1
|
Serra MDR, Pérez-Gálvez A, Roca M. A new biochemical pathway in chlorophyll degradation in melon fruit. Food Chem 2025; 475:143316. [PMID: 39956062 DOI: 10.1016/j.foodchem.2025.143316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/30/2025] [Accepted: 02/08/2025] [Indexed: 02/18/2025]
Abstract
All the fruits that are or were green accumulate phyllobilins, which are the terminal chlorophyll catabolites. Phyllobilins are part of our daily diet, however, only a few structures have been identified in edible species. To unravel the phyllobilin biosynthetic pathway in fruits, a robust database with 956 phyllobilins was built and taking advantage of our metabolomic approach, three new phyllobilins were identified in melon fruits. Two of them were hydroxylated, an unprecedented biosynthetic pattern in fruits. Even more, one phyllobilin was dihydroxylated for the first time, and the other phyllobilin was a hydroxylated YCC. The third new phyllobilin identified in melon fruits was a pyro-phyllobilin, a long-sought structure that has been kept elusive until now. Therefore, two new biochemical pathways are unravelled to complement the current knowledge of the chlorophyll degradation pathway. Three new phyllobilins with potential health properties also increase the pool of phytochemicals in edible fruits.
Collapse
Affiliation(s)
- María Del Rosario Serra
- Group of Chemistry and Biochemistry of Pigments, Food Phytochemistry Department, Instituto de la Grasa (CSIC), Campus Universitario, Building 46, 41013 Sevilla, Spain
| | - Antonio Pérez-Gálvez
- Group of Chemistry and Biochemistry of Pigments, Food Phytochemistry Department, Instituto de la Grasa (CSIC), Campus Universitario, Building 46, 41013 Sevilla, Spain
| | - María Roca
- Group of Chemistry and Biochemistry of Pigments, Food Phytochemistry Department, Instituto de la Grasa (CSIC), Campus Universitario, Building 46, 41013 Sevilla, Spain.
| |
Collapse
|
2
|
Chlorophyll breakdown during fruit ripening: Qualitative analysis of phyllobilins in the peel of apples (Malus domestica Borkh.) cv. ‘Gala’ during different shelf life stages. Food Res Int 2022; 162:112061. [DOI: 10.1016/j.foodres.2022.112061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/20/2022] [Accepted: 10/15/2022] [Indexed: 11/24/2022]
|
3
|
Quiles C, Viera I, Roca M. Multiomics Approach To Decipher the Origin of Chlorophyll Content in Virgin Olive Oil. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:3807-3817. [PMID: 35290057 PMCID: PMC8972264 DOI: 10.1021/acs.jafc.2c00031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The color of virgin olive oils, ranging from intense green to brown-yellow, is one of the main selection factors for consumers and a quality criterion in specific legislations. Such coloration is due to their chlorophyll content and depends on the composition of the olive fruit. Through analytical chemistry (HPLC-hrMSn), biochemistry (enzymatic activity), and molecular biology (qRT-PCR) approaches, we have analyzed the origin of the differences in the chlorophyll content among several varieties of olive fruit throughout their ripening process. The higher chlorophyll biosynthetic capacity in olive fruits is due to the enzyme protochlorophyllide reductase, whereas chlorophyll degradation is accomplished through the stay-green and pheophytinase pathways. For the first time, the implication of chlorophyll dephytylase during the turnover of chlorophylls in fruit is shown to be responsible for the exclusive accumulation of dephytylated chlorophyll in Arbequina fruit. The multiomics results excluded the in vivo participation of chlorophyllase in chlorophyll degradation in olive fruits.
