058-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
AbstractIn this study, cinnamon and paprika oleoresins were encapsulated by two technologies, respectively, spray chilling and particles from gas saturated solutions. Both technologies used palm oil as wall materials. The physical characteristics of the microparticles were compared as well as the oleoresins release behavior in high- and low-fat simulated food media. The spray chilling microparticles had an average diameter of 143.7 ± 1.5 µm, spherical shape, smooth surface, and passable flow property. In contrast, microparticles obtained by particles from gas saturated solutions (PGSS) showed an average diameter of 105.7 ± 0.6 µm, irregular shape, porous surface, poor flow property but higher encapsulation efficiency. In evaluating the compounds released in a simulated food medium, the spray chilling particles delivered 30.7%, while PGSS reached 23.1% after 1 h. Both microparticles well fitted the Kosmeyer-Peppas (R2 = 0.98 and 0.96 for spray chilling and PGSS) and Peppas-Sahlin models (R2 = 0.98 and 0.97 for spray chilling and PGSS). However, spray chilling microparticles showed a diffusion mechanism, while for PGSS ones erosion was the main mechanism. Despite the different physical characteristics, both microparticles proved to be possible facilitators in delivering oleoresins in food products.
Collapse
|
9
|
Saberi Riseh R, Hassanisaadi M, Vatankhah M, Kennedy JF. Encapsulating biocontrol bacteria with starch as a safe and edible biopolymer to alleviate plant diseases: A review. Carbohydr Polym 2023; 302:120384. [PMID: 36604062 DOI: 10.1016/j.carbpol.2022.120384] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022]
Abstract
Healthy foods with few artificial additives are in high demand among consumers. Preserving conventional pesticides, frequently used as chemicals to control phytopathogens, is challenging. Therefore, we proposed an innovative approach to protect agricultural products in this review. Biocontrol bacteria are safe alternatives with low stability and low efficiency in the free-form formulation. The encapsulation technique for covering active compounds (e.g., antimicrobials) represents a more efficient protection technology because encapsulation causes the controlled release of bioactive materials and reduces the application doses. Of the biopolymers able to form a capsule, starch exhibits several advantages, such as its ready availability, cost-effectively, edible, colorless, and tasteless. Nevertheless, the poor mechanical properties of starch can be improved with other edible biopolymers. In addition, applying formulations incorporated with more than one antimicrobial material offers synergistic effects. This review presented the starch-based capsules used to enclose antimicrobial agents as effective tools against phytopathogens.
Collapse
Affiliation(s)
- Roohallah Saberi Riseh
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Imam Khomeini Square, Rafsanjan 7718897111, Iran.
| | - Mohadeseh Hassanisaadi
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Imam Khomeini Square, Rafsanjan 7718897111, Iran; Department of Plant Protection, Faculty of Agriculture, Shahid Bahonar University of Kerman, 7618411764 Kerman, Iran
| | - Masoumeh Vatankhah
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Imam Khomeini Square, Rafsanjan 7718897111, Iran
| | - John F Kennedy
- Chembiotech Laboratories Ltd, WR15 8FF Tenbury Wells, United Kingdom.
| |
Collapse
|
10
|
González-Peña MA, Ortega-Regules AE, Anaya de Parrodi C, Lozada-Ramírez JD. Chemistry, Occurrence, Properties, Applications, and Encapsulation of Carotenoids-A Review. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12020313. [PMID: 36679026 PMCID: PMC9865331 DOI: 10.3390/plants12020313] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 12/30/2022] [Accepted: 01/04/2023] [Indexed: 05/13/2023]
Abstract
Carotenoids are natural lipophilic pigments and antioxidants that are present in many fruits and vegetables. The consumption of carotenoids is correlated with positive health effects and a decreased risk of several chronic diseases. Provitamin A carotenoids (β-carotene, α-carotene, γ-carotene, and β-cryptoxanthin) are essential for the development and maintenance of sight. β-carotene, α-carotene, zeaxanthin, β-cryptoxanthin, lutein, and lycopene have high antioxidant activity and promote free radical scavenging, which helps protect against chronic diseases. However, carotenoids are chemically unstable and prone to oxidation in the presence of light, heat, oxygen, acids, and metal ions. The use of carotenoids in the food industry is limited due to their poor solubility in water, bioavailability and quick release. Encapsulation techniques, such as microencapsulation, nanoencapsulation and supercritical encapsulation, are used to overcome these problems. The objective of this paper is to describe the characteristics and potential health benefits of carotenoids and advances in encapsulation techniques for protecting and enhancing their solubility or bioavailability.
Collapse
Affiliation(s)
- Marco Antonio González-Peña
- Departmennt of Chemical, Food and Environmental Engineerig, Universidad de las Américas Puebla, Cholula, Puebla 72810, Mexico
| | - Ana Eugenia Ortega-Regules
- Department of Health Sciences, Universidad de las Américas Puebla, Cholula, Puebla 72810, Mexico
- Correspondence: (A.E.O.-R.); (C.A.d.P.); (J.D.L.-R.)
| | - Cecilia Anaya de Parrodi
- Department of Chemical and Biological Sciences, Universidad de las Américas Puebla, Cholula, Puebla 72810, Mexico
- Correspondence: (A.E.O.-R.); (C.A.d.P.); (J.D.L.-R.)
| | - José Daniel Lozada-Ramírez
- Department of Chemical and Biological Sciences, Universidad de las Américas Puebla, Cholula, Puebla 72810, Mexico
- Correspondence: (A.E.O.-R.); (C.A.d.P.); (J.D.L.-R.)
| |
Collapse
|
11
|
Homayoonfal M, Malekjani N, Baeghbali V, Ansarifar E, Hedayati S, Jafari SM. Optimization of spray drying process parameters for the food bioactive ingredients. Crit Rev Food Sci Nutr 2022; 64:5631-5671. [PMID: 36547397 DOI: 10.1080/10408398.2022.2156976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Spray drying (SD) is one of the most important thermal processes used to produce different powders and encapsulated materials. During this process, quality degradation might happen. The main objective of applying optimization methods in SD processes is maximizing the final nutritional quality of the product besides sensory attributes. Optimization regarding economic issues might be also performed. Applying optimization approaches in line with mathematical models to predict product changes during thermal processes such as SD can be a promising method to enhance the quality of final products. In this review, the application of the response surface methodology (RSM), as the most widely used approach, is introduced along with other optimization techniques such as factorial, Taguchi, and some artificial intelligence-based methods like artificial neural networks (ANN), genetic algorithms (GA), Fuzzy logic, and adaptive neuro-fuzzy inference system (ANFIS). Also, probabilistic methods such as Monte Carlo are briefly introduced. Some recent case studies regarding the implementation of these methods in SD processes are also exemplified and discussed.
