1
|
Le Bras C, Mouchard A, Rault L, Cochet MF, Ménard O, Jacquet N, Chuat V, Valence F, Le Loir Y, Bellanger A, Deglaire A, Le Huërou-Luron I, Even S. New insights into the cultivability of human milk bacteria from ingestion to digestion and implications for their Immunomodulatory properties. Sci Rep 2025; 15:10985. [PMID: 40164734 PMCID: PMC11958788 DOI: 10.1038/s41598-025-95668-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 03/24/2025] [Indexed: 04/02/2025] Open
Abstract
Human milk (HM) microbiota is increasingly studied for its potential health benefits. However, the physiological state of HM bacteria and consequently their effects on gut homeostasis remain a question. This study investigated the physiological state of the HM microbiota by characterizing its cultivable fraction as it might be at the point of ingestion and assessing the effects of digestion, in the specific context of the immature infant digestive tract, on the cultivability and immunomodulatory properties of six HM strains representative of prevalent genera in HM. Twenty-eight HM samples were analysed by 16 S metabarcoding either directly on raw milk (raw milk microbiota, RM) or on the complete cultivable fraction obtained from seven non-selective media (cultivable milk microbiota, CM). This approach enabled a more in-depth investigation of CM than conventional methods based on the individual sequencing of a subset of isolates and resulted in a moderate gain in diversity within each HM sample. It confirmed that diversity was lower in CM than in RM, with ~ 7 versus 69 genera per sample in CM and RM respectively, and an under-representation of strictly anaerobic genera in CM. In vitro infant gastrointestinal digestion resulted in overall good survival of the 6 HM strains but partial or complete loss of their immunomodulatory properties on the monocyte THP1 cell line, except for a Staphylococcus epidermidis strain that gained immunomodulatory potential. These results highlight the potential of HM bacteria to survive during the infant gastrointestinal digestion and interact with the intestinal epithelium and immune system, as well as the importance of considering the digestion process when evaluating host-bacteria interactions.
Collapse
Affiliation(s)
- Charles Le Bras
- STLO, INRAE, Institut Agro Rennes Angers, Rennes, France
- Institut NuMeCan, INRAE, INSERM, Université de Rennes, Saint Gilles, France
| | - Alizé Mouchard
- STLO, INRAE, Institut Agro Rennes Angers, Rennes, France
| | - Lucie Rault
- STLO, INRAE, Institut Agro Rennes Angers, Rennes, France
| | | | - Olivia Ménard
- STLO, INRAE, Institut Agro Rennes Angers, Rennes, France
| | | | - Victoria Chuat
- STLO, INRAE, Institut Agro Rennes Angers, Rennes, France
| | | | - Yves Le Loir
- STLO, INRAE, Institut Agro Rennes Angers, Rennes, France
| | | | | | | | - Sergine Even
- STLO, INRAE, Institut Agro Rennes Angers, Rennes, France.
| |
Collapse
|
2
|
Misme-Aucouturier B, Gagnaire V, LeCorre E, DeCarvalho M, Jan G, Bouchaud G. Propionibacterium freudenreichii Prevents Food Allergy in Mice via the Surface Layer Protein SlpB. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:27495-27503. [PMID: 39576212 DOI: 10.1021/acs.jafc.4c09165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
The prevalence of food allergies has increased in recent decades in industrialized developed countries. Defects are influenced by environmental factors in early life, including early colonizers of the human gut microbiota. Therapeutic solutions are limited, and the lack of efficient treatments has led to the search for new treatments, including biotherapies. Promising results from this search suggest that immunomodulatory probiotic bacteria, in particular, may yield new biotherapeutic or preventive strategies to address the increasing burden of food allergies. In this context, we investigated the potential impact of Propionibacterium freudenreichii CIRM-BIA129, a recognized immunomodulatory probiotic bacterium, on food allergy development in a murine model. Preventive effects of this probiotic were evaluated in the context of an induced wheat gliadin allergy. Following sensitization using gliadins, clinical and immunological parameters were monitored following an oral challenge with wheat gliadin. When consumed orally, P. freudenreichii CIRM-BIA129 prevented induced wheat gliadin allergy. Probiotic administration favored the differentiation of Treg cells at the expense of Th2 cells in mice. Notably, P. freudenreichii CIRM-BIA129 ΔslpB, which contains a mutation in the slpB gene encoding a key surface protein involved in adhesion and immunomodulation, failed to induce the same phenotype. Accordingly, the wild-type probiotic stimulated IL-10 production by human peripheral blood mononuclear cells, while the mutant did not. Altogether, these results indicate that the P. freudenreichii CIRM-BIA129 strain can mitigate the food allergic response through its immunomodulatory effects mediated by the surface layer protein SlpB. This finding provides new perspectives for biotherapies aimed at managing the increased prevalence of food allergy.