Collapse
Affiliation(s)
| | | | - María Roca
- . Tel.: +00 34 954.61.15.50. Fax: +00 34 954.61.67.90
| |
Collapse
|
4
|
Liu G, Wei P, Tang Y, Pang Y, Sun J, Li J, Rao C, Wu C, He X, Li L, Ling D, Chen X. Evaluation of Bioactive Compounds and Bioactivities in Plum ( Prunus salicina Lindl.) Wine. Front Nutr 2021; 8:766415. [PMID: 34790690 PMCID: PMC8591244 DOI: 10.3389/fnut.2021.766415] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 10/11/2021] [Indexed: 01/17/2023] Open
Abstract
With the increase in demand of fruit wine year by year, it is necessary to develop novel fruit wine with high functional activities. Prunus salicina Lindl. (named as Niuxin plum) is a remarkable material for brewing fruit wine owing to its suitable sugar-acid ratio, characteristic aroma and bioactive compounds. This study intends to modify the fermentation technology, identify and quantify nutritional compositions and volatile profiles, as well as bioactive substances in Niuxin plum wine, as well as evaluate the antioxidant and hypoglycemic activities in vitro of major bioactive components from Niuxin plum wine. According to single-factor and orthogonal tests, the optimal fermentation conditions of 13.1% vol Niuxin plum wine should be Saccharomyces cerevisiae Lalvin EC1118 at 0.1% and a fermentation temperature of 20°C for 7 days. A total of 17 amino acids, 9 mineral elements, 4 vitamins, and 55 aromatic components were detected in plum wine. Polysaccharides from Niuxin plum wine (named as NPWPs) served as the major bioactive components. The NPWP with a molecular weight over 1,000 kDa (NPWP-10) demonstrated extraordinary DPPH free radical scavenging capacity and α-glucosidase inhibitory activity among all NPWPs having different molecular weight. Moreover, the structural characterization of NPWP-10 was also analyzed by high performance liquid chromatography (HPLC), fourier-transform infrared (FT-IR) and nuclear magnetic resonance (NMR) spectra studies. NPWP-10 was composed of mannose, rhamnose, arabinose, galactose and galacturonic acid with molar ratios of 2.570:1.775:1.045:1.037:1. NPWP-10 contained α-configuration as the main component and β-configuration as the auxiliary component. This study highlights NPWP-10 is an importantly biological polysaccharide from Niuxin plum wine, as well as provides a scientific basis for developing the plum wine industry.
Collapse
Affiliation(s)
- Guoming Liu
- Agro-Food Science and Technology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China.,Guangxi Key Laboratory of Fruits and Vegetables Storage-Processing Technology, Nanning, China
| | - Ping Wei
- Agro-Food Science and Technology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China.,Guangxi Key Laboratory of Fruits and Vegetables Storage-Processing Technology, Nanning, China
| | - Yayuan Tang
- Agro-Food Science and Technology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China.,Guangxi Key Laboratory of Fruits and Vegetables Storage-Processing Technology, Nanning, China
| | - Yiyang Pang
- Agro-Food Science and Technology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Jian Sun
- Agro-Food Science and Technology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China.,Guangxi Key Laboratory of Fruits and Vegetables Storage-Processing Technology, Nanning, China
| | - Jiemin Li
- Agro-Food Science and Technology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China.,Guangxi Key Laboratory of Fruits and Vegetables Storage-Processing Technology, Nanning, China
| | - Chuanyan Rao
- Agro-Food Science and Technology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China.,Guangxi Key Laboratory of Fruits and Vegetables Storage-Processing Technology, Nanning, China
| | - Cuiqiong Wu
- Agro-Food Science and Technology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China.,Guangxi Key Laboratory of Fruits and Vegetables Storage-Processing Technology, Nanning, China
| | - Xuemei He
- Agro-Food Science and Technology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China.,Guangxi Key Laboratory of Fruits and Vegetables Storage-Processing Technology, Nanning, China
