1
|
Jiménez-González C, Fernández-De-Castro L, Torrado AM, Fuciños C, Díaz-de-Apodaca E, Rúa ML. Nutritional evaluation of high-value alternative proteins extracted from legume defective seeds. Food Chem 2025; 481:143936. [PMID: 40154068 DOI: 10.1016/j.foodchem.2025.143936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 02/28/2025] [Accepted: 03/16/2025] [Indexed: 04/01/2025]
Abstract
The high protein content of legumes, including P. vulgaris, L. culinaris, L. albus, and P. sativum, is increasingly valued in food formulations, driving interest in utilizing their by-products. This study evaluates the nutritional quality and applications of four legume protein concentrates derived from defective seeds. Analysis included amino acid composition, antinutrient presence, and in vitro digestion, along with structural analysis. Proximate composition, pigment, mineral, and bioactivity assays were also conducted. All concentrates surpassed 70 % protein concentration and presented a well-balanced amino acid profile meeting the requirements for healthy individuals. Bean concentrate exhibited elevated levels of trypsin inhibitor (53.27 ± 0.19 TIU/mg) and total phenolic compounds (0.82 ± 0.02 mg GAE/g), while pea concentrate showed the highest phytic acid content (2.67 ± 0.02 %). Bean concentrate displayed superior structural stability and lower in vitro protein digestibility (∼20 %), compared to the other concentrates (60-70 %). These findings optimize legume defective seeds utilization in plant-based products, addressing sustainability and enhancing nutritional value.
Collapse
Affiliation(s)
- Camila Jiménez-González
- Analytical and Food Chemistry Department, Biochemistry Laboratory (AA1 Research Group), Faculty of Sciences, University of Vigo, 32004 Ourense, Spain.
| | - Laura Fernández-De-Castro
- TECNALIA, Basque Research and Technology Alliance (BRTA), Parque Tecnológico de Álava, Leonardo Da Vinci 11, 01510 Miñano, Álava, Spain.
| | - Ana María Torrado
- Analytical and Food Chemistry Department, Biochemistry Laboratory (AA1 Research Group), Faculty of Sciences, University of Vigo, 32004 Ourense, Spain.
| | - Clara Fuciños
- Analytical and Food Chemistry Department, Biochemistry Laboratory (AA1 Research Group), Faculty of Sciences, University of Vigo, 32004 Ourense, Spain.
| | - Elena Díaz-de-Apodaca
- TECNALIA, Basque Research and Technology Alliance (BRTA), Parque Tecnológico de Álava, Leonardo Da Vinci 11, 01510 Miñano, Álava, Spain.
| | - María Luisa Rúa
- Analytical and Food Chemistry Department, Biochemistry Laboratory (AA1 Research Group), Faculty of Sciences, University of Vigo, 32004 Ourense, Spain.
| |
Collapse
|
2
|
Šaula T, Cigić B, Jamnik P, Kralj Cigić I, Poklar Ulrih N, Požrl T, Marolt G. Enrichment of the nutritional value of pea flour milling fractions through fermentation. Food Chem 2025; 476:143303. [PMID: 39965343 DOI: 10.1016/j.foodchem.2025.143303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/14/2024] [Accepted: 02/07/2025] [Indexed: 02/20/2025]
Abstract
In this work, pea flour and two milling fractions obtained by industrial-scale air classification were characterized and fermented by Lactiplantibacillus plantarum to increase their nutritional value. Scanning electron microscopy and chemical analysis revealed major differences in the morphology and composition of the flours. Protein-rich (43.7 %) fraction exhibits a few-fold higher mineral, spermidine (290 μg/g), but also a higher phytate (20.4 mg/g) content compared to starch-rich fraction. Flour type and inoculum majorly influenced the composition of the fermented product. In spontaneously fermented flours, biogenic amines accumulated up to 6.6 mg/g, which was the main drawback besides the large variations between batches, as confirmed by metagenomic analysis. Higher contents of lactic acid, free amino groups formed by proteolysis and gamma-aminobutyric acid were determined in inoculated fermentations of protein rich fraction, whereas a higher relative bioavailability of minerals was found in the inoculated starch-rich fraction, as the phytate content was reduced by 42 %.
Collapse
Affiliation(s)
- Tina Šaula
- University of Ljubljana, Biotechnical Faculty, Jamnikarjeva 101, 1000 Ljubljana, Slovenia.
| | - Blaž Cigić
- University of Ljubljana, Biotechnical Faculty, Jamnikarjeva 101, 1000 Ljubljana, Slovenia.
| | - Polona Jamnik
- University of Ljubljana, Biotechnical Faculty, Jamnikarjeva 101, 1000 Ljubljana, Slovenia.
| | - Irena Kralj Cigić
- University of Ljubljana, Faculty of Chemistry and Chemical Technology, Večna pot 113, 1000 Ljubljana, Slovenia.
| | - Nataša Poklar Ulrih
- University of Ljubljana, Biotechnical Faculty, Jamnikarjeva 101, 1000 Ljubljana, Slovenia.
| | - Tomaž Požrl
- University of Ljubljana, Biotechnical Faculty, Jamnikarjeva 101, 1000 Ljubljana, Slovenia.
| | - Gregor Marolt
- University of Ljubljana, Faculty of Chemistry and Chemical Technology, Večna pot 113, 1000 Ljubljana, Slovenia.
| |
Collapse
|
3
|
Das PP, Xu C, Lu Y, Liu E, Jafarian Z, Tanaka T, Korber D, Nickerson M, Rajagopalan N. Identifying microbial proteins and changes in proteome in spontaneously fermented pulse protein isolates. FOOD CHEMISTRY. MOLECULAR SCIENCES 2025; 10:100254. [PMID: 40177108 PMCID: PMC11964756 DOI: 10.1016/j.fochms.2025.100254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 02/18/2025] [Accepted: 03/10/2025] [Indexed: 04/05/2025]
Abstract
Pulses are a sustainable source of plant-based proteins, but they often fall short in terms of sensory attributes and functionality. Fermentation has been investigated as a natural food processing method to address these limitations. Spontaneous fermentation, where native microflora grow without the addition of specific microbes, has been traditionally used in food processing by various cultures around the world. However, there is a knowledge gap regarding the changes that occur in protein composition during spontaneous fermentation. This study used capillary gel electrophoresis and liquid chromatography coupled to tandem mass spectrometry to examine the changes in protein size distribution, identify microbial proteins and understand proteome-level changes that occurred during the spontaneous fermentation of three protein isolate substrates: chickpea, faba bean, and lentil. The findings revealed that proteins from a variety of bacterial and fungal species were identified in all substrates, and the number and quantity of these microbial proteins increased during spontaneous fermentation. This rise in microbial protein content was associated with the hydrolysis of proteins from the pulse substrates, which could potentially alter the functionality of the protein ingredient.
Collapse
Affiliation(s)
- Prem Prakash Das
- National Research Council Canada, 110 Gymnasium Pl, Saskatoon, SK S7N 0W9, Canada
| | - Caishuang Xu
- National Research Council Canada, 110 Gymnasium Pl, Saskatoon, SK S7N 0W9, Canada
| | - Yuping Lu
- National Research Council Canada, 110 Gymnasium Pl, Saskatoon, SK S7N 0W9, Canada
| | - Enyu Liu
- University of Saskatchewan, Department of Food and Bioproduct Sciences, 51 Campus Drive Saskatoon, SK S7N 5A8, Canada
| | - Zahra Jafarian
- University of Saskatchewan, Department of Food and Bioproduct Sciences, 51 Campus Drive Saskatoon, SK S7N 5A8, Canada
| | - Takuji Tanaka
- University of Saskatchewan, Department of Food and Bioproduct Sciences, 51 Campus Drive Saskatoon, SK S7N 5A8, Canada
| | - Darren Korber
- University of Saskatchewan, Department of Food and Bioproduct Sciences, 51 Campus Drive Saskatoon, SK S7N 5A8, Canada
| | - Michael Nickerson
- University of Saskatchewan, Department of Food and Bioproduct Sciences, 51 Campus Drive Saskatoon, SK S7N 5A8, Canada
| | - Nandhakishore Rajagopalan
- National Research Council Canada, 110 Gymnasium Pl, Saskatoon, SK S7N 0W9, Canada
- University of Saskatchewan, Department of Chemical and Biological Engineering, 57 Campus Drive Saskatoon SK, S7N 5A9, Canada
| |
Collapse
|
4
|
Guerra‐García A, Balarynová J, Smykal P, von Wettberg EJ, Noble SD, Bett KE. Genetic and transcriptomic analysis of lentil seed imbibition and dormancy in relation to its domestication. THE PLANT GENOME 2025; 18:e70021. [PMID: 40164967 PMCID: PMC11958875 DOI: 10.1002/tpg2.70021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 02/07/2025] [Accepted: 02/24/2025] [Indexed: 04/02/2025]
Abstract
Seed dormancy is an adaptation that delays germination to prevent the start of this process during unsuitable conditions. It is crucial in wild species but its loss was selected during crop domestication to ensure a fast and uniform germination. Water uptake, or imbibition, is the first step of germination. In the Fabaceae family, seeds have physical dormancy, in which seed coats are impermeable to water. We used an interspecific cross between an elite lentil line (Lens culinaris) and a wild lentil (L. orientalis) to investigate the genetic basis of imbibition capacity through quantitative trait locus (QTL) mapping and by using RNA from embryos and seed coats at different development stages, and phenotypic data of seed coat thickness (SCT) and proportion of imbibed seeds (PIS). Both characteristics were consistent throughout different years and locations, suggesting a hereditary component. QTL results suggest that they are each controlled by relatively few loci. Differentially expressed genes (DEGs) within the QTL were considered candidate genes. Two glycosyl-hydrolase genes (a β-glucosidase and a β-galactosidase), which degrade complex polysaccharides in the cell wall, were found among the candidate genes, and one of them had a positive correlation (β-glucosidase) between gene expression and imbibition capacity, and the other gene (β-galactosidase) presented a negative correlation between gene expression and SCT.
Collapse
Affiliation(s)
- Azalea Guerra‐García
- Departamento de Biotecnología y Bioquímica, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV‐IPN)IrapuatoMéxico
| | | | - Petr Smykal
- Department of BotanyPalacký UniversityOlomoucCzech Republic
| | - Eric J von Wettberg
- Department of Agriculture, Landscape, and Environment, Gund Institute for the EnvironmentUniversity of VermontBurlingtonVermontUSA
| | - Scott D. Noble
- Department of Mechanical EngineeringUniversity of SaskatchewanSaskatoonSaskatchewanCanada
| | - Kirstin E. Bett
- Department of Plant SciencesUniversity of SaskatchewanSaskatoonSaskatchewanCanada
| |
Collapse
|
5
|
Mazı BG, Çağlayan K. Ultrasound-Assisted Soaking and Solution Effects on the Anti-Nutritional Quality and Physical Properties of Legume Seeds. Food Sci Nutr 2025; 13:e70152. [PMID: 40196229 PMCID: PMC11973125 DOI: 10.1002/fsn3.70152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 03/12/2025] [Accepted: 03/19/2025] [Indexed: 04/09/2025] Open
Abstract
This study investigates the effects of soaking method (ultrasound-assisted soaking (UAS) and conventional soaking (CS)), soaking solutions with varying pH (distilled water (W), citric acid (CA), and sodium bicarbonate (SB)), and soaking times (4, 8, and 12 h) on anti-nutritional factors (phytic acid (PA) and trypsin inhibitor (TI) contents), moisture absorption, and hardness of chickpeas, beans, and soybeans. Additionally, the study examined changes in soluble solids content (SSC), pH, turbidity, and color of the soaking solutions. While the soaking method and solution significantly (p < 0.05) affected TI content in seeds, they had no notable impact on PA content. The most notable reductions in PA were observed following 12 h of CS: 27.0% in chickpeas and 38.9% in soybeans soaked in water, and 30.5% in beans soaked in sodium bicarbonate. Sodium bicarbonate was more effective than citric acid and water in reducing TI. UAS generally led to greater TI reductions compared to CS, although its effectiveness was reduced in sodium bicarbonate. UAS resulted in higher hydration rates across all solutions. Chickpeas and beans soaked in citric acid for 4 h and soybeans soaked in citric acid for 12 h exhibited the lowest hardness values. UAS notably increased SSC, turbidity, and pH changes in the soaking solutions compared to CS.
Collapse
Affiliation(s)
- Bekir Gökçen Mazı
- Department of Food Engineering, Agricultural FacultyOrdu UniversityTurkey
| | - Kübra Çağlayan
- Department of Food Engineering, Agricultural FacultyOrdu UniversityTurkey
| |
Collapse
|
6
|
León-Cortés D, Arce-Villalobos K, Bogantes-Ledezma D, Irías-Mata A, Chaves-Barrantes N, Vinas M. Anti-aflatoxin potential of phenolic compounds from common beans (Phaseolus vulgaris L.). Food Chem 2025; 469:142597. [PMID: 39732079 DOI: 10.1016/j.foodchem.2024.142597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 12/16/2024] [Accepted: 12/19/2024] [Indexed: 12/30/2024]
Abstract
Common beans (Phaseolus vulgaris L.) are widely consumed legumes in Latin America and Africa, valued for their nutritional compounds and antioxidants. Their high polyphenol content contributes to the antioxidant properties, with bioactive compounds showing antifungal and antimycotoxin effects. Certain polyphenols, accumulated in the grain coat, exhibit antimicrobial activity. Mycotoxins, produced mainly by fungi of the genera Aspergillus, Fusarium, and Penicillium, pose health risks. This study explores polyphenols in tepary bean and in different common bean varieties, assessing their effect against aflatoxins. In vitro tests were done using grains inoculated with A. flavus to induce mycotoxin production, while polyphenols were extracted from non-inoculated grains. Polyphenol-rich extract reduced aflatoxin B1 produced by the fungus. In most bean varieties, especially red-grain types, the fungus exhibited decreased aflatoxin production, negatively correlating with flavonoids. Catechin was associated with reduced A. flavus toxigenicity. This study highlights beans' potential in mitigating aflatoxin contamination through their phenolic compounds.
Collapse
Affiliation(s)
- Dayana León-Cortés
- Centro para Investigaciones en Granos y Semillas, Universidad de Costa Rica, 11501 San Pedro, San José, Costa Rica.
| | - Kelvin Arce-Villalobos
- Centro para Investigaciones en Granos y Semillas, Universidad de Costa Rica, 11501 San Pedro, San José, Costa Rica.
| | - Diego Bogantes-Ledezma
- Centro para Investigaciones en Granos y Semillas, Universidad de Costa Rica, 11501 San Pedro, San José, Costa Rica.
| | - Andrea Irías-Mata
- Centro para Investigaciones en Granos y Semillas, Universidad de Costa Rica, 11501 San Pedro, San José, Costa Rica.
| | - Néstor Chaves-Barrantes
- Estación Experimental Agrícola Fabio Baudrit Moreno, Universidad de Costa Rica, 20113 Garita, Alajuela, Costa Rica.
| | - María Vinas
- Centro para Investigaciones en Granos y Semillas, Universidad de Costa Rica, 11501 San Pedro, San José, Costa Rica.
| |
Collapse
|
7
|
Herrera MD, Cruz-Bravo RK, Reveles-Torres LR, López JA, Torres-Aguilar MM, García-Robles MJ, Reyes-Estrada CA, Fraire-Velazquez S. Noodles Elaborated with Wheat and Bean Cotyledon Flours Improve Dyslipidemia and Liver Function in Streptozotocin-Induced Diabetic Rats. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2025; 80:96. [PMID: 40111620 DOI: 10.1007/s11130-025-01333-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/25/2025] [Indexed: 03/22/2025]
Abstract
Type 2 diabetes (T2D) has been intrinsically linked to dyslipidemia. The intake of common beans (Phaseolus vulgaris) is recommended to lower the risk of developing this disease; however, despite its beneficial contribution to health, its value chain has been weakened due to the lack of competitiveness in the market. The aim of this work was to evaluate the capacity of black bean cotyledon flour noodles to modulate lipid profile, atherosclerosis risk and hepatic enzymes levels using diabetic rats. T2D was induced with streptozotocin (30 mg/kg) after a five-week intake of a high fat diet. Metformin-, wheat noodles-, and bean noodles-treated groups were evaluated. During treatment, bean noodles lowered blood cholesterol. After sacrifice, its intake during four months also improved triglycerides and very low density lipoprotein, further related to in vitro inhibition of lipase activity. Moreover, bean noodles-fed rats exhibit decrease hepatic enzymes levels. Results suggest that intake of bean noodles prevent dyslipidemia and improve liver function. Based on the current results, further clinical trials are highly recommended to offer a novel functional food alternative to diabetic patients, and healthy-oriented human consumers.