Collapse
Affiliation(s)
- Mina Homayoonfal
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Narjes Malekjani
- Department of Food Science and Technology, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran
| | - Vahid Baeghbali
- Department of Food Hygiene and Quality Control, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Elham Ansarifar
- Department of Public Health, Faculty of Health, Birjand University of Medical Sciences, Birjand, Iran
| | - Sara Hedayati
- Nutrition Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
- Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, Nutrition and Bromatology Group, Ourense, Spain
- College of Food Science and Technology, Hebei Agricultural University, Baoding, China
| |
Collapse
|
12
|
Yan C, Kim SR, Ruiz DR, Farmer JR. Microencapsulation for Food Applications: A Review. ACS APPLIED BIO MATERIALS 2022; 5:5497-5512. [PMID: 36395471 DOI: 10.1021/acsabm.2c00673] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Food products contain various active ingredients, such as flavors, nutrients, unsaturated fatty acids, color, probiotics, etc., that require protection during food processing and storage to preserve their quality and shelf life. This review provides an overview of standard microencapsulation technologies, processes, materials, industrial examples, reasons for market success, a summary of recent applications, and the challenges in the food industry, categorized by active food ingredients: flavors, polyunsaturated fatty acids, probiotics, antioxidants, colors, vitamins, and others. We also provide a comprehensive analysis of the advantages and disadvantages of the most common microencapsulation technologies in the food industry such as spray drying, coacervation, extrusion, and spray cooling. This review ends with future perspectives on microencapsulation for food applications.
Collapse
Affiliation(s)
- Cuie Yan
- Division of Encapsulation, Blue California, Rancho Santa Margarita, California 92688, United States
| | - Sang-Ryoung Kim
- Division of Encapsulation, Blue California, Rancho Santa Margarita, California 92688, United States
| | - Daniela R Ruiz
- Division of Encapsulation, Blue California, Rancho Santa Margarita, California 92688, United States
| | - Jordan R Farmer
- Division of Encapsulation, Blue California, Rancho Santa Margarita, California 92688, United States
| |
Collapse
|
13
|
Thakur M, Modi VK. Biocolorants in food: Sources, extraction, applications and future prospects. Crit Rev Food Sci Nutr 2022; 64:4674-4713. [PMID: 36503345 DOI: 10.1080/10408398.2022.2144997] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Color of a food is one of the major factors influencing its acceptance by consumers. At presently synthetic dyes are the most commonly used food colorant in food industry by providing more esthetically appearance and as a means to quality control. However, the growing concern about health and environmental due to associated toxicity with synthetic food colorants has accelerated the global efforts to replace them with safer and healthy food colorants obtained from natural resources (plants, microorganisms, and animals). Further, many of these biocolorants not only provide myriad of colors to the food but also exert biological properties, thus they can be used as nutraceuticals in foods and beverages. In order to understand the importance of nature-derived pigments as food colorants, this review provides a thorough discussion on the natural origin of food colorants. Following this, different extraction methods for isolating biocolorants from plants and microbes were also discussed. Many of these biocolorants not only provide color, but also have many health promoting properties, for this reason their physicochemical and biological properties were also reviewed. Finally, current trends on the use of biocolorants in foods, and the challenges faced by the biocolorants in their effective utilization by food industry and possible solutions to these challenges were discussed.
Collapse
Affiliation(s)
- Monika Thakur
- Amity Institute of Food Technology, Amity University, Noida, Uttar Pradesh, India
| | - V K Modi
- Amity Institute of Food Technology, Amity University, Noida, Uttar Pradesh, India
| |
Collapse
|
14
|
Xue J, Lu Y, Zou T, Shi W, Wang S, Cheng X, Wan J, Chen Y, Wang M, Wang Q, Yang X, Ding M, Qi Z, Ding Y, Hu M, Zhang X, Li H, Hu Y. A protein- and fiber-rich diet with astaxanthin alleviates high-fat diet-induced obesity in beagles. Front Nutr 2022; 9:1019615. [DOI: 10.3389/fnut.2022.1019615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/30/2022] [Indexed: 11/13/2022] Open
Abstract
Background and aimsOverweight or obesity is one of the most prevalent health burdens in companion pets and predisposes subjects to multiple comorbidities and reduced longevity. Dietary management and sufficient exercise are effective options for weight loss but challenged by modern lifestyle and calorie control-triggered malnutrition. Therefore, this study aimed to develop a formulated obesity control diet characterized by protein- and fiber-rich diet and supplemented with astaxanthin. We systemically evaluated global influences of the designed weight-loss diet on metabolic homeostasis in an obese beagle model.Materials and methodsBeagles were induced for obesity by a 24-week HFD treatment and then included into weight-loss programs. Briefly, obese beagles were randomly assigned to two groups that were fed with a formulated weight-loss diet or control diet, respectively. Body weight and body condition scoring (BCS) were analyzed biweekly. Computed tomography (CT), nuclear magnetic resonance imaging (MRI) measurements, and blood and adipose tissue biopsies were collected at 0 and 8 weeks. Plasma lipids and adipocyte size were also measured after 8 weeks of weight-loss diet feeding. The global influence of the formulated diet on the whole spectrum of gene panels were examined by adipose RNA assays.ResultsTwenty-four weeks of continuous HFD feeding significantly induced obesity in beagles, as evidenced by increased body weight, BCS, abdominal fat mass, and serum lipid levels. The obese and metabolic condition of the modeled canine were effectively improved by an 8-week weight-loss diet administration. Importantly, we did not observe any side effects during the weight loss duration. Transcriptional analysis of adipose tissues further supported that a weight-loss diet significantly increased energy metabolism-related pathways and decreased lipid synthesis-related pathways.ConclusionThe prescribed weight-loss diet exhibited profound benefits in canine weight management with well safety and palatability. These findings support effective strategies of nutritional management and supplementation approaches for weight control in companion animals.
Collapse
|
15
|
Encapsulation of Bioactive Compounds for Food and Agricultural Applications. Polymers (Basel) 2022; 14:polym14194194. [PMID: 36236142 PMCID: PMC9571964 DOI: 10.3390/polym14194194] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/21/2022] [Accepted: 09/29/2022] [Indexed: 02/06/2023] Open
Abstract
This review presents an updated scenario of findings and evolutions of encapsulation of bioactive compounds for food and agricultural applications. Many polymers have been reported as encapsulated agents, such as sodium alginate, gum Arabic, chitosan, cellulose and carboxymethylcellulose, pectin, Shellac, xanthan gum, zein, pullulan, maltodextrin, whey protein, galactomannan, modified starch, polycaprolactone, and sodium caseinate. The main encapsulation methods investigated in the study include both physical and chemical ones, such as freeze-drying, spray-drying, extrusion, coacervation, complexation, and supercritical anti-solvent drying. Consequently, in the food area, bioactive peptides, vitamins, essential oils, caffeine, plant extracts, fatty acids, flavonoids, carotenoids, and terpenes are the main compounds encapsulated. In the agricultural area, essential oils, lipids, phytotoxins, medicines, vaccines, hemoglobin, and microbial metabolites are the main compounds encapsulated. Most scientific investigations have one or more objectives, such as to improve the stability of formulated systems, increase the release time, retain and protect active properties, reduce lipid oxidation, maintain organoleptic properties, and present bioactivities even in extreme thermal, radiation, and pH conditions. Considering the increasing worldwide interest for biomolecules in modern and sustainable agriculture, encapsulation can be efficient for the formulation of biofungicides, biopesticides, bioherbicides, and biofertilizers. With this review, it is inferred that the current scenario indicates evolutions in the production methods by increasing the scales and the techno-economic feasibilities. The Technology Readiness Level (TRL) for most of the encapsulation methods is going beyond TRL 6, in which the knowledge gathered allows for having a functional prototype or a representative model of the encapsulation technologies presented in this review.