| | - Li Li
- Agro-Food Science and Technology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China.,Guangxi Key Laboratory of Fruits and Vegetables Storage-Processing Technology, Nanning, China
| | - Dongning Ling
- Agro-Food Science and Technology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China.,Guangxi Key Laboratory of Fruits and Vegetables Storage-Processing Technology, Nanning, China
| | - Xi Chen
- Agro-Food Science and Technology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China.,Guangxi Key Laboratory of Fruits and Vegetables Storage-Processing Technology, Nanning, China
| |
Collapse
|
5
|
Karg CA, Doppler C, Schilling C, Jakobs F, Dal Colle MCS, Frey N, Bernhard D, Vollmar AM, Moser S. A yellow chlorophyll catabolite in leaves of Urtica dioica L.: An overlooked phytochemical that contributes to health benefits of stinging nettle. Food Chem 2021; 359:129906. [PMID: 33962192 DOI: 10.1016/j.foodchem.2021.129906] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 03/19/2021] [Accepted: 04/16/2021] [Indexed: 10/21/2022]
Abstract
Stinging nettle is appreciated for its antioxidant and anti-inflammatory properties, which renders the plant a popular ingredient in a healthy diet in form of salads or smoothies. The most common use, presumably, is of dried leaves as ingredient in tea mixtures. The plant's health benefits are attributed primarily to phenolic phytochemicals. Here we describe the characterization and quantification of a phylloxanthobilin (PxB), a yellow chlorophyll catabolite, in nettle tea. Despite their abundance in the plant kingdom, chlorophyll catabolites have been overlooked as phytochemicals and as part of human nutrition. Our investigations of tea reveal that one cup of nettle tea contains about 50 µg of PxB with large variations depending on the supplier. When investigating the bioactivities of PxB, our observations show that PxB has antioxidative and anti-inflammatory activities comparable to known bioactive small molecules found in nettle, indicating the phylloxanthobilin to be an overlooked ingredient of nettle tea.
Collapse
Affiliation(s)
- Cornelia A Karg
- Department of Pharmacy, Center for Drug Research, Pharmaceutical Biology, Ludwig-Maximilians-University of Munich, Butenandtstr. 5-13, D-81377 München, Germany
| | - Christian Doppler
- Division of Pathophysiology, Institute of Physiology and Pathophysiology, Medical Faculty, Johannes-Kepler-University Linz, Krankenhausstrasse 7a, A-4020 Linz, Austria
| | - Charlotte Schilling
- Department of Pharmacy, Center for Drug Research, Pharmaceutical Biology, Ludwig-Maximilians-University of Munich, Butenandtstr. 5-13, D-81377 München, Germany
| | - Franziska Jakobs
- Department of Pharmacy, Center for Drug Research, Pharmaceutical Biology, Ludwig-Maximilians-University of Munich, Butenandtstr. 5-13, D-81377 München, Germany; Department of Chemistry, High Point University, One University Parkway High Point, NC 27268, United States
| | - Marlene C S Dal Colle
- Department of Pharmacy, Center for Drug Research, Pharmaceutical Biology, Ludwig-Maximilians-University of Munich, Butenandtstr. 5-13, D-81377 München, Germany; Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Nadine Frey
- Department of Pharmacy, Center for Drug Research, Pharmaceutical Biology, Ludwig-Maximilians-University of Munich, Butenandtstr. 5-13, D-81377 München, Germany
| | - David Bernhard
- Division of Pathophysiology, Institute of Physiology and Pathophysiology, Medical Faculty, Johannes-Kepler-University Linz, Krankenhausstrasse 7a, A-4020 Linz, Austria
| | - Angelika M Vollmar
- Department of Pharmacy, Center for Drug Research, Pharmaceutical Biology, Ludwig-Maximilians-University of Munich, Butenandtstr. 5-13, D-81377 München, Germany
| | - Simone Moser
- Department of Pharmacy, Center for Drug Research, Pharmaceutical Biology, Ludwig-Maximilians-University of Munich, Butenandtstr. 5-13, D-81377 München, Germany.