Collapse
Affiliation(s)
- Mayra Denise Herrera
- Zacatecas Experimental Station (CEZAC-INIFAP), Calera de VR, Zacatecas, México
- Academic Unit of Biological Sciences, Autonomous University of Zacatecas, Zacatecas, México
| | | | - Luis Roberto Reveles-Torres
- Zacatecas Experimental Station (CEZAC-INIFAP), Calera de VR, Zacatecas, México
- Academic Unit of Biological Sciences, Autonomous University of Zacatecas, Zacatecas, México
| | - Jesús Adrián López
- Academic Unit of Biological Sciences, Autonomous University of Zacatecas, Zacatecas, México
| | | | | | | | - Saul Fraire-Velazquez
- Academic Unit of Biological Sciences, Autonomous University of Zacatecas, Zacatecas, México
| |
Collapse
|
8
|
Ngoc Dinh CV, Prabsangob N. Black Gram ( Vigna mungo L.) Husk as a Source of Bioactive Compounds: An Evaluation of Starch Digestive Enzyme Inhibition Effects. Foods 2025; 14:846. [PMID: 40077549 PMCID: PMC11899647 DOI: 10.3390/foods14050846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 02/17/2025] [Accepted: 02/20/2025] [Indexed: 03/14/2025] Open
Abstract
This research recovered bioactive compounds from black gram husk (BGH, a by-product of sprout processing) using different ethanol concentrations and maceration times. Based on the results, the highest phenolic and saponin contents were recovered using an 80% ethanolic solution for 3 h, with the extract having both antioxidant and starch digestive enzyme inhibition effects. The major bioactive compounds present in the extract were gallic acid, gentisic acid, ferulic acid, and vitexin. The extract from BGH had an effective binding affinity to α-glucosidase, resulting in a potent ability of the extract to delay enzyme activity. Based on in vitro starch digestion using cooked rice as a model, adding the extract (10 mg/mL) increased the resistant starch content (from 53.9% to 55.9%) and lowered the estimated glucose index (from 83.1% to 81.0%) as compared to the control without the extract. Based on the overall results, the BGH extract could be promising as a functional ingredient with antioxidant activity and the ability to control postprandial blood glucose levels in the development of healthy food products.
Collapse
Affiliation(s)
| | - Nopparat Prabsangob
- Department of Product Development, Faculty of Agro-Industry, Kasetsart University, Bangkok 10900, Thailand
| |
Collapse
|
9
|
Huang Y, Xu B. Critical review on the intervention effects of flavonoids from cereal grains and food legumes on lipid metabolism. Food Chem 2025; 464:141790. [PMID: 39509881 DOI: 10.1016/j.foodchem.2024.141790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 09/22/2024] [Accepted: 10/24/2024] [Indexed: 11/15/2024]
Abstract
Obesity, often caused by disorders of lipid metabolism, is a global health concern. Flavonoids from staple grains and legumes are expected as a safer and more cost-effective alternative for the future development of dietary flavonoid-based anti-obesity dietary supplements or drugs. This review systematically summarized their content variation, metabolism in the human body, effects and molecular mechanisms on lipid metabolism. These flavonoids intervene in lipid metabolism by inhibiting lipogenesis, promoting lipolysis, enhancing energy metabolism, reducing appetite, suppressing inflammation, enhancing insulin sensitivity, and improving the composition of the gut microbial. Fermentation and sprouting techniques enhance flavonoid content and these beneficial effects. The multidirectional intervention of lipid metabolism is mainly through regulating AMPK signaling pathway. This study provides potential improvement for challenges of application, including addressing high extraction costs and improving bioavailability, ensuring safety, filling clinical study gaps, and investigating potential synergistic effects between flavonoids in grains and legumes, and other components.
Collapse
Affiliation(s)
- Yin Huang
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai, Guangdong 519087, China
| | - Baojun Xu
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai, Guangdong 519087, China.
| |
Collapse
|
10
|
Ayala-Flores F, Monroy-Martínez W, Rodríguez-Rojas M, Chávez-Parga MC, González-Hernández JC. Assessing the antioxidant potential and antibacterial properties of pomegranate peel extracts from Wonderful and Valenciana varieties. BRAZ J BIOL 2025; 84:e288906. [PMID: 39907342 DOI: 10.1590/1519-6984.288906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 10/13/2024] [Indexed: 02/06/2025] Open
Abstract
Recent studies have found a high content of polyphenolic compounds in the fruit produced by pomegranate trees (peel, arils, seeds, and capillary membranes). Most polyphenols are generally accepted to be potent antioxidants with anti-inflammatory properties. Pomegranate peel is considered a waste product of the human diet. This value is equivalent to 50% of the weight of the fruit, which is why we propose a comparative analysis of both its antioxidant and microbicidal activity in two of the most cultivated varieties in Mexico, Wonderful (sour) and Valenciana (sweet), to provide added value to products of the region by obtaining products of high biological value via a process of easy industrial scaling.
Collapse
Affiliation(s)
- F Ayala-Flores
- Universidad Michoacana de San Nicolás de Hidalgo - UMSNH, División de Estudios de Posgrado de la Facultad de Ingeniería Química, Morelia, Michoacán, México
| | - W Monroy-Martínez
- Universidad Michoacana de San Nicolás de Hidalgo - UMSNH, División de Estudios de Posgrado de la Facultad de Ingeniería Química, Morelia, Michoacán, México
| | - M Rodríguez-Rojas
- Tecnológico Nacional de México, Instituto Tecnológico de Morelia, Morelia, Michoacán, México
| | - M C Chávez-Parga
- Universidad Michoacana de San Nicolás de Hidalgo - UMSNH, División de Estudios de Posgrado de la Facultad de Ingeniería Química, Morelia, Michoacán, México
| | - J C González-Hernández
- Tecnológico Nacional de México, Instituto Tecnológico de Morelia, Morelia, Michoacán, México
| |
Collapse
|
11
|
Napiórkowska-Baran K, Treichel P, Dardzińska A, Majcherczak A, Pilichowicz A, Szota M, Szymczak B, Alska E, Przybyszewska J, Bartuzi Z. Immunomodulatory Effects of Selected Non-Nutritive Bioactive Compounds and Their Role in Optimal Nutrition. Curr Issues Mol Biol 2025; 47:89. [PMID: 39996810 PMCID: PMC11854453 DOI: 10.3390/cimb47020089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/24/2025] [Accepted: 01/27/2025] [Indexed: 02/26/2025] Open
Abstract
The contemporary approach to nutrition increasingly considers the role of non-nutritive bioactive compounds in modulating the immune system and maintaining health. This article provides up-to-date insight into the immunomodulatory effects of selected bioactive compounds, including micro- and macronutrients, vitamins, as well as other health-promoting substances, such as omega-3 fatty acids, probiotics, prebiotics, postbiotics (including butyric acid and sodium butyrate), coenzyme Q10, lipoic acid, and plant-derived components such as phenolic acids, flavonoids, coumarins, alkaloids, polyacetylenes, saponins, carotenoids, and terpenoids. Micro- and macronutrients, such as zinc, selenium, magnesium, and iron, play a pivotal role in regulating the immune response and protecting against oxidative stress. Vitamins, especially vitamins C, D, E, and B, are vital for the optimal functioning of the immune system as they facilitate the production of cytokines, the differentiation of immunological cells, and the neutralization of free radicals, among other functions. Omega-3 fatty acids exhibit strong anti-inflammatory effects and enhance immune cell function. Probiotics, prebiotics, and postbiotics modulate the intestinal microbiota, thereby promoting the integrity of the intestinal barrier and communication between the microbiota and the immune system. Coenzyme Q10, renowned for its antioxidant attributes, participates in the protection of cells from oxidative stress and promotes energy processes essential for immune function. Sodium butyrate and lipoic acid exhibit anti-inflammatory effects and facilitate the regeneration of the intestinal epithelium, which is crucial for the maintenance of immune homeostasis. This article emphasizes the necessity of an integrative approach to optimal nutrition that considers not only nutritional but also non-nutritional bioactive compounds to provide adequate support for immune function. Without them, the immune system will never function properly, because it has been adapted to this in the course of evolution. The data presented in this article may serve as a foundation for further research into the potential applications of bioactive components in the prevention and treatment of diseases associated with immune dysfunction.
Collapse
Affiliation(s)
- Katarzyna Napiórkowska-Baran
- Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Torun, 85-067 Bydgoszcz, Poland; (M.S.); (E.A.); (Z.B.)
| | - Paweł Treichel
- Student Research Club of Clinical Immunology, Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Torun, 85-067 Bydgoszcz, Poland; (P.T.); (A.D.); (A.M.); (A.P.); (B.S.)
| | - Anita Dardzińska
- Student Research Club of Clinical Immunology, Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Torun, 85-067 Bydgoszcz, Poland; (P.T.); (A.D.); (A.M.); (A.P.); (B.S.)
| | - Agata Majcherczak
- Student Research Club of Clinical Immunology, Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Torun, 85-067 Bydgoszcz, Poland; (P.T.); (A.D.); (A.M.); (A.P.); (B.S.)
| | - Anastazja Pilichowicz
- Student Research Club of Clinical Immunology, Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Torun, 85-067 Bydgoszcz, Poland; (P.T.); (A.D.); (A.M.); (A.P.); (B.S.)
| | - Maciej Szota
- Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Torun, 85-067 Bydgoszcz, Poland; (M.S.); (E.A.); (Z.B.)
| | - Bartłomiej Szymczak
- Student Research Club of Clinical Immunology, Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Torun, 85-067 Bydgoszcz, Poland; (P.T.); (A.D.); (A.M.); (A.P.); (B.S.)
| | - Ewa Alska
- Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Torun, 85-067 Bydgoszcz, Poland; (M.S.); (E.A.); (Z.B.)
| | - Justyna Przybyszewska
- Department of Nutrition and Dietetics, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Torun, 85-067 Bydgoszcz, Poland;
| | - Zbigniew Bartuzi
- Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Torun, 85-067 Bydgoszcz, Poland; (M.S.); (E.A.); (Z.B.)
| |
Collapse
|
12
|
Linares-Castañeda A, Jiménez-Martínez C, Sánchez-Chino XM, Pérez-Pérez V, Cid-Gallegos MS, Corzo-Ríos LJ. Modifying of non-nutritional compounds in legumes: Processing strategies and new technologies. Food Chem 2025; 463:141603. [PMID: 39405829 DOI: 10.1016/j.foodchem.2024.141603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/19/2024] [Accepted: 10/07/2024] [Indexed: 11/14/2024]
Abstract
Legumes are consumed worldwide, are notable for their nutritional quality, however, contain certain non-nutritional compounds (NNCs) that can affect the absorption of nutrients, though these may exhibit bioactive properties. Various processing methods can modify the concentration of NNCs, including soaking and germination. These methods can be combined with other thermal, non-thermal, and bioprocessing treatments to enhance their efficiency. The efficacy of these methods is contingent upon the specific types of NNCs and legume in question. This work examines the effectiveness of these processing methods in terms of modifying the concentration of NNCs present in legumes as well as the potential use of emerging technologies, to enhance the level of NNCs modification in legumes. These technologies could increase the functional use of legume flours, potentially leading to new opportunities for incorporating legume-based ingredients in a range of culinary applications, thereby enhancing the diets of many individuals worldwide.
Collapse
Affiliation(s)
- Alejandra Linares-Castañeda
- Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (IPN), Av. Wilfrido Massieu S/N, Unidad Profesional Adolfo López Mateos, Zacatenco, Delegación Gustavo A. Madero, 07738 Mexico City, Mexico
| | - Cristian Jiménez-Martínez
- Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (IPN), Av. Wilfrido Massieu S/N, Unidad Profesional Adolfo López Mateos, Zacatenco, Delegación Gustavo A. Madero, 07738 Mexico City, Mexico
| | - Xariss M Sánchez-Chino
- Departamento de Salud, El Colegio de la Frontera Sur-Villahermosa, Carr. Villahermsa-Reforma Km 15.5 S/N. Rancheria Guineo 2ª sección CP. 86280 Villahermosa,Tabasco, Mexico
| | - Viridiana Pérez-Pérez
- Departamento de Bioprocesos, Unidad Profesional Interdisciplinaria de Biotecnología, Instituto Politécnico Nacional. Av. Acueducto S/N, Barrio La Laguna, Col. Ticomán, 07340 México City, Mexico
| | - María Stephanie Cid-Gallegos
- Departamento de Bioprocesos, Unidad Profesional Interdisciplinaria de Biotecnología, Instituto Politécnico Nacional. Av. Acueducto S/N, Barrio La Laguna, Col. Ticomán, 07340 México City, Mexico
| | - Luis Jorge Corzo-Ríos
- Departamento de Bioprocesos, Unidad Profesional Interdisciplinaria de Biotecnología, Instituto Politécnico Nacional. Av. Acueducto S/N, Barrio La Laguna, Col. Ticomán, 07340 México City, Mexico.
| |
Collapse
|
13
|
Hernández-Ruiz RG, Olivares-Ochoa XC, Salinas-Varela Y, Guajardo-Espinoza D, Roldán-Flores LG, Rivera-Leon EA, López-Quintero A. Phenolic Compounds and Anthocyanins in Legumes and Their Impact on Inflammation, Oxidative Stress, and Metabolism: Comprehensive Review. Molecules 2025; 30:174. [PMID: 39795230 PMCID: PMC11722078 DOI: 10.3390/molecules30010174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 12/06/2024] [Accepted: 12/07/2024] [Indexed: 01/13/2025] Open
Abstract
Inflammation, oxidative stress, and metabolic diseases are intricately linked in a complex, self-reinforcing relationship. Inflammation can induce oxidative stress, while oxidative stress can trigger inflammatory responses, creating a cycle that contributes to the development and progression of metabolic disorders; in addition, these effects can be observed at systemic and local scales. Both processes lead to cellular damage, mitochondrial dysfunction, and insulin resistance, particularly affecting adipose tissue, the liver, muscles, and the gastrointestinal tract. This results in impaired metabolic function and energy production, contributing to conditions such as type 2 diabetes, obesity, and metabolic syndrome. Legumes are a good source of phenolic compounds and anthocyanins that exert an antioxidant effect-they directly neutralize reactive oxygen species and free radicals, reducing oxidative stress. In vivo, in vitro, and clinical trial studies demonstrate that these compounds can modulate key cellular signaling pathways involved in inflammation and metabolism, improving insulin sensitivity and regulating lipid and glucose metabolism. They also exert anti-inflammatory effects by inhibiting proinflammatory enzymes and cytokines. Additionally, anthocyanins and phenolics may positively influence the gut microbiome, indirectly affecting metabolism and inflammation.
Collapse
Affiliation(s)
- Rocio Guadalupe Hernández-Ruiz
- Doctorado en Ciencias de la Nutrición Traslacional, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara (UdeG), Guadalajara 44340, Jalisco, Mexico; (R.G.H.-R.); (X.C.O.-O.); (Y.S.-V.)
| | - Xochitl Citalli Olivares-Ochoa
- Doctorado en Ciencias de la Nutrición Traslacional, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara (UdeG), Guadalajara 44340, Jalisco, Mexico; (R.G.H.-R.); (X.C.O.-O.); (Y.S.-V.)
| | - Yahatziri Salinas-Varela
- Doctorado en Ciencias de la Nutrición Traslacional, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara (UdeG), Guadalajara 44340, Jalisco, Mexico; (R.G.H.-R.); (X.C.O.-O.); (Y.S.-V.)
| | | | | | - Edgar Alfonso Rivera-Leon
- Instituto de Nutrigenética y Nutrigenómica Traslacional, CUCS, UdeG, Guadalajara 44340, Jalisco, Mexico;
- Departamento de Ciencias de la Salud, Centro Universitario de los Altos (CUAltos), UdeG, Tepatitlán de Morelos 47620, Jalisco, Mexico
| | - Andres López-Quintero
- Doctorado en Ciencias de la Nutrición Traslacional, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara (UdeG), Guadalajara 44340, Jalisco, Mexico; (R.G.H.-R.); (X.C.O.-O.); (Y.S.-V.)
