1
|
Arioglu-Tuncil S, Mauer LJ. Impact of Polymer Physicochemical Features on the Amorphization and Crystallization of Citric Acid in Solid Dispersions. Polymers (Basel) 2025; 17:310. [PMID: 39940511 PMCID: PMC11820854 DOI: 10.3390/polym17030310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/08/2025] [Accepted: 01/17/2025] [Indexed: 02/16/2025] Open
Abstract
The amorphization and crystallization of citric acid in the presence of a variety of polymers were investigated. Polymers were chosen for their different physicochemical features, including hygroscopicity, glass transition temperature (Tg), and functional groups capable of forming intermolecular non-covalent interactions with citric acid. Citric acid solutions with varying amounts of pectin (PEC), guar gum (GG), κ-carrageenan (KG), gelatin (GEL), (hydroxypropyl)methylcellulose (HPMC), and carboxymethylcellulose sodium (CMC-Na) were lyophilized. Dispersions were stored for up to 6 months in controlled temperature and relative humidity environments and periodically monitored using powder X-ray diffraction, differential scanning calorimetry, and Fourier transform infrared spectroscopy. Moisture sorption isotherms and moisture contents were determined. Amorphous solid dispersions of citric acid were successfully formed in the presence of ≥20% w/w CMC-Na and PEC or ≥30% w/w of the other polymers except KG which required a minimum of 40% polymer. All samples remained amorphous even in their rubbery state at 0% RH (25 °C and 40 °C), but increasing the RH to 32% RH resulted in citric acid crystallization in the KG dispersions, and further increasing to 54% RH resulted in crystallization in all samples. Polymer effectiveness for inhibiting citric acid crystallization was CMC-Na > PEC ≥ GEL > HPMC > GG > KG. To create and maintain amorphous citric acid, polymer traits in order of effectiveness were as follows: greater propensity for intermolecular non-covalent interactions (both ionic and hydrogen bonding) with the citric acid, carbonyl groups, higher Tg, and then lower hygroscopicity.
Collapse
Affiliation(s)
- Seda Arioglu-Tuncil
- Department of Nutrition and Dietetics, Necmettin Erbakan University, Meram, Konya 42090, Türkiye;
- Department of Food Science, Purdue University, West Lafayette, IN 47907, USA
| | - Lisa J. Mauer
- Department of Food Science, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
2
|
Lemanowicz M, Chrzanowska J, Kotek M, Mielańczyk A, Kupczak M, Niewolik D, Korytkowska-Wałach A, Klymenko O, Kocur A, Neugebauer D. Stimuli-Responsive Star Polymer as an Admixture for Crystallization of Hollow Crystals. MATERIALS (BASEL, SWITZERLAND) 2022; 15:8240. [PMID: 36431723 PMCID: PMC9692294 DOI: 10.3390/ma15228240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/12/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
Polymers are becoming a very popular tool in the crystallization of different compounds. In this work, a new method of crystallization is proposed using stimuli-responsive star polymer in order to obtain hollow structure crystals. In these experiments, amphiphilic copolymer of acrylic acid (AA) and methyl acrylate (MA) were used for isohydric crystallization via they cooling of KCl in deionized water solution. The experiments were realized in quartz cuvette with a magnetic stirrer using a specialized spectrometer with precise temperature control. The crystallization course was monitored by the absorbance readings and analysis of the nucleation energetic effect. It was proved that the moment of the polymer's phase transition occurrence had an important role in the crystal growth process. On the other hand, the occurrence of phase transition did not trigger the nucleation. The supercoolings achieved in the presence of the polymer were significantly higher compared to pure salt crystallization. On the basis of analysis of Particle Size Distribution (PSD) and Critical Aggregation Concentration (CAC) of the polymer, it was proposed that the hydrophobic particles of macromolecules created from polymeric aggregates served as templates for the formation of hollow crystals. Their purity was verified using thermogravimetric analysis (TGA), 1H NMR, and XRD. Only trace amounts of polymer were found in the crystalline product.