Collapse
|
16
|
Shanmugham V, Subban R. Capsanthin from Capsicum annum fruits exerts anti-glaucoma, antioxidant, anti-inflammatory activity, and corneal pro-inflammatory cytokine gene expression in a benzalkonium chloride-induced rat dry eye model. J Food Biochem 2022; 46:e14352. [PMID: 35892258 DOI: 10.1111/jfbc.14352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/29/2022] [Accepted: 06/17/2022] [Indexed: 11/28/2022]
Abstract
Dry eye disease (DED) is a complex ocular surface inflammatory disease. Its occurrence varies widely over the world, ranging from 5% to 34%. The use of preservatives, specifically benzalkonium chloride, in the ocular drops worsens the DED conditions. Furthermore, the Covid-19 pandemic increased screen time and the use of face masks and shields. As a result, the number of people suffering from dry eye disease (DED) has increased significantly in recent years. The main objective of our study is to find a solution to manage the dry eye disease (DED) preferably from natural source without any adverse events. In this study, the beneficial effects of capsanthin from Capsicum annum (CCA) were evaluated on benzalkonium chloride (BAC)-induced dry eye disease (DED) in Albino Wistar rats. Oral supplementation of CCA resulted in a statistically significant decrease in intraocular pressure (IOP) (p < .0001), increase in tear break-up time (TBUT) (p < .01), decline in Schirmer test results (p < .01), and decrease in corneal surface inflammation (p < .01). Capsanthin ameliorated in reducing oxidative stress by increasing serum antioxidant levels such as glutathione peroxidase (GPX), nitric oxide (NO), and lactoferrin (LTF) and inhibiting matrix metalloproteinases 2 and 9 (MMP2 and MMP9) (p < .0001). Capsanthin treatment significantly inhibited the expression of inflammatory cytokines, tumor necrosis factor-alpha (TNF-α), interleukins (IL-2, IL-4, IL-6), and pro-inflammatory mediator, matrix metalloproteinase-9 (MMP9). Furthermore, the lacrimal gland expressed vascular cell adhesion molecule (VCAM-1), and prostaglandin-endoperoxide synthase 2 (PTGS2) was suppressed by CCA treatment. PRACTICAL APPLICATIONS: Benzalkonium chloride (BAC), a preservative widely used in the topical ocular drug delivery system (ODDS), causes undesirable effects such as dry eye disease as well as ameliorating intraocular pressure leading to optical nerve damage and irreversible vision loss. Capsanthin from Capsicum annum (CCA) can be used to treat symptoms related to dry eye disease such as inflammation, eye irritation, visual disturbance, ocular discomfort with potential damage to the ocular surface. The CCA may be beneficial in the treatment of glaucoma, an elevated intraocular pressure. Capsanthin from C. annum can be useful in managing DED by increasing tear break-up time (TBUT), declining in Schirmer test results and decreasing in corneal surface inflammation.
Collapse
Affiliation(s)
| | - Ravi Subban
- Department of Chemistry, Karpagam Academy of Higher Education, Coimbatore, India
| |
Collapse
|
17
|
Ding Z, Wang X, Wang L, Zhao Y, Liu M, Liu W, Han J, Prakash S, Wang Z. Characterisation of spray dried microencapsules with amorphous lutein nanoparticles: Enhancement of processability, dissolution rate, and storage stability. Food Chem 2022; 383:132200. [DOI: 10.1016/j.foodchem.2022.132200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 01/10/2022] [Accepted: 01/17/2022] [Indexed: 12/16/2022]
|
18
|
Technologies for Solubility, Dissolution and Permeation Enhancement of Natural Compounds. Pharmaceuticals (Basel) 2022; 15:ph15060653. [PMID: 35745572 PMCID: PMC9227247 DOI: 10.3390/ph15060653] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/13/2022] [Accepted: 05/14/2022] [Indexed: 12/10/2022] Open
Abstract
The current review is based on the advancements in the field of natural therapeutic agents which could be utilized for a variety of biomedical applications and against various diseases and ailments. In addition, several obstacles have to be circumvented to achieve the desired therapeutic effectiveness, among which limited dissolution and/or solubility and permeability are included. To counteract these issues, several advancements in the field of natural therapeutic substances needed to be addressed. Therefore, in this review, the possible techniques for the dissolution/solubility and permeability improvements have been addressed which could enhance the dissolution and permeability up to several times. In addition, the conventional and modern isolation and purification techniques have been emphasized to achieve the isolation and purification of single or multiple therapeutic constituents with convenience and smarter approaches. Moreover, a brief overview of advanced natural compounds with multiple therapeutic effectiveness have also been anticipated. In brief, enough advancements have been carried out to achieve safe, effective and economic use of natural medicinal agents with improved stability, handling and storage.
Collapse
|
19
|
Influence of Fermentation Beetroot Juice Process on the Physico-Chemical Properties of Spray Dried Powder. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27031008. [PMID: 35164290 PMCID: PMC8840475 DOI: 10.3390/molecules27031008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/30/2022] [Accepted: 01/31/2022] [Indexed: 01/25/2023]
Abstract
Picking vegetables is, along with salting and drying, one of the oldest ways to preserve food in the world. This is the process of decomposition of simple sugars into lactic acid with the participation of lactic bacteria. The aim of the study was to obtain powders from fermented red beet juice with the highest possible amount of lactic acid bacteria (LAB) and active ingredients. For the analysis, juices were squeezed from the vegetables and two types of fermentation were used: a spontaneous fermentation and a dedicated one. After inoculation, samples were taken for analysis on a daily basis. Extract, pH, total acidity, pigments, and color were measured. In addition, microbiological tests were also carried out. The juices from the fifth day of fermentation was also spray dried, to obtain fermented beetroot powder. Juices from 3–5th day were characterized by a high content of LAB and betanin, had also a low pH, which proves that the lactic fermentation is working properly. The exception was the juice from spontaneous fermentation. According to the observations, the fermentation process did not run properly, and further analysis is needed. The powders were stable; however, results obtained from the pigment content and the LAB content are not satisfactory and require further analysis.
Collapse
|
20
|
High-pressure fluid technologies: Recent approaches to the production of natural pigments for food and pharmaceutical applications. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.11.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
21
|
Lima PM, Dacanal GC, Pinho LS, Pérez-Córdoba LJ, Thomazini M, Moraes ICF, Favaro-Trindade CS. Production of a rich-carotenoid colorant from pumpkin peels using oil-in-water emulsion followed by spray drying. Food Res Int 2021; 148:110627. [PMID: 34507771 DOI: 10.1016/j.foodres.2021.110627] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 07/14/2021] [Accepted: 07/20/2021] [Indexed: 11/17/2022]
Abstract
Peels and seeds are byproducts generated during the processing of fruits and vegetables that have been cut off or rejected in the food industry. Pumpkin peels are an example of products that provide valuable nutritional aspects but that have low commercial value. This work aimed at recovering carotenoids from pumpkin peels to produce valuable powders. The pumpkin peel flour was obtained from convective drying and milling processes. Liquid-solid extraction produced the ethanol raw extract with a high carotenoid content. Carotenoid extract and Arabic gum suspensions were mixed in proportions of 1:2, 1:3, or 1:4 w/w. Emulsions produced via Ultra-Turrax (UT) and Ultra-Turrax plus high pressure (UTHP) were evaluated and spray dried. The particles carotenoid concentrations varied from 159.1 to 304.6 µg/g and from 104.3 to 346.2 µg/g for samples primarily produced via UT and UTHP, respectively. UTHP 1:3 particles showed the lowest degradation of carotenoids during 90 days of storage, with a retention index of 79%. The homogenization and spray drying techniques were proven to be suitable steps to preserve the carotenoids recovered from the byproduct studied. Microparticles can be used as a natural dye with potential use in food, pharmaceuticals, and cosmetics.