| |
Collapse
|
6
|
Roca M, Pérez-Gálvez A. Profile of Chlorophyll Catabolites in Senescent Leaves of Epipremnun aureum Includes a Catabolite Esterified with Hydroxytyrosol 1- O-Glucoside. JOURNAL OF NATURAL PRODUCTS 2020; 83:873-880. [PMID: 32134654 DOI: 10.1021/acs.jnatprod.9b00546] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Despite the fact that chlorophyll degradation is a physiological phenomenon occurring daily in all photosynthetic tissues, chlorophyll catabolites are not fully identified. Three new forms (1, 3, and 4) of linear chlorophyll catabolites (phyllobilins) have been characterized in senescent leaves of Epipremnun aureum with spectroscopic data. Compound 1 is a hypermodified blue fluorescent chlorophyll catabolite (hmFCC) esterified with the potent antioxidant hydroxytyrosol. The sequestration of this phenol by a chlorophyll catabolite could explain the physiological meaning of the persistence of hmFCCs in some senescent plants. Compound 3, a yellow chlorophyll catabolite (YCC) originated from the oxidation at C-15 of 1. YCCs have been identified previously and are exclusively formed in the plant vacuole from the final nonfluorescent chlorophyll catabolites (NCCs). The presence of 3 in leaves implies a new reaction in chlorophyll catabolism, as the characterization of 3 implies that YCCs can be also be oxidized in the cytosol from FCCs. Finally, phyllobilin 4 represents a new type of YCC characterized by an inflexible bicyclo glucosyl moiety linked through an intramolecular esterification of the propionic acid residue with the C-3 hydroxy group. The corresponding NCC precursor was recently identified and now the characterization of 4 shows that even this rigid structure can be further oxidized. Undoubtedly, the characterization of phyllobilins is essential to completely comprehend chlorophyll degradation.
Collapse
Affiliation(s)
- María Roca
- Food Phytochemistry Department, Instituto de la Grasa (CSIC), University Campus, Building 46, 41013 Sevilla, Spain
| | - Antonio Pérez-Gálvez
- Food Phytochemistry Department, Instituto de la Grasa (CSIC), University Campus, Building 46, 41013 Sevilla, Spain
| |
Collapse
|
7
|
Moser S, Kräutler B. In Search of Bioactivity - Phyllobilins, an Unexplored Class of Abundant Heterocyclic Plant Metabolites from Breakdown of Chlorophyll. Isr J Chem 2019; 59:420-431. [PMID: 31244492 PMCID: PMC6582504 DOI: 10.1002/ijch.201900012] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/30/2019] [Accepted: 03/31/2019] [Indexed: 12/04/2022]
Abstract
The fate of the green plant pigment chlorophyll (Chl) in de-greening leaves has long been a fascinating biological puzzle. In the course of the last three decades, various bilin-type products of Chl breakdown have been identified, named phyllobilins (PBs). Considered 'mere' leftovers of a controlled biological Chl detoxification originally, the quest for finding relevant bioactivities of the PBs has become a new paradigm. Indeed, the PBs are abundant in senescent leaves, in ripe fruit and in some vegetables, and they display an exciting array of diverse heterocyclic structures. This review outlines briefly which types of Chl breakdown products occur in higher plants, describes basics of their bio-relevant structural and chemical properties and gives suggestions as to 'why' the plants produce vast amounts of uniquely 'decorated' heterocyclic compounds. Clearly, it is worthwhile to consider crucial metabolic roles of PBs in plants, which may have practical consequences in agriculture and horticulture. However, PBs are also part of our plant-based nutrition and their physiological and pharmacological effects in humans are of interest, as well.