Collapse
Affiliation(s)
- Marcin Lemanowicz
- Department of Chemical Engineering and Process Design, Faculty of Chemistry, Silesian University of Technology, ks. M. Strzody 7, 44-100 Gliwice, Poland
| | - Justyna Chrzanowska
- Department of Chemical Engineering and Process Design, Faculty of Chemistry, Silesian University of Technology, ks. M. Strzody 7, 44-100 Gliwice, Poland
| | - Milena Kotek
- Department of Chemical Engineering and Process Design, Faculty of Chemistry, Silesian University of Technology, ks. M. Strzody 7, 44-100 Gliwice, Poland
| | - Anna Mielańczyk
- Department of Physical Chemistry and Technology of Polymers, Faculty of Chemistry, Silesian University of Technology, ks. M. Strzody 9, 44-100 Gliwice, Poland
| | - Maria Kupczak
- Department of Physical Chemistry and Technology of Polymers, Faculty of Chemistry, Silesian University of Technology, ks. M. Strzody 9, 44-100 Gliwice, Poland
| | - Daria Niewolik
- Department of Physical Chemistry and Technology of Polymers, Faculty of Chemistry, Silesian University of Technology, ks. M. Strzody 9, 44-100 Gliwice, Poland
| | - Anna Korytkowska-Wałach
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Faculty of Chemistry, Silesian University of Technology, B. Krzywoustego 4, 44-100 Gliwice, Poland
| | - Olesya Klymenko
- Department of Histology and Embryology, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia, ul. Jordana 19, 41-808 Zabrze, Poland
| | - Alicja Kocur
- Department of Chemical Engineering and Process Design, Faculty of Chemistry, Silesian University of Technology, ks. M. Strzody 7, 44-100 Gliwice, Poland
| | - Dorota Neugebauer
- Department of Physical Chemistry and Technology of Polymers, Faculty of Chemistry, Silesian University of Technology, ks. M. Strzody 9, 44-100 Gliwice, Poland
| |
Collapse
|
3
|
Lemanowicz M, Mielańczyk A, Walica T, Kotek M, Gierczycki A. Application of Polymers as a Tool in Crystallization-A Review. Polymers (Basel) 2021; 13:polym13162695. [PMID: 34451235 PMCID: PMC8401169 DOI: 10.3390/polym13162695] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/04/2021] [Accepted: 08/06/2021] [Indexed: 12/22/2022] Open
Abstract
The application of polymers as a tool in the crystallization process is gaining more and more interest among the scientific community. According to Web of Science statistics the number of papers dealing with “Polymer induced crystallization” increased from 2 in 1990 to 436 in 2020, and for “Polymer controlled crystallization”—from 4 in 1990 to 344 in 2020. This is clear evidence that both topics are vivid, attractive and intensively investigated nowadays. Efficient control of crystallization and crystal properties still represents a bottleneck in the manufacturing of crystalline materials ranging from pigments, antiscalants, nanoporous materials and pharmaceuticals to semiconductor particles. However, a rapid development in precise and reliable measuring methods and techniques would enable one to better describe phenomena involved, to formulate theoretical models, and probably most importantly, to develop practical indications for how to appropriately lead many important processes in the industry. It is clearly visible at the first glance through a number of representative papers in the area, that many of them are preoccupied with the testing and production of pharmaceuticals, while the rest are addressed to new crystalline materials, renewable energy, water and wastewater technology and other branches of industry where the crystallization process takes place. In this work, authors gathered and briefly discuss over 100 papers, published in leading scientific periodicals, devoted to the influence of polymers on crystallizing solutions.
Collapse
Affiliation(s)
- Marcin Lemanowicz
- Department of Chemical Engineering and Process Design, Faculty of Chemistry, Silesian University of Technology, 44-100 Gliwice, Poland; (T.W.); (M.K.); (A.G.)