Collapse
Affiliation(s)
- Priscilla M Lima
- Universidade de São Paulo, Faculdade de Zootecnia e Engenharia de Alimentos, Av. Duque de Caxias Norte, 225, CEP 13635-900 Pirassununga, São Paulo, Brazil.
| | - Gustavo C Dacanal
- Universidade de São Paulo, Faculdade de Zootecnia e Engenharia de Alimentos, Av. Duque de Caxias Norte, 225, CEP 13635-900 Pirassununga, São Paulo, Brazil
| | - Lorena Silva Pinho
- Universidade de São Paulo, Faculdade de Zootecnia e Engenharia de Alimentos, Av. Duque de Caxias Norte, 225, CEP 13635-900 Pirassununga, São Paulo, Brazil
| | - Luis Jaime Pérez-Córdoba
- Universidade de São Paulo, Faculdade de Zootecnia e Engenharia de Alimentos, Av. Duque de Caxias Norte, 225, CEP 13635-900 Pirassununga, São Paulo, Brazil
| | - Marcelo Thomazini
- Universidade de São Paulo, Faculdade de Zootecnia e Engenharia de Alimentos, Av. Duque de Caxias Norte, 225, CEP 13635-900 Pirassununga, São Paulo, Brazil
| | - Izabel Cristina Freitas Moraes
- Universidade de São Paulo, Faculdade de Zootecnia e Engenharia de Alimentos, Av. Duque de Caxias Norte, 225, CEP 13635-900 Pirassununga, São Paulo, Brazil
| | - Carmen S Favaro-Trindade
- Universidade de São Paulo, Faculdade de Zootecnia e Engenharia de Alimentos, Av. Duque de Caxias Norte, 225, CEP 13635-900 Pirassununga, São Paulo, Brazil
| |
Collapse
|
22
|
Trombino S, Cassano R, Procopio D, Di Gioia ML, Barone E. Valorization of Tomato Waste as a Source of Carotenoids. Molecules 2021; 26:molecules26165062. [PMID: 34443647 PMCID: PMC8398759 DOI: 10.3390/molecules26165062] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 11/16/2022] Open
Abstract
Fast-accumulating scientific evidence from many studies has revealed that fruits and vegetables are the main source of bioactive compounds; in most cases, wastes and byproducts generated by the food processing industry present similar or a higher content of antioxidant compounds. In recent years, the ever-growing amount of agricultural and food wastes has raised serious concerns from an environmental point of view. Therefore, there is an increasing interest in finding new ways for their processing toward safely upgrading these wastes for recovering high-value-added products with a sustainable approach. Among food waste, the abundance of bioactive compounds in byproducts derived from tomato suggests possibility of utilizing them as a low-cost source of antioxidants as functional ingredients. This contribution gives an overview of latest studies on the extraction methods of carotenoids from tomato waste, along with an evaluation of their antioxidant activity, as well as their industrial applications.
Collapse
Affiliation(s)
- Sonia Trombino
- Department of Pharmacy and Health and Nutrition Sciences, Department of Excellence L. 232/2016, Edificio Polifunzionale, Università della Calabria, 87036 Rende, Italy; (S.T.); (R.C.); (D.P.)
| | - Roberta Cassano
- Department of Pharmacy and Health and Nutrition Sciences, Department of Excellence L. 232/2016, Edificio Polifunzionale, Università della Calabria, 87036 Rende, Italy; (S.T.); (R.C.); (D.P.)
| | - Debora Procopio
- Department of Pharmacy and Health and Nutrition Sciences, Department of Excellence L. 232/2016, Edificio Polifunzionale, Università della Calabria, 87036 Rende, Italy; (S.T.); (R.C.); (D.P.)
| | - Maria Luisa Di Gioia
- Department of Pharmacy and Health and Nutrition Sciences, Department of Excellence L. 232/2016, Edificio Polifunzionale, Università della Calabria, 87036 Rende, Italy; (S.T.); (R.C.); (D.P.)
- Correspondence: (M.L.D.G.); (E.B.); Tel.: +39-0984493095 (M.L.D.G.); +39-06-49910935 (E.B.)
| | - Eugenio Barone
- Department of Biochemical Sciences “A. Rossi-Fanelli”, Sapienza University of Rome, Piazzale Aldo Moro, 00185 Rome, Italy
- Correspondence: (M.L.D.G.); (E.B.); Tel.: +39-0984493095 (M.L.D.G.); +39-06-49910935 (E.B.)
| |
Collapse
|
23
|
Nowacka M, Dadan M, Janowicz M, Wiktor A, Witrowa-Rajchert D, Mandal R, Pratap-Singh A, Janiszewska-Turak E. Effect of nonthermal treatments on selected natural food pigments and color changes in plant material. Compr Rev Food Sci Food Saf 2021; 20:5097-5144. [PMID: 34402592 DOI: 10.1111/1541-4337.12824] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 06/21/2021] [Accepted: 07/12/2021] [Indexed: 12/01/2022]
Abstract
In recent years, traditional high-temperature food processing is continuously being replaced by nonthermal processes. Nonthermal processes have a positive effect on food quality, including color and maintaining natural food pigments. Thus, this article describes the influence of nonthermal, new, and traditional treatments on natural food pigments and color changes in plant materials. Characteristics of natural pigments, such as anthocyanins, betalains, carotenoids, chlorophylls, and so forth available in the plant tissue, are shortly presented. Also, the characteristics and mechanism of nonthermal processes such as pulsed electric field, ultrasound, high hydrostatic pressure, pulsed light, cold plasma, supercritical fluid extraction, and lactic acid fermentation are described. Furthermore, the disadvantages of these processes are mentioned. Each treatment is evaluated in terms of its effects on all types of natural food pigments, and the possible applications are discussed. Analysis of the latest literature showed that the use of nonthermal technologies resulted in better preservation of pigments contained in the plant tissue and improved yield of extraction. However, it is important to select the appropriate processing parameters and to optimize this process in relation to a specific type of raw material.