Collapse
Affiliation(s)
- Simone Moser
- Pharmaceutical Biology, Pharmacy DepartmentLudwig-Maximilians University of MunichButenandtstraße 5–1381377MunichGermany
| | - Bernhard Kräutler
- Institute of Organic Chemistry and Centre of Molecular BiosciencesUniversity of Innsbruck. Innrain 80/826020InnsbruckAustria
| |
Collapse
|
8
|
Li C, Erhart T, Liu X, Kräutler B. Yellow Dioxobilin-Type Tetrapyrroles from Chlorophyll Breakdown in Higher Plants-A New Class of Colored Phyllobilins. Chemistry 2019; 25:4052-4057. [PMID: 30688378 PMCID: PMC6563717 DOI: 10.1002/chem.201806038] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Indexed: 11/11/2022]
Abstract
In senescent leaves chlorophyll (Chl) catabolites typically accumulate as colorless tetrapyrroles, classified as formyloxobilin-type (or type-I) or dioxobilin-type (type-II) phyllobilins (PBs). Yellow type-I Chl catabolites (YCCs) also occur in some senescent leaves, in which they are generated by oxidation of colorless type-I PBs. A yellow type-II PB was recently proposed to occur in extracts of fall leaves of grapevine (Vitis vinifera), tentatively identified by its mass and UV/Vis absorption characteristics. Here, the first synthesis of a yellow type-II Chl catabolite (DYCC) from its presumed natural colorless type-II precursor is reported. A homogenate of a Spatiphyllum wallisii leaf was used as "green" means of effective and selective oxidation. The synthetic DYCC was fully characterized and identified with the yellow grapevine leaf pigment. As related yellow type-I PBs do, the DYCC functions as a reversible photoswitch by undergoing selective photo-induced Z/E isomerization of its C15=C16 bond.
Collapse
Affiliation(s)
- Chengjie Li
- Institute of Organic Chemistry & Centre of, Molecular Biosciences Innsbruck (CMBI)University of InnsbruckInnrain 80/826020InnsbruckAustria
- Present address: Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry & Molecular EngineeringEast China University of Science & TechnologyMeilong Rd 130200237ShanghaiChina
| | - Theresia Erhart
- Institute of Organic Chemistry & Centre of, Molecular Biosciences Innsbruck (CMBI)University of InnsbruckInnrain 80/826020InnsbruckAustria
| | - Xiujun Liu
- Institute of Organic Chemistry & Centre of, Molecular Biosciences Innsbruck (CMBI)University of InnsbruckInnrain 80/826020InnsbruckAustria
- Present address: Research Center of Analysis and TestEast China University of Science & TechnologyMeilong Rd 130200237ShanghaiChina
| | - Bernhard Kräutler
- Institute of Organic Chemistry & Centre of, Molecular Biosciences Innsbruck (CMBI)University of InnsbruckInnrain 80/826020InnsbruckAustria
| |
Collapse
|
9
|
Erhart T, Mittelberger C, Liu X, Podewitz M, Li C, Scherzer G, Stoll G, Valls J, Robatscher P, Liedl KR, Oberhuber M, Kräutler B. Novel Types of Hypermodified Fluorescent Phyllobilins from Breakdown of Chlorophyll in Senescent Leaves of Grapevine (Vitis vinifera). Chemistry 2018; 24:17268-17279. [PMID: 30079972 PMCID: PMC6282590 DOI: 10.1002/chem.201803128] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Indexed: 01/04/2023]
Abstract
The tetrapyrrolic chlorophyll catabolites (or phyllobilins, PBs) were analyzed in yellow fall leaves of the grape Chardonnay, a common Vitis vinifera white wine cultivar. The major fractions in leaf extracts of V. vinifera, tentatively assigned to PBs, were isolated and their structures elucidated. The dominant fraction is a dioxobilin-type non-fluorescent Chl-catabolite of a previously observed type. Two less polar fluorescent PBs were characterized as a novel dioxobilin-type fluorescent Chl-catabolite with a bicyclo-1',6'-glycosyl architecture, and its new fluorescent formyloxobilin-type analogue. The discovery of persistent hypermodified fluorescent PBs with the architecture of bicyclo-[17.3.1]-PBs (bcPBs), suggests the activity of an unknown enzyme that forges the 20-membered macroring at the tetrapyrrolic core of a fluorescent PB. bcPBs may play specific physiological roles in grapevine plants and represent endogenous anti-infective agents, as found similarly for other organic bicyclo-[n.3.1]-1',6'-glycosyl derivatives.