- Correspondence: (M.L.); (A.M.); Tel.: +48-32-237-28-32 (M.L.); +48-32-237-15-73 (A.M.); Fax: +48-32-237-14-61 (M.L.); +48-32-237-15-09 (A.M.)
| | - Anna Mielańczyk
- Department of Physical Chemistry and Technology of Polymers, Faculty of Chemistry, Silesian University of Technology, 44-100 Gliwice, Poland
- Correspondence: (M.L.); (A.M.); Tel.: +48-32-237-28-32 (M.L.); +48-32-237-15-73 (A.M.); Fax: +48-32-237-14-61 (M.L.); +48-32-237-15-09 (A.M.)
| | - Tomasz Walica
- Department of Chemical Engineering and Process Design, Faculty of Chemistry, Silesian University of Technology, 44-100 Gliwice, Poland; (T.W.); (M.K.); (A.G.)
| | - Milena Kotek
- Department of Chemical Engineering and Process Design, Faculty of Chemistry, Silesian University of Technology, 44-100 Gliwice, Poland; (T.W.); (M.K.); (A.G.)
| | - Andrzej Gierczycki
- Department of Chemical Engineering and Process Design, Faculty of Chemistry, Silesian University of Technology, 44-100 Gliwice, Poland; (T.W.); (M.K.); (A.G.)
| |
Collapse
|
4
|
Arioglu-Tuncil S, Voelker AL, Taylor LS, Mauer LJ. Amorphization of Thiamine Mononitrate: A Study of Crystallization Inhibition and Chemical Stability of Thiamine in Thiamine Mononitrate Amorphous Solid Dispersions. Int J Mol Sci 2020; 21:ijms21249370. [PMID: 33316991 PMCID: PMC7763500 DOI: 10.3390/ijms21249370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/03/2020] [Accepted: 12/04/2020] [Indexed: 11/23/2022] Open
Abstract
This study investigated thiamine degradation in thiamine mononitrate (TMN):polymer solid dispersions, accounting for the physical state of the vitamin and the recrystallization tendency of TMN in these dispersions. Results were compared with those from solid dispersions containing a different salt form of thiamine (thiamine chloride hydrochloride (TClHCl)). TMN:polymer dispersions were prepared by lyophilizing solutions containing TMN and amorphous polymers (pectin and PVP (polyvinylpyrrolidone)). Samples were stored in controlled temperature and relative humidity (RH) environments for eight weeks and monitored periodically by X-ray diffraction and high performance liquid chromatography (HPLC). Moisture sorption, glass transition temperature (Tg), intermolecular interactions, and pH were also determined. Similar to the TClHCl:polymer dispersions, thiamine was more chemically labile in the amorphous state than the crystalline state, when present in lower proportions in amorphous TMN:polymer dispersions despite increasing Tg values, when environmental storage conditions exceeded the Tg of the dispersion, and when co-formulated with PVP compared to pectin. When thiamine remained as an amorphous solid, chemical stability of thiamine did not differ as a function of counterion present (TMN vs. TClHCl). However, storage at 75% RH led to hydration of thiamine:PVP dispersions, and the resulting pH of the solutions as a function of thiamine salt form led to a higher chemical stability in the acidic TClHCl samples than in the neutral TMN samples.
Collapse
Affiliation(s)
- Seda Arioglu-Tuncil
- Department of Food Science, Purdue University, 745 Agriculture Mall Drive, West Lafayette, IN 47907, USA; (S.A.-T.); (A.L.V.)
| | - Adrienne L. Voelker
- Department of Food Science, Purdue University, 745 Agriculture Mall Drive, West Lafayette, IN 47907, USA; (S.A.-T.); (A.L.V.)
| | - Lynne S. Taylor
- Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA;
| | - Lisa J. Mauer
- Department of Food Science, Purdue University, 745 Agriculture Mall Drive, West Lafayette, IN 47907, USA; (S.A.-T.); (A.L.V.)
- Correspondence: ; Tel.: +1-765-494-9111
| |
Collapse
|
5
|
Development and Characterization of Inkjet Printed Edible Films for Buccal Delivery of B-Complex Vitamins. Pharmaceuticals (Basel) 2020; 13:ph13090203. [PMID: 32825421 PMCID: PMC7558443 DOI: 10.3390/ph13090203] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 08/07/2020] [Accepted: 08/18/2020] [Indexed: 12/30/2022] Open
Abstract
Buccal films containing two vitamins, i.e., thiamine hydrochloride (THCl) and nicotinic acid (NA), were fabricated via two-dimensional (2D) inkjet printing. For the preparation of buccal films, solubility studies and rheological evaluations were conducted in distilled water and propylene-glycol (PG) as main solvent and viscosity/surface tension modifier, respectively. The increased solubility in the solvents' mixture indicated that manufacturing of several doses of the THCl and NA is achievable. Various doses were deposited onto sugar-sheet substrates, by increasing the number of printing passes. The physiochemical characterization (SEM, DSC, FTIR) revealed that inkjet printing does not affect the solid state of the matrix. Water uptake studies were conducted, to compare the different vitamin-loaded formulations. The in vitro release studies indicated the burst release of both vitamins within 10 min, a preferable feature for buccal administration. The in vitro permeation studies indicated that higher concentrations of the vitamins onto the sugar sheet improved the in vitro permeation performance of printed formulations.