Collapse
Affiliation(s)
- Małgorzata Nowacka
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences - SGGW, Warsaw, Poland
| | - Magdalena Dadan
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences - SGGW, Warsaw, Poland
| | - Monika Janowicz
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences - SGGW, Warsaw, Poland
| | - Artur Wiktor
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences - SGGW, Warsaw, Poland
| | - Dorota Witrowa-Rajchert
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences - SGGW, Warsaw, Poland
| | - Ronit Mandal
- Food, Nutrition and Health Program, Faculty of Land and Food Systems (LFS), The University of British Columbia, Vancouver, British Columbia, Canada
| | - Anubhav Pratap-Singh
- Food, Nutrition and Health Program, Faculty of Land and Food Systems (LFS), The University of British Columbia, Vancouver, British Columbia, Canada
| | - Emilia Janiszewska-Turak
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences - SGGW, Warsaw, Poland
| |
Collapse
|
24
|
Santos PDDF, Rubio FTV, da Silva MP, Pinho LS, Favaro-Trindade CS. Microencapsulation of carotenoid-rich materials: A review. Food Res Int 2021; 147:110571. [PMID: 34399544 DOI: 10.1016/j.foodres.2021.110571] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 06/25/2021] [Accepted: 06/27/2021] [Indexed: 12/29/2022]
Abstract
Carotenoids are natural pigments that present several bioactive properties, including antioxidant, anticarcinogenic and provitamin A activities. However, these compounds are susceptible to degradation when exposed to a number of conditions (e.g. light, heat, oxygen), leading to loss of benefits and hampering their application in food products. Their hydrophobicity also makes incorporation into water-based foods more difficult. Microencapsulation techniques have been applied for decades to provide stability to carotenoid-rich extracts under typical conditions of processing and storage of foods, besides offering several other advantages to the use and application of these materials. This work reviews the recent advances in the microencapsulation of carotenoid-rich extracts, oils and oleoresins from varying sources, evidencing the technologies applied to encapsulate these materials, the effects of encapsulation on the obtained particles, and the impact of such processes on the bioaccessibility and release profile of carotenoids from microparticles. Moreover, recent applications of carotenoid-rich microparticles in food products are discussed. Most of the applied processes were effective in improving different aspects of the encapsulated materials, especially the stability of carotenoids during storage, resulting in microparticles with promising properties for future applications in food products. However, the lack of information about the effects of microencapsulation on carotenoids during processing of model foods, the sensory acceptance of enriched food products and the bioaccessibility and bioavailability of microencapsulated carotenoids reveals gaps that should be explored in the future.
Collapse
Affiliation(s)
- Priscila Dayane de Freitas Santos
- Universidade de São Paulo, Faculdade de Zootecnia e Engenharia de Alimentos, Departamento de Engenharia de Alimentos, Avenida Duque de Caxias Norte, 225 - 13635-900 Pirassununga, SP, Brazil.
| | - Fernanda Thaís Vieira Rubio
- Universidade de São Paulo, Faculdade de Zootecnia e Engenharia de Alimentos, Departamento de Engenharia de Alimentos, Avenida Duque de Caxias Norte, 225 - 13635-900 Pirassununga, SP, Brazil.
| | - Marluci Palazzolli da Silva
- Universidade de São Paulo, Faculdade de Zootecnia e Engenharia de Alimentos, Departamento de Engenharia de Alimentos, Avenida Duque de Caxias Norte, 225 - 13635-900 Pirassununga, SP, Brazil.
| | - Lorena Silva Pinho
- Universidade de São Paulo, Faculdade de Zootecnia e Engenharia de Alimentos, Departamento de Engenharia de Alimentos, Avenida Duque de Caxias Norte, 225 - 13635-900 Pirassununga, SP, Brazil.
| | - Carmen Sílvia Favaro-Trindade
- Universidade de São Paulo, Faculdade de Zootecnia e Engenharia de Alimentos, Departamento de Engenharia de Alimentos, Avenida Duque de Caxias Norte, 225 - 13635-900 Pirassununga, SP, Brazil.
| |
Collapse
|
25
|
Pinho LS, Silva MP, Thomazini M, Cooperstone JL, Campanella OH, Costa Rodrigues CE, Favaro‐Trindade CS. Guaraná (
Paullinia cupana
) by‐product as a source of bioactive compounds and as a natural antioxidant for food applications. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15854] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Lorena Silva Pinho
- Departamento de Engenharia de Alimentos Faculdade de Zootecnia e Engenharia de Alimentos Universidade de São Paulo São Paulo Brazil
- Department of Food Science and Technology College of Food, Agricultural, and Environmental Sciences Ohio State University Columbus OH USA
| | - Marluci Palazzolli Silva
- Departamento de Engenharia de Alimentos Faculdade de Zootecnia e Engenharia de Alimentos Universidade de São Paulo São Paulo Brazil
| | - Marcelo Thomazini
- Departamento de Engenharia de Alimentos Faculdade de Zootecnia e Engenharia de Alimentos Universidade de São Paulo São Paulo Brazil
| | - Jessica L. Cooperstone
- Department of Food Science and Technology College of Food, Agricultural, and Environmental Sciences Ohio State University Columbus OH USA
- Department of Horticulture and Crop Science College of Food, Agricultural, and Environmental Sciences Ohio State University Columbus OH USA
| | - Osvaldo H. Campanella
- Department of Food Science and Technology College of Food, Agricultural, and Environmental Sciences Ohio State University Columbus OH USA
| | | | - Carmen Sílvia Favaro‐Trindade
- Departamento de Engenharia de Alimentos Faculdade de Zootecnia e Engenharia de Alimentos Universidade de São Paulo São Paulo Brazil
| |
Collapse
|
26
|
Starch-based materials encapsulating food ingredients: Recent advances in fabrication methods and applications. Carbohydr Polym 2021; 270:118358. [PMID: 34364603 DOI: 10.1016/j.carbpol.2021.118358] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/28/2021] [Accepted: 06/15/2021] [Indexed: 11/22/2022]
Abstract
Encapsulation systems have gained significant interest in designing innovative foods, as they allow for the protection and delivery of food ingredients that have health benefits but are unstable during processing, storage and in the upper gastrointestinal tract. Starch is widely available, cheap, biodegradable, edible, and easy to be modified, thus highly suitable for the development of encapsulants. Much efforts have been made to fabricate various types of porous starch and starch particles using different techniques (e.g. enzymatic hydrolysis, aggregation, emulsification, electrohydrodynamic process, supercritical fluid process, and post-processing drying). Such starch-based systems can load, protect, and deliver various food ingredients (e.g. fatty acids, phenolic compounds, carotenoids, flavors, essential oils, irons, vitamins, probiotics, bacteriocins, co-enzymes, and caffeine), exhibiting great potentials in developing foods with tailored flavor, nutrition, sensory properties, and shelf-life. This review surveys recent advances in different aspects of starch-based encapsulation systems including their forms, manufacturing techniques, and applications in foods.
Collapse
|
27
|
Encapsulation of Carotenoids as Food Colorants via Formation of Cyclodextrin Inclusion Complexes: A Review. POLYSACCHARIDES 2021. [DOI: 10.3390/polysaccharides2020028] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The use of natural carotenoids as food colorants is an important trend of innovation in the industry due to their low toxicity, their potential as bio-functional ingredients, and the increasing demand for natural and organic foods. Despite these benefits, their inclusion in food matrices presents multiple challenges related to their low stability and low water solubility. The present review covers the main concepts and background of carotenoid inclusion complex formation in cyclodextrins as a strategy for their stabilization, and subsequent inclusion in food products as color additives. The review includes the key aspects of the molecular and physicochemical properties of cyclodextrins as complexing agents, and a detailed review of the published evidence on complex formation with natural carotenoids from different sources in cyclodextrins, comparing complex formation methodologies, recovery, inclusion efficiency, and instrumental characterization techniques. Moreover, process flow diagrams (PFD), based on the most promising carotenoid-cyclodextrin complex formation methodologies reported in literature, are proposed, and discussed as a potential tool for their future scale-up. This review shows that the inclusion of carotenoids in complexes with cyclodextrins constitutes a promising technology for the stabilization of these pigments, with possible advantages in terms of their stability in food matrices.