- Instituto de Nutrigenética y Nutrigenómica Traslacional, CUCS, UdeG, Guadalajara 44340, Jalisco, Mexico;
| |
Collapse
|
14
|
Arnal M, Gallego M, Mora L, Talens P. Antinutritional factors and protein digestibility of broad bean flours hydrolysed during soaking using vacuum enzyme impregnation. Food Res Int 2025; 199:115353. [PMID: 39658157 DOI: 10.1016/j.foodres.2024.115353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/14/2024] [Accepted: 11/13/2024] [Indexed: 12/12/2024]
Abstract
The hydrolysis of legume proteins improves their nutritional and functional properties. Usually done by mixing flour with an enzyme solution, the process can be simplified using vacuum enzyme impregnation during soaking. This study used vacuum impregnation with papain or bromelain to obtain hydrolysed broad bean flours. It examined the impact of vacuum impregnation and enzyme incorporation on hydration kinetics and the impact of hydrolysis and dehulling on antinutritional factors and protein digestibility. Vacuum impregnation accelerated hydration and enzyme incorporation did not alter the hydration rate. Maximum hydrolysis degrees were 9.1 % with papain and 8.8 % with bromelain after 4 h of soaking. Hydrolysis increased phytic acid, total phenolics, and tannins content while decreasing trypsin inhibitors. Dehulling increased phytic acid and trypsin inhibitors, reduced tannins, and enhanced protein digestibility. Vacuum enzyme impregnation during soaking was effective for hydration and protein hydrolysis, modifying the nutritional properties of broad bean flours.
Collapse
Affiliation(s)
- Milagros Arnal
- Dpto. Tecnología de Alimentos, Instituto Universitario de Ingeniería de Alimentos - FoodUPV, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - Marta Gallego
- Instituto de Agroquímica y Tecnología de Alimentos (CSIC), Avenue Agustín Escardino 7, 46980 Paterna, Valencia, Spain
| | - Leticia Mora
- Instituto de Agroquímica y Tecnología de Alimentos (CSIC), Avenue Agustín Escardino 7, 46980 Paterna, Valencia, Spain
| | - Pau Talens
- Dpto. Tecnología de Alimentos, Instituto Universitario de Ingeniería de Alimentos - FoodUPV, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain.
| |
Collapse
|
15
|
Yehmed J, Tlahig S, Mohamed A, Yahia H, Lachiheb B, Yahia LB, Loumerem M. Nutritional and Phytochemical Profiling of Vicia faba L. var. Minor Seeds: a Multifaceted Exploration of Natural Antioxidants and Functional Food Potential. Appl Biochem Biotechnol 2024; 196:8471-8492. [PMID: 38878163 DOI: 10.1007/s12010-024-04993-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/05/2024] [Indexed: 01/04/2025]
Abstract
This study explores the nutritional and phytochemical profiling of twenty-three genotypes of Vicia faba L. var. minor seeds cultivated in the experimental field of the Arid Lands Institute of Medenine. Our comprehensive analysis encompasses fatty acid composition, sugar content, phytochemical composition, and antioxidant potential, providing a nuanced understanding of the seeds' nutritive quality. The investigation revealed substantial variations among genotypes, showcasing the potential for targeted nutritional enhancement. Quantification of total polyphenols, flavonoids, condensed tannins, and radical scavenging activities revealed average values of 16.46 mg GAE/g DW, 6.27 mg CTE/g DW, 0.47 mg CE/g DW, and 0.146 mM TEAC, respectively. Notably, the seeds exhibited a low tannin content, a desirable trait for animal feed applications. Liquid chromatography-mass spectrometry (LC-MS) was employed for the identification of phenolic compounds, unearthing the prevalence of quinic acid and flavanols, including catechin (+) and epicatechin. Sugar analysis identified the presence of glucose and sucrose, emphasizing the seeds' unique carbohydrate composition. Gas chromatography elucidated the fatty acid profile, spotlighting prominent components such as palmitic acid (13.87%), stearic acid (3.37%), oleic acid (27.66%), linoleic acid (45.83%), and linolenic acid (3.53%). The findings underscore the seeds' nutritive significance, positioning them as rich sources of natural antioxidants, fatty acids, and phenolic compounds. Moreover, the extracts' favorable tannin content positions them as potential candidates for functional food applications, showcasing their promise as sources of bioactive molecules with diverse applications.
Collapse
Affiliation(s)
- Jamila Yehmed
- Dry Land Farming and Oasis Cropping Laboratory (LR16IRA02), Institute of Arid Regions, 4119 Medenine, University of Gabes, Gabes, Tunisia.
- Faculty of Sciences of Gabes, University of Gabes, 6072 Zrig Gabes, Gabes, Tunisia.
| | - Samir Tlahig
- Dry Land Farming and Oasis Cropping Laboratory (LR16IRA02), Institute of Arid Regions, 4119 Medenine, University of Gabes, Gabes, Tunisia.
- Project Management Office, University of Carthage, Avenue of the Republic BP 77-1054, Amilcar, Tunisia.
| | - Amina Mohamed
- Dry Land Farming and Oasis Cropping Laboratory (LR16IRA02), Institute of Arid Regions, 4119 Medenine, University of Gabes, Gabes, Tunisia
| | - Hedi Yahia
- Dry Land Farming and Oasis Cropping Laboratory (LR16IRA02), Institute of Arid Regions, 4119 Medenine, University of Gabes, Gabes, Tunisia
| | - Belgacem Lachiheb
- Dry Land Farming and Oasis Cropping Laboratory (LR16IRA02), Institute of Arid Regions, 4119 Medenine, University of Gabes, Gabes, Tunisia
| | - Leila Ben Yahia
- Dry Land Farming and Oasis Cropping Laboratory (LR16IRA02), Institute of Arid Regions, 4119 Medenine, University of Gabes, Gabes, Tunisia
| | - Mohamed Loumerem
- Dry Land Farming and Oasis Cropping Laboratory (LR16IRA02), Institute of Arid Regions, 4119 Medenine, University of Gabes, Gabes, Tunisia
| |
Collapse
|
16
|
Bishayee A, Kavalakatt J, Sunkara C, Johnson O, Zinzuwadia SS, Collignon TE, Banerjee S, Barbalho SM. Litchi (Litchi chinensis Sonn.): A comprehensive and critical review on cancer prevention and intervention. Food Chem 2024; 457:140142. [PMID: 38936122 DOI: 10.1016/j.foodchem.2024.140142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/05/2024] [Accepted: 06/14/2024] [Indexed: 06/29/2024]
Abstract
Litchi (Litchi chinensis Sonn.) is a tropical fruit with various health benefits. The objective of this study is to present a thorough analysis of the cancer preventive and anticancer therapeutic properties of litchi constituents and phytocompounds. The Preferred Reporting Items for Systematic Reviews and Meta-Analysis criteria were followed in this work. Various litchi extracts and constituents were studied for their anticancer effects. In vitro studies showed that litchi-derived components reduced cell proliferation, induced cytotoxicity, and promoted autophagy via increased cell cycle arrest and apoptosis. Based on in vivo studies, litchi flavonoids and other extracted constituents significantly reduced tumor size, number, volume, and metastasis. Major signaling pathways impacted by litchi constituents were shown to stimulate proapoptotic, antiproliferative, and antimetastatic activities. Despite promising antineoplastic activities, additional research, especially in vivo and clinical studies, is necessary before litchi-derived products and phytochemicals can be used for human cancer prevention and intervention.
Collapse
Affiliation(s)
- Anupam Bishayee
- Department of Pharmacology, College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA.
| | - Joachim Kavalakatt
- Department of Pharmacology, College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| | - Charvi Sunkara
- Department of Pharmacology, College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| | - Olivia Johnson
- Department of Pharmacology, College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| | - Shweta S Zinzuwadia
- Department of Pharmacology, College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| | - Taylor E Collignon
- Department of Pharmacology, College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| | - Sabyasachi Banerjee
- Department of Pharmaceutical Chemistry, Gupta College of Technological Sciences, Asansol 713 301, India
| | - Sandra Maria Barbalho
- School of Food and Technology of Marília (FATEC), Marília, 17500-000, São Paulo, Brazil; School of Medicine, University of Marília (UNIMAR), Marília, 17012-150, São Paulo, Brazil; Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Marília 17012-150, Sao Paulo, Brazil
| |
Collapse
|
17
|
Ferreira H, Duarte D, Carneiro TJ, Costa C, Barbosa JC, Rodrigues JE, Alves P, Vasconcelos M, Pinto E, Gomes A, Gil AM. Impact of a legumes diet on the human gut microbiome articulated with fecal and plasma metabolomes: A pilot study. Clin Nutr ESPEN 2024; 63:332-345. [PMID: 38964655 DOI: 10.1016/j.clnesp.2024.06.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/12/2024] [Accepted: 06/27/2024] [Indexed: 07/06/2024]
Abstract
BACKGROUND & AIMS Legumes intake is known to be associated with several health benefits the origins of which is still a matter of debate. This paper addresses a pilot small cohort to probe for metabolic aspects of the interplay between legumes intake, human metabolism and gut microbiota. METHODS Untargeted nuclear magnetic resonance (NMR) metabolomics of blood plasma and fecal extracts was carried out, in tandem with qPCR analysis of feces, to assess the impact of an 8-week pilot legumes diet intervention on the fecal and plasma metabolomes and gut microbiota of 19 subjects. RESULTS While the high inter-individual variability hindered the detection of statistically significant changes in the gut microbiome, increased fecal glucose and decreased threonine levels were noted. Correlation analysis between the microbiome and fecal metabolome lead to putative hypotheses regarding the metabolic activities of prevalent bacteria groups (Clostridium leptum subgroup, Roseburia spp., and Faecalibacterium prausnitzii). These included elevated fecal glucose as a preferential energy source, the involvement of valerate/isovalerate and reduced protein degradation in gut microbiota. Plasma metabolomics advanced mannose and betaine as potential markers of legume intake and unveiled a decrease in formate and ketone bodies, the latter suggesting improved energy utilization through legume carbohydrates. Amino acid metabolism was also apparently affected, as suggested by lowered urea, histidine and threonine levels. CONCLUSIONS Despite the high inter-individual gut microbiome variability characterizing the small cohort addressed, combination of microbiological measurements and untargeted metabolomics unveiled several metabolic effects putatively related to legumes intake. If confirmed in larger cohorts, our findings will support the inclusion of legumes in diets and contribute valuable new insight into the origins of associated health benefits.
Collapse
Affiliation(s)
- Helena Ferreira
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Porto, Portugal; Department of Chemistry and CICECO-Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal
| | - Daniela Duarte
- Department of Chemistry and CICECO-Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal
| | - Tatiana J Carneiro
- Department of Chemistry and CICECO-Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal
| | - Célia Costa
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Porto, Portugal
| | - Joana C Barbosa
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Porto, Portugal
| | - João E Rodrigues
- Department of Chemistry and CICECO-Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal
| | - Paulo Alves
- Universidade Católica Portuguesa, CIIS - Centro de Investigação Interdisciplinar em Saúde, Escola Enfermagem (Porto), Portugal
| | - Marta Vasconcelos
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Porto, Portugal
| | - Elisabete Pinto
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Porto, Portugal; EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal
| | - Ana Gomes
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Porto, Portugal
| | - Ana M Gil
- Department of Chemistry and CICECO-Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal.
| |
Collapse
|
18
|
Krebs SA, Schummer ML. A review of plant phenolics and endozoochory. Ecol Evol 2024; 14:e70255. [PMID: 39290664 PMCID: PMC11405292 DOI: 10.1002/ece3.70255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 08/15/2024] [Accepted: 08/19/2024] [Indexed: 09/19/2024] Open
Abstract
Phenolic compounds (phenolics) are secondary metabolites ubiquitous across plants. The earliest phenolics are linked to plants' successful transition from an aquatic to a terrestrial environment, serving as protection against damaging ultraviolet (UV) radiation, and as antioxidants to reduce oxidative stress in an atmosphere with an increasingly high O2:CO2 ratio. In modern plants, phenolics are best known for the defense against fungal and bacterial pathogens and as antifeedants that deter herbivory. Phenolics also play a role in seed dormancy, delaying germination, and lengthening viability in the seed bank. Many plants' seeds are endozoochorous - dispersed by animals, like birds, who eat and later excrete the seeds. Plants send visual signals to attract birds with UV-sensitive (UVS) vision for pollination and seed dispersal. As fruits ripen, antioxidant activity and phenolic content decrease. The waxy cuticle of fruits increases in UV reflection as phenolic rings, which absorb UV light, degrade. The UV contrast that birds detect may act as an honest signal, indicating nutritional changes in the fruit. However, there is little evidence to support the evolution of UV coloration during ripening being driven by frugivore selection. Antioxidant properties of fruit phenolics may be dually adaptive in plants and avian frugivores.
Collapse
Affiliation(s)
- Samuel A Krebs
- Department of Environmental Biology State University of New York College of Environmental Science and Forestry (SUNY ESF) Syracuse New York USA
| | - Michael L Schummer
- Department of Environmental Biology State University of New York College of Environmental Science and Forestry (SUNY ESF) Syracuse New York USA
| |
Collapse
|
19
|
Lakshmipathy K, Buvaneswaran M, Rawson A, Chidanand DV. Effect of dehulling and germination on the functional properties of grass pea (Lathyrus sativus) flour. Food Chem 2024; 449:139265. [PMID: 38604036 DOI: 10.1016/j.foodchem.2024.139265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/16/2024] [Accepted: 04/03/2024] [Indexed: 04/13/2024]
Abstract
The compositional, bioactive, functional, pasting, and thermal characteristics of native, dehulled, and germinated grass pea flour were examined. Germination significantly improved the protein content and bioactive properties while simultaneously reducing total carbohydrate and fat levels. However, dehulling increased the fat content, foaming, and emulsion properties. Dehulling and germination significantly increased (p < 0.05) the functional properties by improving flowability and cohesiveness. Although processing methods enhance functional properties, the pasting properties of dehulled and germinated flours differ significantly (p < 0.05) from the native flour. The X-ray diffraction patterns indicate a reduction in percentage crystallinity in germinated flours. Overall, the study suggests that the dehulling and germination processes enhanced the quality of grass peas by improving nutritive value and functional attributes.
Collapse
Affiliation(s)
- Kavitha Lakshmipathy
- Department of Industry-Academia Cell, National Institute of Food Technology, Entrepreneurship, and Management-Thanjavur, India; Centre of Excellence in Non-Thermal Processing, National Institute of Food Technology, Entrepreneurship, and Management-Thanjavur, India
| | - Malini Buvaneswaran
- Centre of Excellence in Non-Thermal Processing, National Institute of Food Technology, Entrepreneurship, and Management-Thanjavur, India
| | - Ashish Rawson
- Centre of Excellence in Non-Thermal Processing, National Institute of Food Technology, Entrepreneurship, and Management-Thanjavur, India; Department of Food Safety and Quality Testing, National Institute of Food Technology, Entrepreneurship, and Management-Thanjavur, India
| | - D V Chidanand
- Department of Industry-Academia Cell, National Institute of Food Technology, Entrepreneurship, and Management-Thanjavur, India; Centre of Excellence in Non-Thermal Processing, National Institute of Food Technology, Entrepreneurship, and Management-Thanjavur, India.
| |
Collapse
|
20
|
Wang SY, Zhang YJ, Chen X, Shi XC, Herrera-Balandrano DD, Liu FQ, Laborda P. Biocontrol Methods for the Management of Sclerotinia sclerotiorum in Legumes: A Review. PHYTOPATHOLOGY 2024; 114:1447-1457. [PMID: 38669603 DOI: 10.1094/phyto-01-24-0006-rvw] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Sclerotinia sclerotiorum is an economically damaging fungal pathogen that causes Sclerotinia stem rot in legumes, producing enormous yield losses. This pathogen is difficult to control due to its wide host spectrum and ability to produce sclerotia, which are resistant bodies that can remain active for long periods under harsh environmental conditions. Here, the biocontrol methods for the management of S. sclerotiorum in legumes are reviewed. Bacillus strains, which synthesized lipopeptides and volatile organic compounds, showed high efficacies in soybean plants, whereas the highest efficacies for the control of the pathogen in alfalfa and common bean were observed when using Coniothyrium minitans and Streptomyces spp., respectively. The biocontrol efficacies in fields were under 65%, highlighting the lack of strategies to achieve a complete control. Overall, although most studies involved extensive screenings using different biocontrol agent concentrations and application conditions, there is a lack of knowledge regarding the specific antifungal mechanisms, which limits the optimization of the reported methods.