Collapse
Affiliation(s)
- Theresia Erhart
- Institute of Organic Chemistry & Centre of Molecular BiosciencesUniversity of InnsbruckInnrain 80/826020InnsbruckAustria
| | | | - Xiujun Liu
- Institute of Organic Chemistry & Centre of Molecular BiosciencesUniversity of InnsbruckInnrain 80/826020InnsbruckAustria
- Present address: Research Center of Analysis and TestEast China University of Science & TechnologyMeilong Rd 130200237ShanghaiChina
| | - Maren Podewitz
- Institute of General, Inorganic and Theoretical Chemistry & Centre of, Molecular BiosciencesUniversity of InnsbruckInnrain 80/826020InnsbruckAustria
| | - Chengjie Li
- Institute of Organic Chemistry & Centre of Molecular BiosciencesUniversity of InnsbruckInnrain 80/826020InnsbruckAustria
- Present address: Key Laboratory for Advanced Materials & Institute of, Fine Chemicals, School of Chemistry & Molecular EngineeringEast China University of Science & TechnologyMeilong Rd 130200237ShanghaiChina
| | - Gerhard Scherzer
- Institute of Organic Chemistry & Centre of Molecular BiosciencesUniversity of InnsbruckInnrain 80/826020InnsbruckAustria
| | - Gertrud Stoll
- Laimburg Research CentreLaimburg 6-Pfatten (Vadena)39040Auer (Ora), BZItaly
| | - Josep Valls
- Laimburg Research CentreLaimburg 6-Pfatten (Vadena)39040Auer (Ora), BZItaly
- Present address: Faculté des Sciences Pharmaceutiques, Unité de Recherche Enologie EA 4577Université de Bordeaux33882Villenave d'OrnonFrance
| | - Peter Robatscher
- Laimburg Research CentreLaimburg 6-Pfatten (Vadena)39040Auer (Ora), BZItaly
| | - Klaus R. Liedl
- Institute of General, Inorganic and Theoretical Chemistry & Centre of, Molecular BiosciencesUniversity of InnsbruckInnrain 80/826020InnsbruckAustria
| | - Michael Oberhuber
- Laimburg Research CentreLaimburg 6-Pfatten (Vadena)39040Auer (Ora), BZItaly
| | - Bernhard Kräutler
- Institute of Organic Chemistry & Centre of Molecular BiosciencesUniversity of InnsbruckInnrain 80/826020InnsbruckAustria
| |
Collapse
|
10
|
Erhart T, Vergeiner S, Kreutz C, Kräutler B, Müller T. Chlorophyllabbau im Farn - Entdeckung von Phyllobilin-Isomeren mit umgelagertem Kohlenstoffgerüst. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201807818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Theresia Erhart
- Institut für Organische Chemie und Zentrum für, Molekulare Biowissenschaften (CMBI); Universität Innsbruck; Innrain 80-82 6020 Innsbruck Österreich
| | - Stefan Vergeiner
- Institut für Organische Chemie und Zentrum für, Molekulare Biowissenschaften (CMBI); Universität Innsbruck; Innrain 80-82 6020 Innsbruck Österreich
| | - Christoph Kreutz
- Institut für Organische Chemie und Zentrum für, Molekulare Biowissenschaften (CMBI); Universität Innsbruck; Innrain 80-82 6020 Innsbruck Österreich
| | - Bernhard Kräutler
- Institut für Organische Chemie und Zentrum für, Molekulare Biowissenschaften (CMBI); Universität Innsbruck; Innrain 80-82 6020 Innsbruck Österreich
| | - Thomas Müller
- Institut für Organische Chemie und Zentrum für, Molekulare Biowissenschaften (CMBI); Universität Innsbruck; Innrain 80-82 6020 Innsbruck Österreich
| |
Collapse
|
11
|
Erhart T, Vergeiner S, Kreutz C, Kräutler B, Müller T. Chlorophyll Breakdown in a Fern-Discovery of Phyllobilin Isomers with a Rearranged Carbon Skeleton. Angew Chem Int Ed Engl 2018; 57:14937-14941. [PMID: 30144281 PMCID: PMC6220952 DOI: 10.1002/anie.201807818] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Indexed: 11/29/2022]
Abstract
All structure-based information on chlorophyll (Chl) breakdown in the higher plants relies on studies with angiosperms. Herein, the first investigation of a fern is reported, revealing a novel type of Chl catabolites (phyllobilins) in leaves of this large division of the vascular plants, and providing structural insights into an astounding metabolic process of the higher plants that appears to have played a role even in early phases of plant evolution. The tetrapyrrolic Chl catabolites in the cosmopolitan bracken fern were discovered to be phyllobilin isomers with an unprecedented skeleton, proposed to be the striking result of a rearrangement of a hypothetical phyllobilin precursor.