Collapse
|
28
|
Jiménez-González O, Guerrero-Beltrán JÁ. Extraction, Microencapsulation, Color Properties, and Experimental Design of Natural Pigments Obtained by Spray Drying. FOOD ENGINEERING REVIEWS 2021. [DOI: 10.1007/s12393-021-09288-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
29
|
Huang Y, Liang M, Sun L, Brennan CS, Liu D. Effect of microencapsulation on morphology, physicochemical properties and flavour profiles of solid yoghurt‐flavoured bases. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.14896] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Yan‐yan Huang
- School of Food Science and Engineering South China University of Technology Guangzhou Guangdong510640China
| | - Ming‐hua Liang
- School of Food Science and Engineering South China University of Technology Guangzhou Guangdong510640China
| | - Li‐na Sun
- School of Food Science and Engineering South China University of Technology Guangzhou Guangdong510640China
| | - Charles S. Brennan
- School of Food Science and Engineering South China University of Technology Guangzhou Guangdong510640China
- Department of Wine, Food and Molecular Biosciences Centre for Food Research and Innovation Lincoln University Lincoln85084New Zealand
| | - Dong‐mei Liu
- School of Food Science and Engineering South China University of Technology Guangzhou Guangdong510640China
| |
Collapse
|
30
|
Microencapsulation of Anthocyanins—Critical Review of Techniques and Wall Materials. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11093936] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Anthocyanins are value-added food ingredients that have health-promoting impacts and biological functionalities. Nevertheless, there are technological barriers to their application in the food industry, mainly because of their poor stability and susceptibility to harsh environmental conditions, such as oxygen, temperature, pH, and light, which could profoundly influence the final food product′s physicochemical properties. Microencapsulation technology is extensively investigated to enhance stability, bioaccessibility, and impart controlled release properties. There are many varieties of microencapsulation methods and diverse types of wall materials. However, choosing a proper approach involves considering the processing parameters, equipment availability, and application purposes. The present review thoroughly scrutinizes anthocyanins′ chemical structure, principles, benefits, and drawbacks of different microencapsulation methods, including spray drying, freeze drying, electrospinning/electrospraying, inclusion complexes, emulsification, liposomal systems, ionic gelation, and coacervation. Furthermore, wall materials applied in different techniques plus parameters that affect the powders′ encapsulation efficiency and physicochemical properties are discussed. Future studies should focus on various processing parameters and the combination of different techniques and applications regarding microencapsulated anthocyanins in functional foods to assess their stability, efficiency, and commercialization potentials.
Collapse
|
31
|
Tutek K, Masek A, Kosmalska A, Cichosz S. Application of Fluids in Supercritical Conditions in the Polymer Industry. Polymers (Basel) 2021; 13:729. [PMID: 33673482 PMCID: PMC7956827 DOI: 10.3390/polym13050729] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/15/2021] [Accepted: 02/24/2021] [Indexed: 11/24/2022] Open
Abstract
This article reviews the use of fluids under supercritical conditions in processes related to the modern and innovative polymer industry. The most important processes using supercritical fluids are: extraction, particle formation, micronization, encapsulation, impregnation, polymerization and foaming. This review article briefly describes and characterizes the individual processes, with a focus on extraction, micronization, particle formation and encapsulation. The methods mentioned focus on modifications in the scope of conducting processes in a more ecological manner and showing higher quality efficiency. Nowadays, due to the growing trend of ecological solutions in the chemical industry, we see more and more advanced technological solutions. Less toxic fluids under supercritical conditions can be used as an ecological alternative to organic solvents widely used in the polymer industry. The use of supercritical conditions to conduct these processes creates new opportunities for obtaining materials and products with specialized applications, in particular in the medical, pharmacological, cosmetic and food industries, based on substances of natural sources. The considerations contained in this article are intended to increase the awareness of the need to change the existing techniques. In particular, the importance of using supercritical fluids in more industrial methods and for the development of already known processes, as well as creating new solutions with their use, should be emphasized.
Collapse
Affiliation(s)
- Karol Tutek
- Institute of Polymer and Dye Technology, Faculty of Chemistry, Lodz University of Technology, Stefanowskiego 12/16, 90-924 Lodz, Poland
| | - Anna Masek
- Institute of Polymer and Dye Technology, Faculty of Chemistry, Lodz University of Technology, Stefanowskiego 12/16, 90-924 Lodz, Poland
| | - Anna Kosmalska
- Institute of Polymer and Dye Technology, Faculty of Chemistry, Lodz University of Technology, Stefanowskiego 12/16, 90-924 Lodz, Poland
| | - Stefan Cichosz
- Institute of Polymer and Dye Technology, Faculty of Chemistry, Lodz University of Technology, Stefanowskiego 12/16, 90-924 Lodz, Poland
| |
Collapse
|
32
|
Meléndez-Martínez AJ, Böhm V, Borge GIA, Cano MP, Fikselová M, Gruskiene R, Lavelli V, Loizzo MR, Mandić AI, Brahm PM, Mišan AČ, Pintea AM, Sereikaitė J, Vargas-Murga L, Vlaisavljević SS, Vulić JJ, O'Brien NM. Carotenoids: Considerations for Their Use in Functional Foods, Nutraceuticals, Nutricosmetics, Supplements, Botanicals, and Novel Foods in the Context of Sustainability, Circular Economy, and Climate Change. Annu Rev Food Sci Technol 2021; 12:433-460. [PMID: 33467905 DOI: 10.1146/annurev-food-062220-013218] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Carotenoids are versatile isoprenoids that are important in food quality and health promotion. There is a need to establish recommended dietary intakes/nutritional reference values for carotenoids. Research on carotenoids in agro-food and health is being propelled by the two multidisciplinary international networks, the Ibero-American Network for the Study of Carotenoids as Functional Foods Ingredients (IBERCAROT; http://www.cyted.org) and the European Network to Advance Carotenoid Research and Applications in Agro-Food and Health (EUROCAROTEN; http://www.eurocaroten.eu). In this review, considerations for their safe and sustainable use in products mostly intended for health promotion are provided. Specifically, information about sources, intakes, and factors affecting bioavailability is summarized. Furthermore, their health-promoting actions and importance in public health in relation to the contribution of reducing the risk of diverse ailments are synthesized. Definitions and regulatory and safety information for carotenoid-containing products are provided. Lastly, recent trends in research in the context of sustainable healthy diets are summarized.