Collapse
Affiliation(s)
- Su-Yan Wang
- School of Life Sciences, Nantong University, Nantong 226019, People's Republic of China
| | - Yun-Jiao Zhang
- School of Life Sciences, Nantong University, Nantong 226019, People's Republic of China
| | - Xin Chen
- School of Life Sciences, Nantong University, Nantong 226019, People's Republic of China
| | - Xin-Chi Shi
- School of Life Sciences, Nantong University, Nantong 226019, People's Republic of China
| | | | - Feng-Quan Liu
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang 550025, People's Republic of China
- Jiangsu Key Laboratory for Food Quality and Safety, State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, People's Republic of China
| | - Pedro Laborda
- School of Life Sciences, Nantong University, Nantong 226019, People's Republic of China
| |
Collapse
|
21
|
Jha UC, Nayyar H, Thudi M, Beena R, Vara Prasad PV, Siddique KHM. Unlocking the nutritional potential of chickpea: strategies for biofortification and enhanced multinutrient quality. FRONTIERS IN PLANT SCIENCE 2024; 15:1391496. [PMID: 38911976 PMCID: PMC11190093 DOI: 10.3389/fpls.2024.1391496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/20/2024] [Indexed: 06/25/2024]
Abstract
Chickpea (Cicer arietinum L.) is a vital grain legume, offering an excellent balance of protein, carbohydrates, fats, fiber, essential micronutrients, and vitamins that can contribute to addressing the global population's increasing food and nutritional demands. Chickpea protein offers a balanced source of amino acids with high bioavailability. Moreover, due to its balanced nutrients and affordable price, chickpea is an excellent alternative to animal protein, offering a formidable tool for combating hidden hunger and malnutrition, particularly prevalent in low-income countries. This review examines chickpea's nutritional profile, encompassing protein, amino acids, carbohydrates, fatty acids, micronutrients, vitamins, antioxidant properties, and bioactive compounds of significance in health and pharmaceutical domains. Emphasis is placed on incorporating chickpeas into diets for their myriad health benefits and nutritional richness, aimed at enhancing human protein and micronutrient nutrition. We discuss advances in plant breeding and genomics that have facilitated the discovery of diverse genotypes and key genomic variants/regions/quantitative trait loci contributing to enhanced macro- and micronutrient contents and other quality parameters. Furthermore, we explore the potential of innovative breeding tools such as CRISPR/Cas9 in enhancing chickpea's nutritional profile. Envisioning chickpea as a nutritionally smart crop, we endeavor to safeguard food security, combat hunger and malnutrition, and promote dietary diversity within sustainable agrifood systems.
Collapse
Affiliation(s)
- Uday Chand Jha
- Indian Council of Agricultural Research (ICAR) – Indian Institute of Pulses Research (IIPR), Kanpur, Uttar Pradesh, India
- Department of Agronomy, Feed the Future Innovation Lab for Collaborative Research on Sustainable Intensification, Kansas State University, Manhattan, KS, United States
| | - Harsh Nayyar
- Department of Botany, Panjab University, Chandigarh, India
| | - Mahender Thudi
- College of Agriculture, Family Sciences and Technology, Fort Valley State University, Fort Valley, GA, United States
| | - Radha Beena
- Department of Plant Physiology, College of Agriculture, Vellayani, Kerala Agriculture University, Thiruvananthapuram, Kerala, India
| | - P. V. Vara Prasad
- Department of Agronomy, Feed the Future Innovation Lab for Collaborative Research on Sustainable Intensification, Kansas State University, Manhattan, KS, United States
| | | |
Collapse
|
22
|
Ohtsuka M, Yamaguchi T, Oishi S, Misawa K, Suzuki A, Hibi M, Terauchi M. Supplementation with cassis polyphenol has no effect on menopausal symptoms in healthy middle-aged women: A randomized, double-blind, parallel-group, placebo-controlled trial. Nutr Res 2024; 126:14-22. [PMID: 38603978 DOI: 10.1016/j.nutres.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/08/2024] [Accepted: 03/17/2024] [Indexed: 04/13/2024]
Abstract
Hormonal changes during the menopause transition may lead to vasomotor symptoms, including hot flashes (HFs) and neuropsychiatric symptoms such as anxiety and irritability. We hypothesized that the effects of cassis polyphenol (CaP) to improve microcirculation and vasorelaxation may alleviate menopausal symptoms. We performed a randomized, double-blind, parallel-group, placebo-controlled trial involving 59 healthy women (mean [standard deviation] age, 51.3 [4.3] years; body mass index, 20.8 [2.6] kg/m2). Participants experiencing subjective menopausal symptoms consumed CaP tablets (400 mg/d, CaP group) or placebo tablets (placebo group) for 4 weeks. Participants were evaluated using questionnaires at baseline, during the 4-week intervention period, and during a 2-week postinterventional observation period. The primary objective was to evaluate the effects of supplementation with CaP on HFs in healthy Japanese women with menopausal symptoms. Additional assessments included the modified Kupperman menopausal index, World Health Organization-5 Well-Being Index, World Health Organization quality-of-life 26-item index, State-Trait Anxiety Inventory (anxiety and trait components), and Oguri-Shirakawa-Azumi sleep inventory (middle-aged and elderly versions). During the 4-week intervention period, no significant between-group differences were detected in the HF frequency, HF score, sweating frequency, menopausal symptoms, quality of life, anxiety, or sleep. During the 2-week postintervention observational period, the HF score and sweating frequency were significantly decreased in the CaP group compared with the placebo group. These findings suggest that twice daily intake of CaP for 4 weeks does not alleviate menopause symptoms, but the improvement observed in the CaP intake group during the postintervention period warrants confirmation through further large-scale studies.
Collapse
Affiliation(s)
- Mayumi Ohtsuka
- Biological Science Research Laboratories, Kao Corporation, 2-1-3 Bunka, Sumida, Tokyo 131-8501, Japan
| | - Tohru Yamaguchi
- Health & Wellness Products Research Laboratories, Kao Corporation, 2-1-3 Bunka, Sumida, Tokyo 131-8501, Japan
| | - Sachiko Oishi
- Biological Science Research Laboratories, Kao Corporation, 2-1-3 Bunka, Sumida, Tokyo 131-8501, Japan
| | - Koichi Misawa
- Biological Science Research Laboratories, Kao Corporation, 2-1-3 Bunka, Sumida, Tokyo 131-8501, Japan
| | - Atsushi Suzuki
- Department of Research & Development, Kao Corporation, 2-1-3 Bunka, Sumida, Tokyo 131-8501, Japan
| | - Masanobu Hibi
- Biological Science Research Laboratories, Kao Corporation, 2-1-3 Bunka, Sumida, Tokyo 131-8501, Japan.
| | - Masakazu Terauchi
- Department of Woman's Health, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| |
Collapse
|
23
|
Zheng Q, Wang F, Nie C, Zhang K, Sun Y, Al-Ansi W, Wu Q, Wang L, Du J, Li Y. Elevating the significance of legume intake: A novel strategy to counter aging-related mitochondrial dysfunction and physical decline. Compr Rev Food Sci Food Saf 2024; 23:e13342. [PMID: 38634173 DOI: 10.1111/1541-4337.13342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/11/2024] [Accepted: 03/19/2024] [Indexed: 04/19/2024]
Abstract
Mitochondrial dysfunction increasingly becomes a target for promoting healthy aging and longevity. The dysfunction of mitochondria with age ultimately leads to a decline in physical functions. Among them, biogenesis dysfunction and the imbalances in the metabolism of reactive oxygen species and mitochondria as signaling organelles in the aging process have aroused our attention. Dietary intervention in mitochondrial dysfunction and physical decline during aging processes is essential, and greater attention should be directed toward healthful legume intake. Legumes are constantly under investigation for their nutritional and bioactive properties, and their consumption may yield antiaging and mitochondria-protecting benefits. This review summarizes mitochondrial dysfunction with age, discusses the benefits of legumes on mitochondrial function, and introduces the potential role of legumes in managing aging-related physical decline. Additionally, it reveals the benefits of legume intake for the elderly and offers a viable approach to developing legume-based functional food.
Collapse
Affiliation(s)
- Qingwei Zheng
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Feijie Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Chenzhipeng Nie
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Kuiliang Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Yujie Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Waleed Al-Ansi
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Qiming Wu
- Nutrilite Health Institute, Shanghai, China
| | - Li Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jun Du
- Nutrilite Health Institute, Shanghai, China
| | - Yan Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
24
|
Lahlou RA, Carvalho F, Pereira MJ, Lopes J, Silva LR. Overview of Ethnobotanical-Pharmacological Studies Carried Out on Medicinal Plants from the Serra da Estrela Natural Park: Focus on Their Antidiabetic Potential. Pharmaceutics 2024; 16:454. [PMID: 38675115 PMCID: PMC11054966 DOI: 10.3390/pharmaceutics16040454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 04/28/2024] Open
Abstract
The Serra da Estrela Natural Park (NPSE) in Portugal stands out as a well-preserved region abundant in medicinal plants, particularly known for their pharmaceutical applications in diabetes prevention and treatment. This comprehensive review explores these plants' botanical diversity, traditional uses, pharmacological applications, and chemical composition. The NPSE boast a rich diversity with 138 medicinal plants across 55 families identified as traditionally and pharmacologically used against diabetes globally. Notably, the Asteraceae and Lamiaceae families are prevalent in antidiabetic applications. In vitro studies have revealed their significant inhibition of carbohydrate-metabolizing enzymes, and certain plant co-products regulate genes involved in carbohydrate metabolism and insulin secretion. In vivo trials have demonstrated antidiabetic effects, including glycaemia regulation, insulin secretion, antioxidant activity, and lipid profile modulation. Medicinal plants in NPSE exhibit various activities beyond antidiabetic, such as antioxidant, anti-inflammatory, antibacterial, anti-cancer, and more. Chemical analyses have identified over fifty compounds like phenolic acids, flavonoids, terpenoids, and polysaccharides responsible for their efficacy against diabetes. These findings underscore the potential of NPSE medicinal plants as antidiabetic candidates, urging further research to develop effective plant-based antidiabetic drugs, beverages, and supplements.
Collapse
Affiliation(s)
- Radhia Aitfella Lahlou
- SPRINT Sport Physical Activity and Health Research & Innovation Center, Instituto Politécnico da Guarda, 6300-559 Guarda, Portugal; (R.A.L.); (F.C.)
| | - Filomena Carvalho
- SPRINT Sport Physical Activity and Health Research & Innovation Center, Instituto Politécnico da Guarda, 6300-559 Guarda, Portugal; (R.A.L.); (F.C.)
| | - Maria João Pereira
- CERENA/DER, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal;
| | - João Lopes
- iMed.ULisboa, Research Institute for Medicines, Faculdade de Farmácia, University of Lisboa, 1649-003 Lisboa, Portugal;
| | - Luís R. Silva
- SPRINT Sport Physical Activity and Health Research & Innovation Center, Instituto Politécnico da Guarda, 6300-559 Guarda, Portugal; (R.A.L.); (F.C.)
- CICS-UBI—Health Sciences Research Center, University of Beira Interior, 6201-506 Covilhã, Portugal
- CERES, Department of Chemical Engineering, University of Coimbra, 3030-790 Coimbra, Portugal
| |
Collapse
|
25
|
Zhao Y, Zhang X, Lang Z, Zhang C, Li L, He Y, Liu N, Zhu Y, Hong G. Comparison of Nutritional Diversity in Five Fresh Legumes Using Flavonoids Metabolomics and Postharvest Botrytis cinerea Defense Analysis of Peas Mediated by Sakuranetin. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:6053-6063. [PMID: 38452150 DOI: 10.1021/acs.jafc.3c08968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
Legumes possess several bioactive nutrients, including flavonoids, and the study of the flavonoid profile of legumes is of great significance to human health. Using widely targeted metabolomics, we revealed the flavonoid profiles of five popular fresh legumes: cowpea, soybean, pea, fava bean, and kidney bean. A total of 259 flavonoids were identified, and the flavonoid accumulation patterns of the five legumes were remarkably different. In addition to analyzing common and species-specific flavonoids in the five legumes, we also generalized representative flavonoids of various subclasses. We related these to the health-promoting effects of legumes. Furthermore, legumes' total flavonoid content and antioxidant system activity were also detected. Intriguingly, sakuranetin, the sole flavonoid phytoalexin that can be induced by UV radiation, was detected only in the peas by metabolomics. Meanwhile, we found that UV treatment could significantly increase the sakuranetin content and the postharvest Botrytis cinerea resistance of pea pods. This study provides clues for the target diet, industrial development of legumes, and a new idea for the postharvest preservation of peas.
Collapse
Affiliation(s)
- Yao Zhao
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xueying Zhang
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Zhuoliang Lang
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
- College of Tea Science and Tea Culture, Zhejiang A&F University, Hangzhou 311300, China
| | - Chi Zhang
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Linying Li
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yuqing He
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Na Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ministry of Agriculture and Rural Affairs Key Laboratory of Vegetable Legumes Germplasm Enhancement and Molecular Breeding in Southern China, Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Ying Zhu
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Gaojie Hong
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| |
Collapse
|
26
|
Soudek P, Langhansová L, Dvořáková M, Revutska A, Petrová Š, Hirnerová A, Bouček J, Trakal L, Hošek P, Soukupová M. The impact of the application of compochar on soil moisture, stress, yield and nutritional properties of legumes under drought stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169914. [PMID: 38185168 DOI: 10.1016/j.scitotenv.2024.169914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 01/02/2024] [Accepted: 01/02/2024] [Indexed: 01/09/2024]
Abstract
Nowadays, when climate change is becoming more and more evident, drought stress plays a very important role, including in agriculture. The increasing number of years with extreme temperatures in the Czech Republic has a negative impact on agricultural production, among other things. Therefore, ways are being sought to reduce these negative impacts. One of them may be the use of compochar (a mixture of compost and biochar) to improve water retention in the soil. The effect of compochar addition on soil properties and crop yield was tested under conditions simulating severe drought stress (greenhouse experiments) compared to normal conditions (field experiments). The aim was to find the most suitable ratio of compochar addition that would reduce the negative effects of drought stress on the yield and quality of peas and beans. Tested soil was only able to retain water between 0.03 and 0.18 cm3/cm3, while the compochar itself retained between 0.12 and 0.32 cm3 cm-3. Three substrate variants were tested by varying the amount of compochar (10, 30 and 50 % v/v) in the soil, and all three substrates showed a similar water content between 0.03 and 0.21 cm3 cm-3 depending on the planted crop and week of cultivation. No apparent stress was observed in crops planted in 100 % compochar. Nevertheless, in general, the trend of chlorophyll a/b ratio increased with increasing amounts of compochar in the soil, indicating stress. Yield increased by approximately 50 % for both test crops when 30 % compochar was used as substrate. The flavonoid content in beans was between 410 and 500 μg CE g-1 DW and in peas was approximately 300 μg CE g-1 DW. The results showed that the utilization of compochar had no effect on either total phenol content, flavonoid content or antioxidant capacity. The combination of compochar with soil (30 %) was found to positively affect the (i) soil moisture, (ii) crop yield, and (iii) nutritional properties of peas and beans and (iv) the ability of plants to withstand drought stress.