Collapse
Affiliation(s)
- Theresia Erhart
- Institute of Organic Chemistry and Center for Molecular BiosciencesUniversity of InnsbruckInnrain 80–826020InnsbruckAustria
| | - Stefan Vergeiner
- Institute of Organic Chemistry and Center for Molecular BiosciencesUniversity of InnsbruckInnrain 80–826020InnsbruckAustria
| | - Christoph Kreutz
- Institute of Organic Chemistry and Center for Molecular BiosciencesUniversity of InnsbruckInnrain 80–826020InnsbruckAustria
| | - Bernhard Kräutler
- Institute of Organic Chemistry and Center for Molecular BiosciencesUniversity of InnsbruckInnrain 80–826020InnsbruckAustria
| | - Thomas Müller
- Institute of Organic Chemistry and Center for Molecular BiosciencesUniversity of InnsbruckInnrain 80–826020InnsbruckAustria
| |
Collapse
|
12
|
Das A, Christ B, Hörtensteiner S. Characterization of the pheophorbide a oxygenase/phyllobilin pathway of chlorophyll breakdown in grasses. PLANTA 2018; 248:875-892. [PMID: 29951845 DOI: 10.1007/s00425-018-2946-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 06/22/2018] [Indexed: 06/08/2023]
Abstract
Although the PAO/phyllobilin pathway of chlorophyll breakdown is active in grass leaf senescence, the abundance of phyllobilins is far below the amount of degraded chlorophyll. The yellowing of fully developed leaves is the most prominent visual symptom of plant senescence. Thereby, chlorophyll is degraded via the so-called pheophorbide a oxygenase (PAO)/phyllobilin pathway to a species-specific set of phyllobilins, linear tetrapyrrolic products of chlorophyll breakdown. Here, we investigated the diversity and abundance of phyllobilins in cereal and forage crops, i.e. barley, rice, ryegrass, sorghum and wheat, using liquid chromatography-mass spectrometry. A total of thirteen phyllobilins were identified, among them four novel, not yet described ones, pointing to a rather high diversity of phyllobilin-modifying activities present in the Gramineae. Along with these phyllobilins, barley orthologs of known Arabidopsis thaliana chlorophyll catabolic enzymes were demonstrated to localize in the chloroplast, and two of them, i.e. PAO and pheophytin pheophorbide hydrolase, complemented respective Arabidopsis mutants. These data confirm functionality of the PAO/phyllobilin pathway in grasses. Interestingly, when comparing phyllobilin abundance with amounts of degraded chlorophyll in senescent leaves, in most analyzed grass species only minor fractions of chlorophyll were recovered as phyllobilins, opposite to A. thaliana where phyllobilin quantities match degraded chlorophyll rather well. These data show that, despite the presence and activity of the PAO/phyllobilin pathway in barley (and other cereals), phyllobilins do not accumulate stoichiometrically, implying possible degradation of chlorophyll beyond the phyllobilin level.
Collapse
Affiliation(s)
- Aditi Das
- Department of Plant and Microbial Biology, University of Zurich, Zollikerstrasse 107, 8008, Zurich, Switzerland
| | - Bastien Christ
- Department of Plant and Microbial Biology, University of Zurich, Zollikerstrasse 107, 8008, Zurich, Switzerland
- Whitehead Institute, Massachusetts Institute of Technology, Cambridge, MA, 02139-4307, USA
| | - Stefan Hörtensteiner
- Department of Plant and Microbial Biology, University of Zurich, Zollikerstrasse 107, 8008, Zurich, Switzerland.
| |
Collapse
|