Collapse
Affiliation(s)
- Antonio J Meléndez-Martínez
- Nutrition and Food Science, Toxicology and Legal Medicine Department, Universidad de Sevilla, 41012 Sevilla, Spain
| | - Volker Böhm
- Institute of Nutritional Sciences, Bioactive Plant Products Research Group, Friedrich-Schiller-Universität Jena, 07743 Jena, Germany
| | | | - M Pilar Cano
- Department of Biotechnology and Food Microbiology, Institute of Food Science Research (CIAL) (CSIC-UAM), 28049 Madrid, Spain
| | - Martina Fikselová
- Department of Food Hygiene and Safety, Slovak University of Agriculture in Nitra, 94976 Nitra, Slovakia
| | - Ruta Gruskiene
- Department of Chemistry and Bioengineering, Vilnius Gediminas Technical University, 10223 Vilnius, Lithuania
| | - Vera Lavelli
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, 20133 Milano, Italy
| | - Monica Rosa Loizzo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Anamarija I Mandić
- Institute of Food Technology in Novi Sad, University of Novi Sad, 21000 Novi Sad, Serbia;
| | - Paula Mapelli Brahm
- Nutrition and Food Science, Toxicology and Legal Medicine Department, Universidad de Sevilla, 41012 Sevilla, Spain
| | - Aleksandra Č Mišan
- Institute of Food Technology in Novi Sad, University of Novi Sad, 21000 Novi Sad, Serbia;
| | - Adela M Pintea
- Department of Chemistry and Biochemistry, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Jolanta Sereikaitė
- Department of Chemistry and Bioengineering, Vilnius Gediminas Technical University, 10223 Vilnius, Lithuania
| | | | - Sanja S Vlaisavljević
- Departmant of Chemistry, Biochemistry and Environmental Protection, Faculty of Natural Sciences, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Jelena J Vulić
- Department of Applied and Engineering Chemistry, Faculty of Technology, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Nora M O'Brien
- School of Food and Nutritional Sciences, University College Cork, T12 Cork, Ireland
| |
Collapse
|
33
|
Kawasoe H, Wakamatsu M, Hamada S, Arata Y, Nagayoshi K, Uchida R, Yamashita R, Kishita T, Yamanouchi H, Minami Y, Kajiya K. Analysis of natural colourant extracted from the pericarp of passion fruit. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110412] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
34
|
Xu P, Dai Z, Li D, Liu C, Wu C, Song J. Preparation, optimization, characterization, and in vitro bioaccessibility of a lutein microparticle using spray drying with β‐cyclodextrin and stevioside. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.15032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Peng‐Xiang Xu
- Department of Food Science and Technology College of Light Industry and Food Engineering Nanjing Forestry University Nanjing China
| | - Zhu‐Qing Dai
- Institute of Agro‐product Processing Jiangsu Academy of Agricultural Sciences Nanjing China
| | - Da‐Jing Li
- Institute of Agro‐product Processing Jiangsu Academy of Agricultural Sciences Nanjing China
| | - Chun‐Quan Liu
- Institute of Agro‐product Processing Jiangsu Academy of Agricultural Sciences Nanjing China
| | - Cai‐E. Wu
- Department of Food Science and Technology College of Light Industry and Food Engineering Nanjing Forestry University Nanjing China
- Co‐Innovation Center for Efficient Processing and Utilization of Forest Resources Nanjing Forestry University Nanjing China
| | - Jiang‐Feng Song
- Institute of Agro‐product Processing Jiangsu Academy of Agricultural Sciences Nanjing China
| |
Collapse
|
35
|
Janiszewska‐Turak E, Bąk P, Krzykowski A, Witrowa‐Rajchert D. The influence of the carrier addition and spray drying temperatures on physicochemical properties of microencapsulated carrot juice powder. Int J Food Sci Technol 2020. [DOI: 10.1111/ijfs.14908] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Emilia Janiszewska‐Turak
- Department of Food Engineering and Process Management Institute of Food Sciences Warsaw University of Life Sciences (SGGW) Nowoursynowska 159c Warsaw02‐776Poland
| | - Paulina Bąk
- Department of Food Engineering and Process Management Institute of Food Sciences Warsaw University of Life Sciences (SGGW) Nowoursynowska 159c Warsaw02‐776Poland
| | - Andrzej Krzykowski
- Department of Thermal Technology and Food Process Engineering University of Life Sciences in Lublin 31 Głęboka St. Lublin20‐612Poland
| | - Dorota Witrowa‐Rajchert
- Department of Food Engineering and Process Management Institute of Food Sciences Warsaw University of Life Sciences (SGGW) Nowoursynowska 159c Warsaw02‐776Poland
| |
Collapse
|
36
|
|
37
|
The impact of pulsed electric field pretreatment of bell pepper on the selected properties of spray dried juice. INNOV FOOD SCI EMERG 2020. [DOI: 10.1016/j.ifset.2020.102446] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
38
|
Menegazzi GDS, Teixeira EC, Pinto LADA, Burkert JFDM. Spray-Drying Microencapsulation of Carotenoids Produced by Phaffia rhodozyma. Ind Biotechnol (New Rochelle N Y) 2020. [DOI: 10.1089/ind.2020.0025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Guilherme da Silva Menegazzi
- Bioprocess Engineering Laboratory, School of Chemistry and Food, Federal University of Rio Grande, Rio Grande, Brazil
| | - Erika Carvalho Teixeira
- Bioprocess Engineering Laboratory, School of Chemistry and Food, Federal University of Rio Grande, Rio Grande, Brazil
| | - Luiz Antonio de Almeida Pinto
- Industrial Technology Laboratory, School of Chemistry and Food, Federal University of Rio Grande, Rio Grande, Brazil
| | | |
Collapse
|
39
|
Recent Advances in Astaxanthin Micro/Nanoencapsulation to Improve Its Stability and Functionality as a Food Ingredient. Mar Drugs 2020; 18:md18080406. [PMID: 32752203 PMCID: PMC7459837 DOI: 10.3390/md18080406] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 07/26/2020] [Accepted: 07/28/2020] [Indexed: 12/12/2022] Open
Abstract
Astaxanthin is a carotenoid produced by different organisms and microorganisms such as microalgae, bacteria, yeasts, protists, and plants, and it is also accumulated in aquatic animals such as fish and crustaceans. Astaxanthin and astaxanthin-containing lipid extracts obtained from these sources present an intense red color and a remarkable antioxidant activity, providing great potential to be employed as food ingredients with both technological and bioactive functions. However, their use is hindered by: their instability in the presence of high temperatures, acidic pH, oxygen or light; their low water solubility, bioaccessibility and bioavailability; their intense odor/flavor. The present paper reviews recent advances in the micro/nanoencapsulation of astaxanthin and astaxanthin-containing lipid extracts, developed to improve their stability, bioactivity and technological functionality for use as food ingredients. The use of diverse micro/nanoencapsulation techniques using wall materials of a different nature to improve water solubility and dispersibility in foods, masking undesirable odor and flavor, is firstly discussed, followed by a discussion of the importance of the encapsulation to retard astaxanthin release, protecting it from degradation in the gastrointestinal tract. The nanoencapsulation of astaxanthin to improve its bioaccessibility, bioavailability and bioactivity is further reviewed. Finally, the main limitations and future trends on the topic are discussed.
Collapse
|
40
|
Improved encapsulation efficiency and storage stability of spray dried microencapsulated lutein with carbohydrates combinations as encapsulating material. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109139] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
41
|
Ding Z, Tao T, Wang X, Prakash S, Zhao Y, Han J, Wang Z. Influences of different carbohydrates as wall material on powder characteristics, encapsulation efficiency, stability and degradation kinetics of microencapsulated lutein by spray drying. Int J Food Sci Technol 2020. [DOI: 10.1111/ijfs.14544] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Zhuang Ding
- Institute of Biopharmaceutical Research Liaocheng University Liaocheng 252059 China
| | - Tao Tao
- Institute of Biopharmaceutical Research Liaocheng University Liaocheng 252059 China
| | - Xiao Wang
- Institute of Biopharmaceutical Research Liaocheng University Liaocheng 252059 China
| | - Sangeeta Prakash
- School of Agriculture and Food Sciences University of Queensland Brisbane QLD 4072 Australia
| | - Yanna Zhao
- Institute of Biopharmaceutical Research Liaocheng University Liaocheng 252059 China
| | - Jun Han
- Institute of Biopharmaceutical Research Liaocheng University Liaocheng 252059 China
| | - Zhengping Wang
- Institute of Biopharmaceutical Research Liaocheng University Liaocheng 252059 China
| |
Collapse
|
42
|
Gomes MTMS, Santana ÁL, Santos DT, Meireles MAA. Trends on the Rapid Expansion of Supercritical Solutions Process Applied to Food and Non-food Industries. Recent Pat Food Nutr Agric 2020; 10:82-92. [PMID: 30255763 DOI: 10.2174/2212798410666180925160459] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 08/20/2018] [Accepted: 09/17/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND The supercritical fluids applied to particle engineering over the last years have received growing interest from the food and non-food industries, in terms of processing, packaging, and preservation of several products. The rapid expansion of supercritical solutions (RESS) process has been recently reported as an efficient technique for the production of free-solvent particles with controlled morphology and size distribution. OBJECTIVE In this review, we report technological aspects of the application of the RESS process applied to the food and non-food industry, considering recent data and patent survey registered in literature. METHODS The effect of process parameters cosolvent addition, temperature, pressure, nozzle size among others, during RESS on the size, structure and morphology of the resulted particles, and the main differences about recent patented RESS processes are reviewed. RESULTS Most of the experimental works intend to optimize their processes through investigation of process parameters. CONCLUSION RESS is a feasible alternative for the production of particles with a high yield of bioactive constituents of interest to the food industry. On the other hand, patents developed using this type of process for food products are very scarce, less attention being given to the potential of this technique to develop particles from plant extracts with bioactive substances.