Collapse
Affiliation(s)
- P Soudek
- Institute of Experimental Botany of the Czech Academy of Sciences, Laboratory of Plant Biotechnologies, Rozvojová 263, 165 02 Prague 6, Lysolaje, Czech Republic.
| | - L Langhansová
- Institute of Experimental Botany of the Czech Academy of Sciences, Laboratory of Plant Biotechnologies, Rozvojová 263, 165 02 Prague 6, Lysolaje, Czech Republic
| | - M Dvořáková
- Institute of Experimental Botany of the Czech Academy of Sciences, Laboratory of Plant Biotechnologies, Rozvojová 263, 165 02 Prague 6, Lysolaje, Czech Republic
| | - A Revutska
- Institute of Experimental Botany of the Czech Academy of Sciences, Laboratory of Biologically Active Compounds, Rozvojová 263, 165 02 Prague 6, Lysolaje, Czech Republic
| | - Š Petrová
- Institute of Experimental Botany of the Czech Academy of Sciences, Laboratory of Plant Biotechnologies, Rozvojová 263, 165 02 Prague 6, Lysolaje, Czech Republic
| | - A Hirnerová
- Institute of Experimental Botany of the Czech Academy of Sciences, Laboratory of Plant Biotechnologies, Rozvojová 263, 165 02 Prague 6, Lysolaje, Czech Republic
| | - J Bouček
- Czech University of Life Sciences Prague, Department of Environmental Geosciences, Faculty of Environmental Sciences, 165 00 Prague 6, Czech Republic
| | - L Trakal
- Czech University of Life Sciences Prague, Department of Environmental Geosciences, Faculty of Environmental Sciences, 165 00 Prague 6, Czech Republic
| | - P Hošek
- Institute of Experimental Botany of the Czech Academy of Sciences, Laboratory of Hormonal Regulations in Plants, Rozvojová 263, 165 02 Prague 6, Lysolaje, Czech Republic
| | - M Soukupová
- Czech University of Live Science Prague, Faculty of Agrobiology, Food and Natural Resources, Department of Horticulture, Kamýcká 129, 165 00 Prague 6, Czech Republic
| |
Collapse
|
27
|
Duarte RDC, Iannetta PPM, Gomes AM, Vasconcelos MW. More than a meat- or synthetic nitrogen fertiliser-substitute: a review of legume phytochemicals as drivers of 'One Health' via their influence on the functional diversity of soil- and gut-microbes. FRONTIERS IN PLANT SCIENCE 2024; 15:1337653. [PMID: 38450400 PMCID: PMC10915056 DOI: 10.3389/fpls.2024.1337653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/30/2024] [Indexed: 03/08/2024]
Abstract
Legumes are essential to healthy agroecosystems, with a rich phytochemical content that impacts overall human and animal well-being and environmental sustainability. While these phytochemicals can have both positive and negative effects, legumes have traditionally been bred to produce genotypes with lower levels of certain plant phytochemicals, specifically those commonly termed as 'antifeedants' including phenolic compounds, saponins, alkaloids, tannins, and raffinose family oligosaccharides (RFOs). However, when incorporated into a balanced diet, such legume phytochemicals can offer health benefits for both humans and animals. They can positively influence the human gut microbiome by promoting the growth of beneficial bacteria, contributing to gut health, and demonstrating anti-inflammatory and antioxidant properties. Beyond their nutritional value, legume phytochemicals also play a vital role in soil health. The phytochemical containing residues from their shoots and roots usually remain in-field to positively affect soil nutrient status and microbiome diversity, so enhancing soil functions and benefiting performance and yield of following crops. This review explores the role of legume phytochemicals from a 'one health' perspective, examining their on soil- and gut-microbial ecology, bridging the gap between human nutrition and agroecological science.
Collapse
Affiliation(s)
- Rafael D. C. Duarte
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina – Laboratório Associado, Escola Superior de Biotecnologia, Porto, Portugal
| | - Pietro P. M. Iannetta
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina – Laboratório Associado, Escola Superior de Biotecnologia, Porto, Portugal
- Ecological Sciences, James Hutton Institute, Dundee, United Kingdom
| | - Ana M. Gomes
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina – Laboratório Associado, Escola Superior de Biotecnologia, Porto, Portugal
| | - Marta W. Vasconcelos
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina – Laboratório Associado, Escola Superior de Biotecnologia, Porto, Portugal
| |
Collapse
|
28
|
Wang C, Meng L, Zhang G, Yang X, Pang B, Cheng J, He B, Sun F. Unraveling crop enzymatic browning through integrated omics. FRONTIERS IN PLANT SCIENCE 2024; 15:1342639. [PMID: 38371411 PMCID: PMC10869537 DOI: 10.3389/fpls.2024.1342639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/16/2024] [Indexed: 02/20/2024]
Abstract
Enzymatic browning reactions, triggered by oxidative stress, significantly compromise the quality of harvested crops during postharvest handling. This has profound implications for the agricultural industry. Recent advances have employed a systematic, multi-omics approach to developing anti-browning treatments, thereby enhancing our understanding of the resistance mechanisms in harvested crops. This review illuminates the current multi-omics strategies, including transcriptomic, proteomic, and metabolomic methods, to elucidate the molecular mechanisms underlying browning. These strategies are pivotal for identifying potential metabolic markers or pathways that could mitigate browning in postharvest systems.
Collapse
Affiliation(s)
- Chunkai Wang
- Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture, Tobacco Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Qingdao, China
| | - Lin Meng
- Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture, Tobacco Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Qingdao, China
| | - Guochao Zhang
- Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture, Tobacco Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Qingdao, China
| | - Xiujun Yang
- Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture, Tobacco Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Qingdao, China
| | - Bingwen Pang
- Institute of Germplasm Resources and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Junjie Cheng
- Institute of Germplasm Resources and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Bing He
- Institute of Germplasm Resources and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Fushan Sun
- Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture, Tobacco Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Qingdao, China
| |
Collapse
|
29
|
Maqbool Z, Khalid W, Mahum, Khan A, Azmat M, Sehrish A, Zia S, Koraqi H, AL‐Farga A, Aqlan F, Khan KA. Cereal sprout-based food products: Industrial application, novel extraction, consumer acceptance, antioxidant potential, sensory evaluation, and health perspective. Food Sci Nutr 2024; 12:707-721. [PMID: 38370091 PMCID: PMC10867502 DOI: 10.1002/fsn3.3830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 10/20/2023] [Accepted: 11/01/2023] [Indexed: 02/20/2024] Open
Abstract
Cereal grains are a good source of macronutrients and micronutrients that are required for metabolic activity in the human body. Sprouts have been studied to enhance the nutrient profile. Moreover, secondary metabolites are examined as green food engineering technology that is used in the pharmaceutical, functional ingredients, nutraceutical, and cosmetic industries. The sprout-based food is commonly used to enhance the quality of products by softening the structure of the whole grain and increasing the phytochemicals (nutritional value and bioactive compounds). These sprouting grains can be added to a variety of products including snacks, bakery, beverage, and meat. Consuming whole grains has been shown to reduce the incidence and mortality of a variety of chronic and noncommunicable diseases. Sprouting grains have a diversity of biological functions, including antidiabetic, antioxidant, and anticancer properties. Cereal sprout-based products are more beneficial in reducing the risk of cardiovascular diseases and gastrointestinal tract diseases. The novel extraction techniques (microwave-existed extraction, pulse electric field, and enzyme-associated) are applied to maintain and ensure the efficiency, safety, and nutritional profile of sprout. Nutrient-dense sprouts have a low environmental impact and are widely accepted by consumers. This review explores for the first time and sheds light on the antioxidant potential, sensory evaluation, industrial applications, and health perspective of cereal sprout-based food products.
Collapse
Affiliation(s)
- Zahra Maqbool
- Department of Food ScienceGovernment College University FaisalabadFaisalabadPakistan
| | - Waseem Khalid
- University Institute of Food Science and TechnologyThe University of LahoreLahorePakistan
| | - Mahum
- Food Science and TechnologyMuhammad Nawaz Sharif University of AgricultureMultanPakistan
| | - Anosha Khan
- National Institute of Food Science and TechnologyUniversity of Agriculture FaisalabadFaisalabadPakistan
| | - Maliha Azmat
- National Institute of Food Science and TechnologyUniversity of Agriculture FaisalabadFaisalabadPakistan
| | - Aqeela Sehrish
- Department of Plant and Soil ScienceTexas Tech UniversityLubbockTexasUSA
| | - Sania Zia
- University Institute of Food Science and TechnologyThe University of LahoreLahorePakistan
| | - Hyrije Koraqi
- Faculty of Food Science and BiotechnologyUBT‐Higher Education InstitutionPristinaKosovo
| | - Ammar AL‐Farga
- Department of Biochemistry, College of SciencesUniversity of JeddahJeddahSaudi Arabia
| | - Faisal Aqlan
- Department of Chemistry, College of SciencesIbb UniversityIbbYemen
| | - Khalid Ali Khan
- Center of Bee Research and its Products/ Unit of Bee Research and Honey Production, Research Center for Advanced Materials Science (RCAMS)King Khalid UniversityAbhaSaudi Arabia
- Applied CollegeKing Khalid UniversityAbhaSaudi Arabia
| |
Collapse
|
30
|
Samukha V, Fantasma F, D’Urso G, Caprari C, De Felice V, Saviano G, Lauro G, Casapullo A, Chini MG, Bifulco G, Iorizzi M. NMR Metabolomics and Chemometrics of Commercial Varieties of Phaseolus vulgaris L. Seeds from Italy and In Vitro Antioxidant and Antifungal Activity. PLANTS (BASEL, SWITZERLAND) 2024; 13:227. [PMID: 38256780 PMCID: PMC10820859 DOI: 10.3390/plants13020227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 12/22/2023] [Accepted: 01/08/2024] [Indexed: 01/24/2024]
Abstract
The metabolite fingerprinting of four Italian commercial bean seed cultivars, i.e., Phaseolus Cannellino (PCANN), Controne (PCON), Vellutina (PVEL), and Occhio Nero (PON), were investigated by Nuclear Magnetic Resonance (NMR) spectroscopy and multivariate data analysis. The hydroalcoholic and organic extract analysis disclosed more than 32 metabolites from various classes, i.e., carbohydrates, amino acids, organic acids, nucleosides, alkaloids, and fatty acids. PVEL, PCON, and PCANN varieties displayed similar chemical profiles, albeit with somewhat different quantitative results. The PON metabolite composition was slightly different from the others; it lacked GABA and pipecolic acid, featured a higher percentage of malic acid than the other samples, and showed quantitative variations of several metabolites. The lipophilic extracts from all four cultivars demonstrated the presence of omega-3 and omega-6 unsaturated fatty acids. After the determination of the total phenolic, flavonoids, and condensed tannins content, in vitro antioxidant activity was then assessed using the DPPH scavenging activity, the ABTS scavenging assay, and ferric-reducing antioxidant power (FRAP). Compared to non-dark seeds (PCON, PCANN), brown seeds (PVEL, PON) featured a higher antioxidant capacity. Lastly, only PON extract showed in vitro antifungal activity against the sclerotia growth of S. rolfsii, by inhibiting halo growth by 75%.
Collapse
Affiliation(s)
- Vadym Samukha
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Isernia, Italy; (V.S.); (F.F.); (C.C.); (V.D.F.); (G.S.); (M.I.)
| | - Francesca Fantasma
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Isernia, Italy; (V.S.); (F.F.); (C.C.); (V.D.F.); (G.S.); (M.I.)
| | - Gilda D’Urso
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Salerno, Italy; (G.D.); (G.L.); (A.C.)
| | - Claudio Caprari
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Isernia, Italy; (V.S.); (F.F.); (C.C.); (V.D.F.); (G.S.); (M.I.)
| | - Vincenzo De Felice
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Isernia, Italy; (V.S.); (F.F.); (C.C.); (V.D.F.); (G.S.); (M.I.)
| | - Gabriella Saviano
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Isernia, Italy; (V.S.); (F.F.); (C.C.); (V.D.F.); (G.S.); (M.I.)
| | - Gianluigi Lauro
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Salerno, Italy; (G.D.); (G.L.); (A.C.)
| | - Agostino Casapullo
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Salerno, Italy; (G.D.); (G.L.); (A.C.)
| | - Maria Giovanna Chini
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Isernia, Italy; (V.S.); (F.F.); (C.C.); (V.D.F.); (G.S.); (M.I.)
| | - Giuseppe Bifulco
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Salerno, Italy; (G.D.); (G.L.); (A.C.)
| | - Maria Iorizzi
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Isernia, Italy; (V.S.); (F.F.); (C.C.); (V.D.F.); (G.S.); (M.I.)
| |
Collapse
|
31
|
Nieto G, Martínez-Zamora L, Peñalver R, Marín-Iniesta F, Taboada-Rodríguez A, López-Gómez A, Martínez-Hernández GB. Applications of Plant Bioactive Compounds as Replacers of Synthetic Additives in the Food Industry. Foods 2023; 13:47. [PMID: 38201075 PMCID: PMC10778451 DOI: 10.3390/foods13010047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/11/2023] [Accepted: 12/17/2023] [Indexed: 01/12/2024] Open
Abstract
According to the Codex Alimentarius, a food additive is any substance that is incorporated into a food solely for technological or organoleptic purposes during the production of that food. Food additives can be of synthetic or natural origin. Several scientific evidence (in vitro studies and epidemiological studies like the controversial Southampton study published in 2007) have pointed out that several synthetic additives may lead to health issues for consumers. In that sense, the actual consumer searches for "Clean Label" foods with ingredient lists clean of coded additives, which are rejected by the actual consumer, highlighting the need to distinguish synthetic and natural codded additives from the ingredient lists. However, this natural approach must focus on an integrated vision of the replacement of chemical substances from the food ingredients, food contact materials (packaging), and their application on the final product. Hence, natural plant alternatives are hereby presented, analyzing their potential success in replacing common synthetic emulsifiers, colorants, flavorings, inhibitors of quality-degrading enzymes, antimicrobials, and antioxidants. In addition, the need for a complete absence of chemical additive migration to the food is approached through the use of plant-origin bioactive compounds (e.g., plant essential oils) incorporated in active packaging.
Collapse
Affiliation(s)
- Gema Nieto
- Department of Food Technology, Nutrition and Food Science, Veterinary Faculty, University of Murcia, 30100 Murcia, Spain; (G.N.); (L.M.-Z.); (R.P.); (A.T.-R.)
| | - Lorena Martínez-Zamora
- Department of Food Technology, Nutrition and Food Science, Veterinary Faculty, University of Murcia, 30100 Murcia, Spain; (G.N.); (L.M.-Z.); (R.P.); (A.T.-R.)
| | - Rocío Peñalver
- Department of Food Technology, Nutrition and Food Science, Veterinary Faculty, University of Murcia, 30100 Murcia, Spain; (G.N.); (L.M.-Z.); (R.P.); (A.T.-R.)
| | - Fulgencio Marín-Iniesta
- Department of Food Technology, Nutrition and Food Science, Veterinary Faculty, University of Murcia, 30100 Murcia, Spain; (G.N.); (L.M.-Z.); (R.P.); (A.T.-R.)
| | - Amaury Taboada-Rodríguez
- Department of Food Technology, Nutrition and Food Science, Veterinary Faculty, University of Murcia, 30100 Murcia, Spain; (G.N.); (L.M.-Z.); (R.P.); (A.T.-R.)