Collapse
|
6
|
Amorphization of Thiamine Chloride Hydrochloride: Effects of Physical State and Polymer Type on the Chemical Stability of Thiamine in Solid Dispersions. Int J Mol Sci 2020; 21:ijms21165935. [PMID: 32824791 PMCID: PMC7460579 DOI: 10.3390/ijms21165935] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/07/2020] [Accepted: 08/14/2020] [Indexed: 11/26/2022] Open
Abstract
Thiamine is an essential micronutrient, but delivery of the vitamin in supplements or foods is challenging because it is unstable under heat, alkaline pH, and processing/storage conditions. Although distributed as a crystalline ingredient, thiamine chloride hydrochloride (TClHCl) likely exists in the amorphous state, specifically in supplements. Amorphous solids are generally less chemically stable than their crystalline counterparts, which is an unexplored area related to thiamine delivery. The objective of this study was to document thiamine degradation in the amorphous state. TClHCl:polymer dispersions were prepared by lyophilizing solutions containing TClHCl and amorphous polymers (pectin and PVP (poly[vinylpyrrolidone])). Samples were stored in controlled temperature (30–60 °C) and relative humidity (11%) environments for 8 weeks and monitored periodically by X-ray diffraction (to document physical state) and HPLC (to quantify degradation). Moisture sorption, glass transition temperature (Tg), intermolecular interactions, and pH were also determined. Thiamine was more labile in the amorphous state than the crystalline state and when present in lower proportions in amorphous polymer dispersions, despite increasing Tg values. Thiamine was more stable in pectin dispersions than PVP dispersions, attributed to differences in presence and extent of intermolecular interactions between TClHCl and pectin. The results of this study can be used to control thiamine degradation in food products and supplements to improve thiamine delivery and decrease rate of deficiency.
Collapse
|
7
|
Ismail Y, Mauer LJ. Phase transitions of ascorbic acid and sodium ascorbate in a polymer matrix and effects on vitamin degradation. J FOOD PROCESS ENG 2020. [DOI: 10.1111/jfpe.13073] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yahya Ismail
- Department of Food SciencePurdue University West Lafayette Indiana
| | - Lisa J. Mauer
- Department of Food SciencePurdue University West Lafayette Indiana
| |
Collapse
|
8
|
Mauer LJ, Forny L, Meunier VDM, Taylor LS. Optimizing the Quality of Food Powder Products: The Challenges of Moisture-Mediated Phase Transformations. Annu Rev Food Sci Technol 2019; 10:457-478. [PMID: 30633567 DOI: 10.1146/annurev-food-032818-121224] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Water is ubiquitous in the environment and is present to varying degrees even within dry powder products and most ingredients. Water migration between the environment and a solid, or between different components of a product, may lead to detrimental physical and chemical changes. In efforts to optimize the quality of dry products, as well as the efficiency of production practices, it is crucial to understand the cause-effect relationships of water interactions with different solids. Therefore, this review addresses the basis of moisture migration in dry products, and the modes of water vapor interactions with crystalline and amorphous solids (e.g., adsorption, capillary condensation, deliquescence, crystal hydrate formation, absorption into amorphous solids) and related moisture-induced phase and state changes, and provides examples of how these moisture-induced changes affect the quality of the dry products.
Collapse
Affiliation(s)
- Lisa J Mauer
- Department of Food Science, Purdue University, West Lafayette, Indiana 47907, USA;
| | | | | | - Lynne S Taylor
- Department of Industrial and Physical Pharmacy, Purdue University, West Lafayette, Indiana 47907, USA
| |
Collapse
|