Collapse
Affiliation(s)
- Maria T M S Gomes
- LASEFI/DEA/FEA (School of Food Engineering)/UNICAMP (University of Campinas) Cidade Universitaria "ZeferinoVaz", Rua Monteiro Lobato, 80, Campinas 13083-862, Brazil
| | - Ádina L Santana
- LASEFI/DEA/FEA (School of Food Engineering)/UNICAMP (University of Campinas) Cidade Universitaria "ZeferinoVaz", Rua Monteiro Lobato, 80, Campinas 13083-862, Brazil
| | - Diego T Santos
- LASEFI/DEA/FEA (School of Food Engineering)/UNICAMP (University of Campinas) Cidade Universitaria "ZeferinoVaz", Rua Monteiro Lobato, 80, Campinas 13083-862, Brazil
| | - Maria A A Meireles
- LASEFI/DEA/FEA (School of Food Engineering)/UNICAMP (University of Campinas) Cidade Universitaria "ZeferinoVaz", Rua Monteiro Lobato, 80, Campinas 13083-862, Brazil
| |
Collapse
|
43
|
Haas K, Obernberger J, Zehetner E, Kiesslich A, Volkert M, Jaeger H. Impact of powder particle structure on the oxidation stability and color of encapsulated crystalline and emulsified carotenoids in carrot concentrate powders. J FOOD ENG 2019. [DOI: 10.1016/j.jfoodeng.2019.07.025] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
44
|
Tsai WC, Wang Y. Progress of supercritical fluid technology in polymerization and its applications in biomedical engineering. Prog Polym Sci 2019. [DOI: 10.1016/j.progpolymsci.2019.101161] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
45
|
Formation of lycopene-loaded hydrolysed collagen particles by supercritical impregnation. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.04.055] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
46
|
Haas K, Robben P, Kiesslich A, Volkert M, Jaeger H. Stabilization of Crystalline Carotenoids in Carrot Concentrate Powders: Effects of Drying Technology, Carrier Material, and Antioxidants. Foods 2019; 8:E285. [PMID: 31349652 PMCID: PMC6724047 DOI: 10.3390/foods8080285] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 07/19/2019] [Accepted: 07/23/2019] [Indexed: 11/16/2022] Open
Abstract
Coloring concentrates of carotenoid-rich plant materials are currently used in the food industry to meet the consumer's demand for natural substitutes for food colorants. The production of shelf-stable powders of such concentrates comes with particular challenges linked to the sensitivity of the active component towards oxidation and the complexity of the composition and microstructure of such concentrates. In this study, different strategies for the stabilization of crystalline carotenoids as part of a natural carrot concentrate matrix during drying and storage were investigated. The evaluated approaches included spray- and freeze drying, the addition of functional additives, and oxygen free storage. Functional additives comprised carrier material (maltodextrin, gum Arabic, and octenyl succinic anhydride (OSA)-modified starch) and antioxidants (mixed tocopherols, sodium ascorbate). Degradation and changes in the physical state of the carotenoid crystals were monitored during processing and storage. Carotenoid losses during processing were low (>5%) irrespective of the used technology and additives. During storage, samples stored in nitrogen showed the highest carotenoid retention (97-100%). The carotenoid retention in powders stored with air access varied between 12.3% ± 2.1% and 66.0% ± 5.4%, having been affected by the particle structure as well as the formulation components used. The comparative evaluation of the tested strategies allows a more targeted design of processing and formulation of functional carrot concentrate powders.
Collapse
Affiliation(s)
- Klara Haas
- Department of Food Science and Technology, University of Natural Resources and Life Sciences (BOKU), 1190 Vienna, Austria.
| | | | | | | | - Henry Jaeger
- Department of Food Science and Technology, University of Natural Resources and Life Sciences (BOKU), 1190 Vienna, Austria
| |
Collapse
|
47
|
Garavand F, Rahaee S, Vahedikia N, Jafari SM. Different techniques for extraction and micro/nanoencapsulation of saffron bioactive ingredients. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.05.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
48
|
Di Capua A, Adami R, Cosenza E, Jalaber V, Crampon C, Badens E, Reverchon E. β-Carotene/PVP microspheres produced by Supercritical Assisted Atomization. POWDER TECHNOL 2019. [DOI: 10.1016/j.powtec.2019.01.069] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
49
|
Advances in the Application of Microcapsules as Carriers of Functional Compounds for Food Products. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9030571] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Natural bioactive compounds and living cells have been reported as promising products with beneficial properties to human health. The constant challenge regarding the use of these components is their easy degradation during processing and storage. However, their stability can be improved with the microencapsulation process, in which a compound sensitive to adverse environmental conditions is retained within a protective polymeric material. Microencapsulation is a widely used methodology for the preservation and stabilization of functional compounds for food, pharmaceutical, and cosmetic applications. The present review discusses advances in the production and application of microcapsules loaded with functional compounds in food products. The main methods for producing microcapsules, as well as the classes of functional compounds and wall materials used, are presented. Additionally, the release of compounds from loaded microcapsules in food matrices and in simulated gastrointestinal conditions is also assessed.
Collapse
|
50
|
Urnau L, Colet R, Reato PT, Fernandes de Medeiros Burkert J, Rodrigues E, Gomes R, Jacques RA, Valduga E, Steffens C. Use of Low-Cost Agro-Industrial Substrate to Obtain Carotenoids from Phaffia rhodozyma in a Bioreactor. Ind Biotechnol (New Rochelle N Y) 2019. [DOI: 10.1089/ind.2018.0027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Affiliation(s)
- Letícia Urnau
- Department of Food Engineering, URI Erechim, Erechim, Rio Grande do Sul, Brazil
| | - Rosicler Colet
- Department of Food Engineering, URI Erechim, Erechim, Rio Grande do Sul, Brazil
| | | | | | - Eliseu Rodrigues
- Institute of Science and Food Technology, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande Do Sul, Brazil
| | - Raul Gomes
- Institute of Science and Food Technology, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande Do Sul, Brazil
| | | | - Eunice Valduga
- Department of Food Engineering, URI Erechim, Erechim, Rio Grande do Sul, Brazil
| | - Clarice Steffens
- Department of Food Engineering, URI Erechim, Erechim, Rio Grande do Sul, Brazil
| |
Collapse
|