- Agrosingularity, Calle Pintor Aurelio Pérez 12, 30006 Murcia, Spain
| | - Antonio López-Gómez
- Food Safety and Refrigeration Engineering Group, Department of Agricultural Engineering, Universidad Politécnica de Cartagena, Paseo Alfonso XIII, 48, 30203 Cartagena, Spain;
| | - Ginés Benito Martínez-Hernández
- Food Safety and Refrigeration Engineering Group, Department of Agricultural Engineering, Universidad Politécnica de Cartagena, Paseo Alfonso XIII, 48, 30203 Cartagena, Spain;
| |
Collapse
|
32
|
Desta KT, Choi YM, Shin MJ, Yoon H, Wang X, Lee Y, Yi J, Jeon YA, Lee S. Comprehensive evaluation of nutritional components, bioactive metabolites, and antioxidant activities in diverse sorghum (Sorghum bicolor (L.) Moench) landraces. Food Res Int 2023; 173:113390. [PMID: 37803729 DOI: 10.1016/j.foodres.2023.113390] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/14/2023] [Accepted: 08/16/2023] [Indexed: 10/08/2023]
Abstract
Sorghum, one of the prospective crops for addressing future food and nutrition security, has received attention in recent years due to its health-promoting compounds. It is known that several environmental and genetic factors affect the metabolite contents of dietary crops. This study investigated the diversity of different nutrients, functional metabolites, and antioxidant activity using three different assays in 53 sorghum landraces from Korea, China, Japan, Ethiopia, and South Africa. The effects of origin and seed color variations were also investigated. Total phenolic (TPC), total tannin (TTC), total fat, total protein, total dietary fiber, and total crude fiber contents all varied significantly among the sorghum landraces (p < 0.05). Using a gas chromatography-flame ionization detector, palmitic, stearic, oleic, linoleic, and linolenic acids were detected in all the sorghum landraces, and their content significantly varied (p < 0.05). Furthermore, four 3-deoxyanthocyanidins (luteolinidin, apigeninidin, 5-methoxyluteolinidin, and 7-methoxyapigeninidin) and two flavonoids (luteolin and apigenin) were detected in most of the landraces using liquid chromatography-tandem mass spectrometry, and their concentrations also significantly varied. Statistical analyses supported by multivariate tools demonstrated that seed color variation had a significant effect on TPC, TTC, DPPH• and ABTS•+ scavenging activities, and ferric-reducing antioxidant power, with yellow landraces having the highest and white landraces having the lowest values. Seed color variation also had a significant effect on dietary fiber, linoleic acid, linolenic acid, and luteolin contents. In contrast, all nutritional components and fatty acids except total protein and oleic acid were significantly affected by origin, while most 3-deoxyanthocyanidins and flavonoids were unaffected by both origin and seed color differences. This is the first study to report the effect of origin on sorghum seed metabolites and antioxidant activities, laying the groundwork for future studies. Moreover, this study identified superior landraces that could be good sources of health-promoting metabolites.
Collapse
Affiliation(s)
- Kebede Taye Desta
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea
| | - Yu-Mi Choi
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea
| | - Myoung-Jae Shin
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea
| | - Hyemyeong Yoon
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea
| | - Xiaohan Wang
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea
| | - Yoonjung Lee
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea
| | - Jungyoon Yi
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea
| | - Young-Ah Jeon
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea
| | - Sukyeung Lee
- International Technology Cooperation Center, Technology Cooperation Bureau, Rural Development Administration, Jeonju 54875, Republic of Korea.
| |
Collapse
|
33
|
Peñalver R, Ros G, Nieto G. Development of Functional Gluten-Free Sourdough Bread with Pseudocereals and Enriched with Moringa oleifera. Foods 2023; 12:3920. [PMID: 37959040 PMCID: PMC10650811 DOI: 10.3390/foods12213920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/18/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
Celiac patients tend to have an unbalanced diet, because gluten-free products typically contain a high amount of fats and carbohydrates and a low amount of proteins, minerals, and dietary fiber. This research focused on the development of gluten-free functional breads using pseudocereals, psyllium, and gluten-free sourdough to replace commercial yeast, fortifying them with Moringa oleifera. Six different gluten-free breads were made with sourdough: three control breads differentiated by sourdough (quinoa, amaranth, and brown rice) and three breads enriched with moringa leaf differentiated by sourdough. The antioxidant capacity, phenolic compounds, nutritional composition, physicochemical parameters (color, pH, and acidity), folate content, amino acid profile, reducing sugars, mineral composition, mineral bioaccessibility, fatty acid profile, and sensory acceptability were evaluated. A commercial gluten-free (COM) bread was included in these analyses. Compared with COM bread, the reformulated breads were found to have better nutritional properties. Moringa leaf increased the nutritional properties of bread, and highlighted the QM (quinoa/moringa) bread as having increased protein, fiber, sucrose, glucose, maltose, phenylalanine, and cysteine. The AM (amaranth/moringa) bread was also shown to have a higher total folate content, antioxidant capacity, phenolic compounds, 9t,11t-C18:2 (CLA), and 9t-C18:1. Reformulated breads enriched with moringa could meet nutritional requirements and provide health benefits to people with celiac disease.
Collapse
Affiliation(s)
| | | | - Gema Nieto
- Department of Food Technology, Food Science and Nutrition, Faculty of Veterinary Sciences, Regional Campus of International Excellence “Campus Mare Nostrum”, University of Murcia, Espinardo, 30071 Murcia, Spain; (R.P.); (G.R.)
| |
Collapse
|
34
|
Majzoobi M, Wang Z, Teimouri S, Pematilleke N, Brennan CS, Farahnaky A. Unlocking the Potential of Sprouted Cereals, Pseudocereals, and Pulses in Combating Malnutrition. Foods 2023; 12:3901. [PMID: 37959020 PMCID: PMC10649608 DOI: 10.3390/foods12213901] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/23/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
Due to the global rise in food insecurity, micronutrient deficiency, and diet-related health issues, the United Nations (UN) has called for action to eradicate hunger and malnutrition. Grains are the staple food worldwide; hence, improving their nutritional quality can certainly be an appropriate approach to mitigate malnutrition. This review article aims to collect recent information on developing nutrient-dense grains using a sustainable and natural process known as "sprouting or germination" and to discuss novel applications of sprouted grains to tackle malnutrition (specifically undernutrition). This article discusses applicable interventions and strategies to encourage biochemical changes in sprouting grains further to boost their nutritional value and health benefits. It also explains opportunities to use spouted grains at home and in industrial food applications, especially focusing on domestic grains in regions with prevalent malnutrition. The common challenges for producing sprouted grains, their future trends, and research opportunities have been covered. This review article will benefit scientists and researchers in food, nutrition, and agriculture, as well as agrifood businesses and policymakers who aim to develop nutrient-enriched foods to enhance public health.
Collapse
Affiliation(s)
- Mahsa Majzoobi
- Biosciences and Food Technology, RMIT University, Bundoora West Campus, Plenty Road, Melbourne, VIC 3083, Australia; (Z.W.); (S.T.); (N.P.); (C.S.B.); (A.F.)
| | | | | | | | | | | |
Collapse
|
35
|
Krylova EА, Mikhailova AS, Zinchenko YN, Perchuk IN, Razgonova MP, Khlestkina EK, Burlyaeva MO. The Content of Anthocyanins in Cowpea ( Vigna unguiculata (L.) Walp.) Seeds and Contribution of the MYB Gene Cluster to Their Coloration Pattern. PLANTS (BASEL, SWITZERLAND) 2023; 12:3624. [PMID: 37896090 PMCID: PMC10609810 DOI: 10.3390/plants12203624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/02/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023]
Abstract
The intensively pigmented legumes belonging to Phaseolus and Vigna spp. are valued as an essential component of healthy nutrition due to their high content of flavonoids. In this context, we used the accessions of Vigna unguiculata with different colors of seed coats from the N.I. Vavilov All-Russian Institute of Plant Genetic Resources collection as the main object of this research. We applied confocal laser scanning microscopy, biochemical analysis, and wide in silico and molecular genetic analyses to study the main candidate genes for anthocyanin pigmentation within the MYB cluster on chromosome 5. We performed statistical data processing. The anthocyanin content ranged from 2.96 mg/100 g DW in reddish-brown-seeded cowpea accessions to 175.16 mg/100 g DW in black-seeded ones. Laser microscopy showed that the autofluorescence in cowpea seeds was mainly caused by phenolic compounds. The maximum fluorescence was observed in the seed coat, while its dark color, due to the highest level of red fluorescence, pointed to the presence of anthocyanins and anthocyanidins. Genes of the MYB cluster on chromosome 5 demonstrated a high homology and were segregated into a separate clade. However, amplification products were not obtained for all genes because of the truncation of some genes. Statistical analysis showed a clear correlation between the high content of anthocyanins in cowpea seeds and the presence of PCR products with primers Vigun05g0393-300-1.
Collapse
Affiliation(s)
- Ekaterina А. Krylova
- N.I. Vavilov All-Russian Institute of Plant Genetic Resources, B. Morskaya 42-44, 190000 Saint-Petersburg, Russia; (A.S.M.); (Y.N.Z.); (I.N.P.); (M.P.R.); (E.K.K.)
| | - Aleksandra S. Mikhailova
- N.I. Vavilov All-Russian Institute of Plant Genetic Resources, B. Morskaya 42-44, 190000 Saint-Petersburg, Russia; (A.S.M.); (Y.N.Z.); (I.N.P.); (M.P.R.); (E.K.K.)
| | - Yulia N. Zinchenko
- N.I. Vavilov All-Russian Institute of Plant Genetic Resources, B. Morskaya 42-44, 190000 Saint-Petersburg, Russia; (A.S.M.); (Y.N.Z.); (I.N.P.); (M.P.R.); (E.K.K.)
| | - Irina N. Perchuk
- N.I. Vavilov All-Russian Institute of Plant Genetic Resources, B. Morskaya 42-44, 190000 Saint-Petersburg, Russia; (A.S.M.); (Y.N.Z.); (I.N.P.); (M.P.R.); (E.K.K.)
| | - Mayya P. Razgonova
- N.I. Vavilov All-Russian Institute of Plant Genetic Resources, B. Morskaya 42-44, 190000 Saint-Petersburg, Russia; (A.S.M.); (Y.N.Z.); (I.N.P.); (M.P.R.); (E.K.K.)
- Advanced Engineering School, Institute of Biotechnology, Bioengineering and Food Systems, Far Eastern Federal University, 10 Ajax Settlement, Russky Island, 690922 Vladivostok, Russia
| | - Elena K. Khlestkina
- N.I. Vavilov All-Russian Institute of Plant Genetic Resources, B. Morskaya 42-44, 190000 Saint-Petersburg, Russia; (A.S.M.); (Y.N.Z.); (I.N.P.); (M.P.R.); (E.K.K.)
| | - Marina O. Burlyaeva
- N.I. Vavilov All-Russian Institute of Plant Genetic Resources, B. Morskaya 42-44, 190000 Saint-Petersburg, Russia; (A.S.M.); (Y.N.Z.); (I.N.P.); (M.P.R.); (E.K.K.)
| |
Collapse
|
36
|
Mandrich L, Esposito AV, Costa S, Caputo E. Chemical Composition, Functional and Anticancer Properties of Carrot. Molecules 2023; 28:7161. [PMID: 37894640 PMCID: PMC10608851 DOI: 10.3390/molecules28207161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 10/13/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
Plants are a valuable source of drugs for cancer treatment. Daucus carota has been investigated for its health properties. In particular, Daucus carota L. subsp. Sativus, the common edible carrot root, has been found to be rich in bioactive compounds such as carotenoids and dietary fiber and contains many other functional components with significant health-promoting features, while Daucus carota L. subsp. Carrot (Apiacae), also known as wild carrot, has been usually used for gastric ulcer therapy, diabetes, and muscle pain in Lebanon. Here, we review the chemical composition of Daucus carota L. and the functional properties of both edible and wild carrot subspecies. Then, we focus on compounds with anticancer characteristics identified in both Daucus carota subspecies, and we discuss their potential use in the development of novel anticancer therapeutic strategies.
Collapse
Affiliation(s)
- Luigi Mandrich
- Research Institute on Terrestrial Ecosystems-IRET-CNR, Via Pietro Castellino 111, 80131 Naples, Italy;
| | - Antonia Valeria Esposito
- Institute of Genetics and Biophysics-IGB-CNR, “A. Buzzati-Traverso”, Via Pietro Castellino 111, 80131 Naples, Italy; (A.V.E.); (S.C.)
| | - Silvio Costa
- Institute of Genetics and Biophysics-IGB-CNR, “A. Buzzati-Traverso”, Via Pietro Castellino 111, 80131 Naples, Italy; (A.V.E.); (S.C.)
| | - Emilia Caputo
- Institute of Genetics and Biophysics-IGB-CNR, “A. Buzzati-Traverso”, Via Pietro Castellino 111, 80131 Naples, Italy; (A.V.E.); (S.C.)
| |
Collapse
|
37
|
Parveen S, Batool A, Shafiq N, Rashid M, Sultan A, Wondmie GF, Bin Jardan YA, Brogi S, Bourhia M. Developmental landscape of computational techniques to explore the potential phytochemicals from Punica granatum peels for their antioxidant activity in Alzheimer's disease. Front Mol Biosci 2023; 10:1252178. [PMID: 37886033 PMCID: PMC10598865 DOI: 10.3389/fmolb.2023.1252178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 08/21/2023] [Indexed: 10/28/2023] Open
Abstract
Alzheimer's disease (AD) is more commonly found in women than in men as the risk increases with age. Phytochemicals are screened in silico from Punica granatum peels for their antioxidant activity to be utilized for Alzheimer's disease. Alzheimer's disease is inhibited by the hormone estrogen, which protects the brain from the bad effects of amyloid beta and acetylcholine (ACh), and is important for memory processing. For the purpose, a library of about 1,000 compounds from P. granatum were prepared and studied by applying integrated computational calculations like 3D-QSAR, molecular docking, MD simulation, ADMET, and density functional theory (DFT). The 3D-QSAR model screened the active compounds B25, B29, B35, B40, B45, B46, B48, B61, and B66 by the field points and activity atlas model from the prepared library. At the molecular level, docking was performed on active compounds for leading hit compounds such as B25 and B35 that displayed a high MolDock score, efficacy, and compatibility with drug delivery against the antioxidant activity. Optimization of the structure and chemical reactivity parameter of the hit compound was calculated by DFT. Moreover, ADMET prediction was evaluated to check the bioavailability and toxicity of the hit compound. Hesperidin (B25) is found to be a hit compound after the whole study and can be synthesized for potent drug discovery in the future.
Collapse
Affiliation(s)
- Shagufta Parveen
- Synthetic and Natural Product Drug Discovery Laboratory, Department of Chemistry, Government College Women University, Faisalababd, Pakistan
| | - Aneeqa Batool
- Synthetic and Natural Product Drug Discovery Laboratory, Department of Chemistry, Government College Women University, Faisalababd, Pakistan
| | - Nusrat Shafiq
- Synthetic and Natural Product Drug Discovery Laboratory, Department of Chemistry, Government College Women University, Faisalababd, Pakistan
| | - Maryam Rashid
- Synthetic and Natural Product Drug Discovery Laboratory, Department of Chemistry, Government College Women University, Faisalababd, Pakistan
| | - Ayesha Sultan
- Department of Chemistry, University of Education, Lahore, Pakistan
| | | | - Yousef A. Bin Jardan
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Simone Brogi
- Department of Pharmacy, Pisa University, Pisa, Italy
| | - Mohammed Bourhia
- Department of Chemistry and Biochemistry, Faculty of Medicine and Pharmacy, Ibn Zohr University, Laayoune, Morocco
| |
Collapse
|
38
|
Rodrigues L, Nogales A, Nunes J, Rodrigues L, Hansen LD, Cardoso H. Germination of Pisum sativum L. Seeds Is Associated with the Alternative Respiratory Pathway. BIOLOGY 2023; 12:1318. [PMID: 37887028 PMCID: PMC10604721 DOI: 10.3390/biology12101318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/04/2023] [Accepted: 10/05/2023] [Indexed: 10/28/2023]
Abstract
The alternative oxidase (AOX) is a ubiquinol oxidase with a crucial role in the mitochondrial alternative respiratory pathway, which is associated with various processes in plants. In this study, the activity of AOX in pea seed germination was determined in two pea cultivars, 'Maravilha d'América' (MA) and 'Torta de Quebrar' (TQ), during a germination trial using cytochrome oxidase (COX) and AOX inhibitors [rotenone (RT) and salicylic hydroxamic acid (SHAM), respectively]. Calorespirometry was used to assess respiratory changes during germination. In both cultivars, SHAM had a greater inhibitory effect on germination than RT, demonstrating the involvement of AOX in germination. Although calorespirometry did not provide direct information on the involvement of the alternative pathway in seed germination, this methodology was valuable for distinguishing cultivars. To gain deeper insights into the role of AOX in seed germination, the AOX gene family was characterized, and the gene expression pattern was evaluated. Three PsAOX members were identified-PsAOX1, PsAOX2a and PsAOX2b-and their expression revealed a marked genotype effect. This study emphasizes the importance of AOX in seed germination, contributing to the understanding of the role of the alternative respiratory pathway in plants.
Collapse
Affiliation(s)
- Lénia Rodrigues
- MED—Mediterranean Institute for Agriculture, Environment and Development & CHANGE—Global Change and Sustainability Institute, Institute for Advanced Studies and Research, University of Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal;
| | - Amaia Nogales
- IRTA Institute of Agrifood Research and Technology, Sustainable Plant Protection Programme, Centre Cabrils, Ctra. Cabrils Km 2, 08348 Cabrils, Spain;
| | - João Nunes
- School of Sciences and Technology, University of Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal; (J.N.); (L.R.)
| | - Leonardo Rodrigues
- School of Sciences and Technology, University of Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal; (J.N.); (L.R.)
| | - Lee D. Hansen
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA;
| | - Hélia Cardoso
- MED—Mediterranean Institute for Agriculture, Environment and Development & CHANGE—Global Change and Sustainability Institute, School of Science and Technology, Department of Biology, University of Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal
| |
Collapse
|
39
|
Semwal P, Painuli S, Begum J P S, Jamloki A, Rauf A, Olatunde A, Mominur Rahman M, Mukerjee N, Ahmed Khalil A, Aljohani ASM, Al Abdulmonem W, Simal-Gandara J. Exploring the nutritional and health benefits of pulses from the Indian Himalayan region: A glimpse into the region's rich agricultural heritage. Food Chem 2023; 422:136259. [PMID: 37150115 DOI: 10.1016/j.foodchem.2023.136259] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/09/2023]
Abstract
Pulses have been consumed worldwide for over 10 centuries and are currently among the most widely used foods. They are not economically important, but also nutritionally beneficial as they constitute a good source of protein, fibre, vitamins and minerals such as iron, zinc, folate and magnesium. Pulses, but particularly species such as Macrotyloma uniflorum, Phaseolus vulgaris L., Glycine max L. and Vigna umbellate, are essential ingredients of the local diet in the Indian Himalayan Region (IHR). Consuming pulses can have a favourable effect on cardiovascular health as they improve serum lipid profiles, reduce blood pressure, decrease platelet activity, regulate blood glucose and insulin levels, and reduce inflammation. Although pulses also contain anti-nutritional compounds such as phytates, lectins or enzyme inhibitors, their deleterious effects can be lessened by using effective processing and cooking methods. Despite their great potential, however, the use of some pulses is confined to IHR regions. This comprehensive review discusses the state of the art in available knowledge about various types of pulses grown in IHR in terms of chemical and nutritional properties, health effects, accessibility, and agricultural productivity.
Collapse
Affiliation(s)
- Prabhakar Semwal
- Department of Life Sciences, Graphic Era Deemed to be University, Dehradun 248002, Uttarakhand, India.
| | - Sakshi Painuli
- Uttarakhand Council for Biotechnology, Premnagar, Dehradun 248006, Uttarakhand, India
| | - Shabaaz Begum J P
- Department of Life Sciences, Graphic Era Deemed to be University, Dehradun 248002, Uttarakhand, India
| | - Abhishek Jamloki
- High Altitude Plant Physiology Research Centre (HAPPRC), H.N.B. Garhwal University, Srinagar, Uttarakhand, India
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Anbar-23561, Khyber, Pakhtunkhwa, Pakistan.
| | - Ahmed Olatunde
- Department of Medical Biochemistry, Abubakar Tafawa Balewa University, Bauchi 740272, Nigeria
| | - Md Mominur Rahman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Nobendu Mukerjee
- Department of Microbiology, Ramakrishna Mission Vivekananda Centenary College, West Bengal, Kolkata 700118, India; Department of Health Sciences, Novel Global Community Educational Foundation, Australia
| | - Anees Ahmed Khalil
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health Sciences, The University of Lahore, Pakistan
| | - Abdullah S M Aljohani
- Department of Veterinary of Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah, Saudi Arabia
| | - Waleed Al Abdulmonem
- Department of Pathology, College of Medicine Qassim University, Buraydah, Saudi Arabia
| | - Jesus Simal-Gandara
- Universidade de Vigo, Nutrition and Bromatology Group, Analytical Chemistry and Food Science Department, Faculty of Science, Ourense, Spain.
| |
Collapse
|
40
|
Sayanam RRA, Nachiappan K, Khan JM, Ahmad A, Vijayakumar N. Antibacterial, antifungal, and antioxidant competence of Cardiospermum halicacabum based nanoemulsion and characterized their physicochemical properties. 3 Biotech 2023; 13:284. [PMID: 37520341 PMCID: PMC10374496 DOI: 10.1007/s13205-023-03703-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 07/10/2023] [Indexed: 08/01/2023] Open
Abstract
This research was designed to evaluate the pharmaceutical potentials of various proportions of nanoemulsions, Cardiospermum halicacabum Nanoemulsion A and Cardiospermum halicacabum Nanoemulsion B (CHE-NE-A & CHE-NE-B) prepared from the hydroalcoholic extract of Cardiospermum halicacabum through in vitro approach, and their physicochemical properties were characterized using standard scientific analytical techniques. The physicochemical and morphological properties of CHE-NE-A and CHE-NE-B were characterized by FTIR, SEM, TEM, zeta potential, and scattering light intensity analyses. The results revealed that the size, shape, and exterior conditions of nano-droplets of the CHE-NE-A nanoemulsion were suitable as a drug carrier. The reports obtained from in vitro drug releasing potential analysis support this as well. CHE-NE-A nanoemulsion constantly removes the drug from the dialysis bag than CHE-NE-B. Moreover, the CHE-NE-A showed considerable dose-dependent antioxidant activity on DPPH, ABTS, and FRAP free radicals. CHE-NE-A and CHE-NE-B were tested for their antibacterial activity with various bacterial strains. The results demonstrated that the CHE-NE-A nanoemulsion showed remarkable antibacterial activity (zone of inhibition) against test bacterial pathogens than CHE-NE-B. The antibacterial activity of CHE-NE-A at a concentration of 200 µg mL-1was in the following order, P. aeruginosa > S. aureus > S. typhimurium > S. pneumoniae > E. coli. Furthermore, CHE-NE-A has the lowest MIC values against these test bacterial pathogens than CHE-NE-B. Moreover, the CHE-NE-A also demonstrated good antifungal activity against the test fungal pathogens such as Cryptococcus neoformans, Aspergillus niger, Candida pneumonia, and Penicillium expansum than CHE-NE-B. These results strongly suggest that the CHE-NE-A nanoemulsion possesses considerable pharmaceutical potential. Interestingly, the physicochemical properties also rope that the CHE-NE-A nanoemulsion may be considered a drug carrier and useful for drug formulation.
Collapse
Affiliation(s)
- Rajeswari Ranga Anantha Sayanam
- Department of Biochemistry, School of Allied Health Sciences, VMKVMCH Campus, Vinayaka Mission’s Research Foundation (DU), Salem, Tamil Nadu 636308 India
| | | | - Javed Masood Khan
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh, 11451 Saudi Arabia
| | - Anis Ahmad
- Department of Radiation Oncology, Miller School of Medicine/Sylvester Cancer Center, University of Miami, Miami, FL USA
| | - Natesan Vijayakumar
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar, Tamil Nadu 608002 India
| |
Collapse
|
41
|
Mezajoug Kenfack LB, Ngangoum ES, Nzali HG, Djiazet S, Mekongo Otabela JP, Tchiégang C. Possibilities of valorization of Gnetum spp leaves in modern gastronomy: Production and characterization of new vegetable tarts and salads. Heliyon 2023; 9:e18542. [PMID: 37576241 PMCID: PMC10412999 DOI: 10.1016/j.heliyon.2023.e18542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 07/14/2023] [Accepted: 07/20/2023] [Indexed: 08/15/2023] Open
Abstract
Gnetum spp is a green creeper plant abundantly found in the Central African forests. Their leaves are eaten as vegetable by inhabitants. In order to valorize this vegetable in modern gastronomy, a survey was carried out in three towns of Cameroon to evaluate its importance in the feeding habits. The leaves were also sliced in two different forms, precooked, spin-dried and used for Gnetum tarts and salads production. 50, 100 and 150 g of thin sliced precooked leaves were used to prepare three salads and three tarts, keeping the other ingredients constant. Three additional tarts were prepared similarly using thinnest sliced precooked leaves. The final products were analyzed in terms of physiochemical, nutritional and sensorial properties. More than 96.9% of people investigated eat Gnetum leafy vegetables at least once per month. The survey study indicates that the transformation of Gnetum is mostly done by people within the age of 20 to 40 years old. Results of the physicochemical analyses showed that the total protein, lipid and carbohydrate contents increased in general with the increasing of the Gnetum leaf quantities used for preparation. The crude fiber contents of salads and tarts ranged from 52.00 ± 0.68 to 62.66 ± 1.26 and 29.33 ± 0.67 to 33.66 ± 0.47 g/100 g DW respectively. They were positively correlated with the quantity of Gnetum leaves used. The total phenolic contents, also increased significantly (p < 0.05) with the quantity of Gnetum leaves, from 182.45 ± 1.69 to 493.52 ± 2.10 mg/100 g DW for the salad and from 86.69 ± 4.08 to 283.21 ± 6.79 mg/100 g DW for the tart. The calculated energy density of tarts and salads permitted to classify these food products as low and high energy density foods respectively. The nutritional densities of produced tarts oscillated from 0.27 to 0.3 and that of salads from 0.58 to 0.71. With their nutritional values and the significant amount of fibers, Gnetum tarts and salads could be good new recipes to valorize the Gnetum leafy vegetables.
Collapse
Affiliation(s)
- Laurette Blandine Mezajoug Kenfack
- Department of Food Engineering and Quality Control (GACQ), University Institute of Technology, University of Ngaoundere, P.O. Box 454, Ngaoundere, Cameroon
| | - Eric Serge Ngangoum
- School of Agriculture and Natural Resources, Catholic University Institute of Buea, P.O. Box 563, Buea, Cameroon
| | - Horliane Ghomdim Nzali
- Department of Food Engineering and Quality Control (GACQ), University Institute of Technology, University of Ngaoundere, P.O. Box 454, Ngaoundere, Cameroon
| | - Stève Djiazet
- Department of Food Sciences and Nutrition, National Advanced School of Agro-Industrial Sciences (ENSAI), University of Ngaoundere, P.O. Box 455, Ngaoundere, Cameroon
| | - Joseph Pascal Mekongo Otabela
- Department of Food Engineering and Quality Control (GACQ), University Institute of Technology, University of Ngaoundere, P.O. Box 454, Ngaoundere, Cameroon
| | - Clergé Tchiégang
- Department of Food Engineering and Quality Control (GACQ), University Institute of Technology, University of Ngaoundere, P.O. Box 454, Ngaoundere, Cameroon
| |
Collapse
|
42
|
Sedláková V, Zeljković SĆ, Štefelová N, Smýkal P, Hanáček P. Phenylpropanoid Content of Chickpea Seed Coats in Relation to Seed Dormancy. PLANTS (BASEL, SWITZERLAND) 2023; 12:2687. [PMID: 37514301 PMCID: PMC10384132 DOI: 10.3390/plants12142687] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/07/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023]
Abstract
The physical dormancy of seeds is likely to be mediated by the chemical composition and the thickness of the seed coat. Here, we investigate the link between the content of phenylpropanoids (i.e., phenolics and flavonoids) present in the chickpea seed coat and dormancy. The relationship between selected phenolic and flavonoid metabolites of chickpea seed coats and dormancy level was assessed using wild and cultivated chickpea parental genotypes and a derived population of recombinant inbred lines (RILs). The selected phenolic and flavonoid metabolites were analyzed via the LC-MS/MS method. Significant differences in the concentration of certain phenolic acids were found among cultivated (Cicer arietinum, ICC4958) and wild chickpea (Cicer reticulatum, PI489777) parental genotypes. These differences were observed in the contents of gallic, caffeic, vanillic, syringic, p-coumaric, salicylic, and sinapic acids, as well as salicylic acid-2-O-β-d-glucoside and coniferaldehyde. Additionally, significant differences were observed in the flavonoids myricetin, quercetin, luteolin, naringenin, kaempferol, isoorientin, orientin, and isovitexin. When comparing non-dormant and dormant RILs, significant differences were observed in gallic, 3-hydroxybenzoic, syringic, and sinapic acids, as well as the flavonoids quercitrin, quercetin, naringenin, kaempferol, and morin. Phenolic acids were generally more highly concentrated in the wild parental genotype and dormant RILs. We compared the phenylpropanoid content of chickpea seed coats with related legumes, such as pea, lentil, and faba bean. This information could be useful in chickpea breeding programs to reduce dormancy.
Collapse
Affiliation(s)
- Veronika Sedláková
- Department of Plant Biology, Mendel University in Brno, 613 00 Brno, Czech Republic
| | - Sanja Ćavar Zeljković
- Department of Genetic Resources for Vegetables, Medicinal and Special Plants, Crop Research Institute, 783 71 Olomouc, Czech Republic
- Czech Advanced Technology and Research Institute, Palacký University, 783 71 Olomouc, Czech Republic
| | - Nikola Štefelová
- Czech Advanced Technology and Research Institute, Palacký University, 783 71 Olomouc, Czech Republic
| | - Petr Smýkal
- Department of Botany, Faculty of Science, Palacký University, 783 71 Olomouc, Czech Republic
| | - Pavel Hanáček
- Department of Plant Biology, Mendel University in Brno, 613 00 Brno, Czech Republic
| |
Collapse
|
43
|
Razzaq MK, Hina A, Abbasi A, Karikari B, Ashraf HJ, Mohiuddin M, Maqsood S, Maqsood A, Haq IU, Xing G, Raza G, Bhat JA. Molecular and genetic insights into secondary metabolic regulation underlying insect-pest resistance in legumes. Funct Integr Genomics 2023; 23:217. [PMID: 37392308 DOI: 10.1007/s10142-023-01141-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 06/15/2023] [Accepted: 06/19/2023] [Indexed: 07/03/2023]
Abstract
Insect pests pose a major threat to agricultural production, resulting in significant economic losses for countries. A high infestation of insects in any given area can severely reduce crop yield and quality. This review examines the existing resources for managing insect pests and highlights alternative eco-friendly techniques to enhance insect pest resistance in legumes. Recently, the application of plant secondary metabolites has gained popularity in controlling insect attacks. Plant secondary metabolites encompass a wide range of compounds such as alkaloids, flavonoids, and terpenoids, which are often synthesized through intricate biosynthetic pathways. Classical methods of metabolic engineering involve manipulating key enzymes and regulatory genes to enhance or redirect the production of secondary metabolites in plants. Additionally, the role of genetic approaches, such as quantitative trait loci mapping, genome-wide association (GWAS) mapping, and metabolome-based GWAS in insect pest management is discussed, also, the role of precision breeding, such as genome editing technologies and RNA interference for identifying pest resistance and manipulating the genome to develop insect-resistant cultivars are explored, highlighting the positive contribution of plant secondary metabolites engineering-based resistance against insect pests. It is suggested that by understanding the genes responsible for beneficial metabolite compositions, future research might hold immense potential to shed more light on the molecular regulation of secondary metabolite biosynthesis, leading to advancements in insect-resistant traits in crop plants. In the future, the utilization of metabolic engineering and biotechnological methods may serve as an alternative means of producing biologically active, economically valuable, and medically significant compounds found in plant secondary metabolites, thereby addressing the challenge of limited availability.
Collapse
Affiliation(s)
- Muhammad Khuram Razzaq
- Soybean Research Institute & MARA National Centre for Soybean Improvement & MARA Key Laboratory of Biology and Genetic Improvement of Soybean & National Key Laboratory for Crop Genetics and Germplasm Enhancement & Jiangsu Collaborative Innovation Centre for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Aiman Hina
- Ministry of Agriculture (MOA) National Centre for Soybean Improvement, State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Asim Abbasi
- Department of Environmental Sciences, Kohsar University Murree, Murree, 47150, Pakistan
| | - Benjamin Karikari
- Department of Agricultural Biotechnology, Faculty of Agriculture, Food and Consumer Sciences, University for Development Studies, Tamale, Ghana
| | - Hafiza Javaria Ashraf
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Muhammad Mohiuddin
- Environmental Management Consultants (EMC) Private Limited, Islamabad, 44000, Pakistan
| | - Sumaira Maqsood
- Department of Environmental Sciences, Kohsar University Murree, Murree, 47150, Pakistan
| | - Aqsa Maqsood
- Department of Zoology, University of Central Punjab, Bahawalpur, 63100, Pakistan
| | - Inzamam Ul Haq
- College of Plant Protection, Gansu Agricultural University, Lanzhou, No. 1 Yingmen Village, Anning District, Lanzhou, 730070, China
| | - Guangnan Xing
- Soybean Research Institute & MARA National Centre for Soybean Improvement & MARA Key Laboratory of Biology and Genetic Improvement of Soybean & National Key Laboratory for Crop Genetics and Germplasm Enhancement & Jiangsu Collaborative Innovation Centre for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ghulam Raza
- National Institute for Biotechnology and Genetic Engineering Faisalabad, Faisalabad, Pakistan
| | - Javaid Akhter Bhat
- International Genome Center, Jiangsu University, Zhenjiang, 212013, China
| |
Collapse
|
44
|
Alfaro-Diaz A, Escobedo A, Luna-Vital DA, Castillo-Herrera G, Mojica L. Common beans as a source of food ingredients: Techno-functional and biological potential. Compr Rev Food Sci Food Saf 2023; 22:2910-2944. [PMID: 37182216 DOI: 10.1111/1541-4337.13166] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/27/2023] [Accepted: 04/16/2023] [Indexed: 05/16/2023]
Abstract
Common beans are an inexpensive source of high-quality food ingredients. They are rich in proteins, slowly digestible starch, fiber, phenolic compounds, and other bioactive molecules that could be separated and processed to obtain value-added ingredients with techno-functional and biological potential. The use of common beans in the food industry is a promising alternative to add nutritional and functional ingredients with a low impact on overall consumer acceptance. Researchers are evaluating traditional and novel technologies to develop functionally enhanced common bean ingredients, such as flours, proteins, starch powders, and phenolic extracts that could be introduced as functional ingredient alternatives in the food industry. This review compiles recent information on processing, techno-functional properties, food applications, and the biological potential of common bean ingredients. The evidence shows that incorporating an adequate proportion of common bean ingredients into regular foods such as pasta, bread, or nutritional bars improves their fiber, protein, phenolic compounds, and glycemic index profile without considerably affecting their organoleptic properties. Additionally, common bean consumption has shown health benefits in the gut microbiome, weight control, and the reduction of the risk of developing noncommunicable diseases. However, food matrix interaction studies and comprehensive clinical trials are needed to develop common bean ingredient applications and validate the health benefits over time.
Collapse
Affiliation(s)
- Arturo Alfaro-Diaz
- Tecnología Alimentaria, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, México
| | - Alejandro Escobedo
- Tecnología Alimentaria, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, México
| | - Diego A Luna-Vital
- Tecnologico de Monterrey, The Institute for Obesity Research, Monterrey, Mexico
| | - Gustavo Castillo-Herrera
- Tecnología Alimentaria, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, México
| | - Luis Mojica
- Tecnología Alimentaria, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, México
| |
Collapse
|
45
|
Chen H, Li Y, Wang J, Zheng T, Wu C, Cui M, Feng Y, Ye H, Dong Z, Dang Y. Plant Polyphenols Attenuate DSS-induced Ulcerative Colitis in Mice via Antioxidation, Anti-inflammation and Microbiota Regulation. Int J Mol Sci 2023; 24:10828. [PMID: 37446006 DOI: 10.3390/ijms241310828] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/11/2023] [Accepted: 06/16/2023] [Indexed: 07/15/2023] Open
Abstract
The pathogenesis of ulcerative colitis (UC) is associated with inflammation, oxidative stress, and gut microbiota imbalance. Although most researchers have demonstrated the antioxidant bioactivity of the phenolic compounds in plants, their UC-curing ability and underlying mechanisms still need to be further and adequately explored. Herein, we studied the antioxidation-structure relationship of several common polyphenols in plants including gallic acid, proanthocyanidin, ellagic acid, and tannic acid. Furthermore, the in vivo effects of the plant polyphenols on C57BL/6 mice with dextran-sulfate-sodium-induced UC were evaluated and the action mechanisms were explored. Moreover, the interplay of several mechanisms was determined. The higher the number of phenolic hydroxyl groups, the stronger the antioxidant activity. All polyphenols markedly ameliorated the symptoms and pathological progression of UC in mice. Furthermore, inflammatory cytokine levels were decreased and the intestinal barrier was repaired. The process was regulated by the antioxidant-signaling pathway of nuclear-erythroid 2-related factor 2. Moreover, the diversity of the intestinal microbiota, Firmicutes-to-Bacteroides ratio, and relative abundance of beneficial bacteria were increased. An interplay was observed between microbiota regulation and oxidative stress, immunity, and inflammatory response. Furthermore, intestinal barrier repair was found to be correlated with inflammatory responses. Our study results can form a basis for comprehensively developing plant-polyphenol-related medicinal products.
Collapse
Affiliation(s)
- Huan Chen
- Drug Delivery Research Center, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Hebei Medical University, Shijiazhuang 050017, China
| | - Ying Li
- Drug Delivery Research Center, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100094, China
- Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Beijing 100700, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing 100700, China
| | - Jinrui Wang
- Drug Delivery Research Center, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| | - Tingting Zheng
- Drug Delivery Research Center, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| | - Chenyang Wu
- Drug Delivery Research Center, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| | - Mengyao Cui
- Drug Delivery Research Center, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| | - Yifan Feng
- Drug Delivery Research Center, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| | - Hanyi Ye
- Drug Delivery Research Center, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| | - Zhengqi Dong
- Drug Delivery Research Center, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100094, China
- Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Beijing 100700, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing 100700, China
| | - Yunjie Dang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Hebei Medical University, Shijiazhuang 050017, China
| |
Collapse
|
46
|
Wu D, Wan J, Li W, Li J, Guo W, Zheng X, Gan RY, Hu Y, Zou L. Comparison of Soluble Dietary Fibers Extracted from Ten Traditional Legumes: Physicochemical Properties and Biological Functions. Foods 2023; 12:2352. [PMID: 37372563 DOI: 10.3390/foods12122352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/08/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Soluble dietary fibers (SDFs) exist as the major bioactive components in legumes, which exhibit various biological functions. To improve the potential applications of legume SDFs as healthy value-added products in the functional food industry, the physicochemical properties and biological functions of SDFs from ten selected traditional legumes, including mung bean, adzuki bean, red bean, red sword bean, black bean, red kidney bean, speckled kidney bean, common bean, white hyacinth bean, and pea, were studied and compared. Results showed that the physicochemical properties of SDFs varied in different species of legumes. All legume SDFs almost consisted of complex polysaccharides, which were rich in pectic-polysaccharides, e.g., homogalacturonan (HG) and rhamnogalacturonan I (RG I) domains. In addition, hemicelluloses, such as arabinoxylan, xyloglucan, and galactomannan, existed in almost all legume SDFs, and a large number of galactomannans existed in SDFs from black beans. Furthermore, all legume SDFs exhibited potential antioxidant, antiglycation, immunostimulatory, and prebiotic effects, and their biological functions differed relative to their chemical structures. The findings can help reveal the physicochemical and biological properties of different legume SDFs, which can also provide some insights into the further development of legume SDFs as functional food ingredients.
Collapse
Affiliation(s)
- Dingtao Wu
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Jiajia Wan
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Wenxing Li
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Jie Li
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Wang Guo
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Xiaoqin Zheng
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Ren-You Gan
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, Singapore 138669, Singapore
| | - Yichen Hu
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| |
Collapse
|
47
|
Guo F, Peng L, Xiong H, Tsao R, Zhang H, Jiang L, Sun Y. Bioaccessibility and transport of lentil hull polyphenols in vitro, and their bioavailability and metabolism in rats. Food Res Int 2023; 167:112634. [PMID: 37087206 DOI: 10.1016/j.foodres.2023.112634] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 02/15/2023] [Accepted: 02/21/2023] [Indexed: 03/06/2023]
Abstract
Polyphenol-rich lentil hulls are a valuable by-product. In this study, lentil hulls were subjected to simulated in vitro digestion and caco-2 cell monolayer models to assess the bioaccessibility, transmembrane transport, and a rat model to examine the bioavailability and metabolism in vivo. Polyphenols were increasingly released during the in vitro digestion, and were found to contribute to the increased antioxidant activity. Among the bioaccessible polyphenols, catechin glucoside, kaempferol tetraglucoside, procyanidin dimer and dihydroxybenzoic acid-O-dipentoside were most efficiently transported across the caco-2 membrane, and responsible for promoting intestinal integrity as a result of enhanced expression of tight junction proteins. When ingested by rats, lentil hull polyphenols underwent extensive I and II phase metabolic reactions in vivo, including hydroxylation, methylation, glucuronidation and sulfation. Overall, results of this study showed that lentil hull polyphenols are bioaccessible and bioavailable, and lentil hulls as a by-product can be a valuable ingredient for future functional foods.
Collapse
Affiliation(s)
- Fanghua Guo
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, Jiangxi, China
| | - Li Peng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, Jiangxi, China
| | - Hua Xiong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, Jiangxi, China
| | - Rong Tsao
- Guelph Research and Development Centre, Agricultural and Agri-Food Canada, 93 Stone Road West, Guelph, ON N1G 5C9, Canada
| | - Hua Zhang
- Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, Jiangxi, China
| | - Li Jiang
- Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, Jiangxi, China
| | - Yong Sun
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, Jiangxi, China.
| |
Collapse
|
48
|
He L, Hu Q, Wei L, Ge X, Yu N, Chen Y. Unravelling dynamic changes in non-volatile and volatile metabolites of pulses during soaking: An integrated metabolomics approach. Food Chem 2023; 422:136231. [PMID: 37141754 DOI: 10.1016/j.foodchem.2023.136231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 04/11/2023] [Accepted: 04/20/2023] [Indexed: 05/06/2023]
Abstract
An integrated metabolomics approach based on UPLC-QTOF-MS and HS-SPME-GC-orbitrap-MS was performed to investigate the dynamic changes of metabolite profiling in chickpeas, red speckled kidney beans, and mung beans during soaking. There were 23, 23, 16 non-volatile metabolites, and 18, 21, 22 volatile metabolites were identified as differential metabolites in chickpeas, red speckled kidney beans, and mung beans during soaking, respectively. These metabolites mainly included flavonoids, lysophosphatidylcholines (LPCs), lysophosphatidylethanolamines (LPEs), fatty acids, alcohols, aldehydes, and esters. The key time points responsible for the significant changes in metabolites and quality of the three pulses were 4, 8, and 24 h of soaking. Results revealed that the variations of some metabolites could attribute to oxidation and hydrolysis reactions. These results contribute to a better understanding of how soaking affects pulses quality, and provide useful information for determining soaking time according to nutritional and sensory requirements of their final products or dishes.
Collapse
Affiliation(s)
- Lei He
- Chinese Academy of Inspection and Quarantine, Beijing 100176, People's Republic of China
| | - Qian Hu
- Chinese Academy of Inspection and Quarantine, Beijing 100176, People's Republic of China; School of Food and Health, Beijing Technology and Business University, Beijing 100048, People's Republic of China
| | - Liyang Wei
- Chinese Academy of Inspection and Quarantine, Beijing 100176, People's Republic of China
| | - Xuliyang Ge
- Chinese Academy of Inspection and Quarantine, Beijing 100176, People's Republic of China; College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, People's Republic of China
| | - Ning Yu
- Chinese Academy of Inspection and Quarantine, Beijing 100176, People's Republic of China
| | - Ying Chen
- Chinese Academy of Inspection and Quarantine, Beijing 100176, People's Republic of China.
| |
Collapse
|
49
|
Yang Q, Song Z, Li X, Hou Y, Xu T, Wu S. Lichen-Derived Actinomycetota: Novel Taxa and Bioactive Metabolites. Int J Mol Sci 2023; 24:ijms24087341. [PMID: 37108503 PMCID: PMC10138632 DOI: 10.3390/ijms24087341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/13/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
Actinomycetes are essential sources of numerous bioactive secondary metabolites with diverse chemical and bioactive properties. Lichen ecosystems have piqued the interest of the research community due to their distinct characteristics. Lichen is a symbiont of fungi and algae or cyanobacteria. This review focuses on the novel taxa and diverse bioactive secondary metabolites identified between 1995 and 2022 from cultivable actinomycetota associated with lichens. A total of 25 novel actinomycetota species were reported following studies of lichens. The chemical structures and biological activities of 114 compounds derived from the lichen-associated actinomycetota are also summarized. These secondary metabolites were classified into aromatic amides and amines, diketopiperazines, furanones, indole, isoflavonoids, linear esters and macrolides, peptides, phenolic derivatives, pyridine derivatives, pyrrole derivatives, quinones, and sterols. Their biological activities included anti-inflammatory, antimicrobial, anticancer, cytotoxic, and enzyme-inhibitory actions. In addition, the biosynthetic pathways of several potent bioactive compounds are summarized. Thus, lichen actinomycetes demonstrate exceptional abilities in the discovery of new drug candidates.
Collapse
Affiliation(s)
- Qingrong Yang
- Yunnan Institute of Microbiology, School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Zhiqiang Song
- Yunnan Institute of Microbiology, School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Xinpeng Li
- Yunnan Institute of Microbiology, School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Yage Hou
- Yunnan Institute of Microbiology, School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Tangchang Xu
- Yunnan Institute of Microbiology, School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Shaohua Wu
- Yunnan Institute of Microbiology, School of Life Sciences, Yunnan University, Kunming 650091, China
| |
Collapse
|
50
|
Li X, Li S, Wang J, Chen G, Tao X, Xu S. Metabolomic Analysis Reveals Domestication-Driven Reshaping of Polyphenolic Antioxidants in Soybean Seeds. Antioxidants (Basel) 2023; 12:antiox12040912. [PMID: 37107287 PMCID: PMC10135580 DOI: 10.3390/antiox12040912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 03/30/2023] [Accepted: 03/30/2023] [Indexed: 04/29/2023] Open
Abstract
Crop domestication has resulted in nutrient losses, so evaluating the reshaping of phytonutrients is crucial for improving nutrition. Soybean is an ideal model due to its abundant phytonutrients and wild relatives. In order to unravel the domestication consequence of phytonutrients, comparative and association analyses of metabolomes and antioxidant activities were performed on seeds of six wild (Glycine soja (Sieb. and Zucc.)) and six cultivated soybeans (Glycine max (L.) Merr.). Through ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS), we observed a greater metabolic diversity in wild soybeans, which also displayed higher antioxidant activities. (-)-Epicatechin, a potent antioxidant, displayed a 1750-fold greater abundance in wild soybeans than in cultivated soybeans. Multiple polyphenols in the catechin biosynthesis pathway were significantly higher in wild soybeans, including phlorizin, taxifolin, quercetin 3-O-galactoside, cyanidin 3-O-glucoside, (+)-catechin, (-)-epiafzelechin, catechin-glucoside, and three proanthocyanidins. They showed significant positive correlations with each other and antioxidant activities, indicating their cooperative contribution to the high antioxidant activities of wild soybeans. Additionally, natural acylation related to functional properties was characterized in a diverse range of polyphenols. Our study reveals the comprehensive reprogramming of polyphenolic antioxidants during domestication, providing valuable insights for metabolism-assisted fortification of crop nutrition.
Collapse
Affiliation(s)
- Xuetong Li
- Central Laboratory, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Sujuan Li
- Central Laboratory, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jian Wang
- Central Laboratory, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Guang Chen
- Central Laboratory, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xiaoyuan Tao
- Central Laboratory, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Shengchun Xu
- Central Laboratory, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
- Xianghu Laboratory, Hangzhou 311231, China
| |
Collapse
|