Collapse
Affiliation(s)
| | | | - Elysa LeCorre
- INRAE, Biopolymères Intéractions Assemblages (BIA), 44000 Nantes, France
| | - Marion DeCarvalho
- INRAE, Biopolymères Intéractions Assemblages (BIA), 44000 Nantes, France
| | - Gwénaël Jan
- INRAE, STLO, Institut Agro, 35000 Rennes, France
| | - Grégory Bouchaud
- INRAE, Biopolymères Intéractions Assemblages (BIA), 44000 Nantes, France
| |
Collapse
|
3
|
da Silva TF, Glória RDA, Americo MF, Freitas ADS, de Jesus LCL, Barroso FAL, Laguna JG, Coelho-Rocha ND, Tavares LM, le Loir Y, Jan G, Guédon É, Azevedo VADC. Unlocking the Potential of Probiotics: A Comprehensive Review on Research, Production, and Regulation of Probiotics. Probiotics Antimicrob Proteins 2024; 16:1687-1723. [PMID: 38539008 DOI: 10.1007/s12602-024-10247-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2024] [Indexed: 10/02/2024]
Abstract
This review provides a comprehensive overview of the current state of probiotic research, covering a wide range of topics, including strain identification, functional characterization, preclinical and clinical evaluations, mechanisms of action, therapeutic applications, manufacturing considerations, and future directions. The screening process for potential probiotics involves phenotypic and genomic analysis to identify strains with health-promoting properties while excluding those with any factor that could be harmful to the host. In vitro assays for evaluating probiotic traits such as acid tolerance, bile metabolism, adhesion properties, and antimicrobial effects are described. The review highlights promising findings from in vivo studies on probiotic mitigation of inflammatory bowel diseases, chemotherapy-induced mucositis, dysbiosis, obesity, diabetes, and bone health, primarily through immunomodulation and modulation of the local microbiota in human and animal models. Clinical studies demonstrating beneficial modulation of metabolic diseases and human central nervous system function are also presented. Manufacturing processes significantly impact the growth, viability, and properties of probiotics, and the composition of the product matrix and supplementation with prebiotics or other strains can modify their effects. The lack of regulatory oversight raises concerns about the quality, safety, and labeling accuracy of commercial probiotics, particularly for vulnerable populations. Advancements in multi-omics approaches, especially probiogenomics, will provide a deeper understanding of the mechanisms behind probiotic functionality, allowing for personalized and targeted probiotic therapies. However, it is crucial to simultaneously focus on improving manufacturing practices, implementing quality control standards, and establishing regulatory oversight to ensure the safety and efficacy of probiotic products in the face of increasing therapeutic applications.
Collapse
Affiliation(s)
- Tales Fernando da Silva
- Institute of Biological Sciences, Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
- UMR1253, INRAE, L'Institut Agro Rennes Angers, STLO, Rennes, France
| | - Rafael de Assis Glória
- Institute of Biological Sciences, Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Monique Ferrary Americo
- Institute of Biological Sciences, Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Andria Dos Santos Freitas
- Institute of Biological Sciences, Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Luis Claudio Lima de Jesus
- Institute of Biological Sciences, Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Fernanda Alvarenga Lima Barroso
- Institute of Biological Sciences, Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Juliana Guimarães Laguna
- Institute of Biological Sciences, Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Nina Dias Coelho-Rocha
- Institute of Biological Sciences, Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Laisa Macedo Tavares
- Institute of Biological Sciences, Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Yves le Loir
- UMR1253, INRAE, L'Institut Agro Rennes Angers, STLO, Rennes, France
| | - Gwénaël Jan
- UMR1253, INRAE, L'Institut Agro Rennes Angers, STLO, Rennes, France
| | - Éric Guédon
- UMR1253, INRAE, L'Institut Agro Rennes Angers, STLO, Rennes, France
| | - Vasco Ariston de Carvalho Azevedo
- Institute of Biological Sciences, Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil.
| |
Collapse
|
4
|
Xie W, Zhong YS, Li XJ, Kang YK, Peng QY, Ying HZ. Postbiotics in colorectal cancer: intervention mechanisms and perspectives. Front Microbiol 2024; 15:1360225. [PMID: 38450163 PMCID: PMC10914944 DOI: 10.3389/fmicb.2024.1360225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/06/2024] [Indexed: 03/08/2024] Open
Abstract
Colorectal cancer (CRC) is a common malignancy affecting the gastrointestinal tract worldwide. The etiology and progression of CRC are related to factors such as environmental influences, dietary structure, and genetic susceptibility. Intestinal microbiota can influence the integrity of the intestinal mucosal barrier and modulate intestinal immunity by secreting various metabolites. Dysbiosis of the intestinal microbiota can affect the metabolites of the microbial, leading to the accumulation of toxic metabolites, which can trigger chronic inflammation or DNA damage and ultimately lead to cellular carcinogenesis and the development of CRC. Postbiotics are preparations of inanimate microorganisms or their components that are beneficial to the health of the host, with the main components including bacterial components (e.g., exopolysaccharides, teichoic acids, surface layer protein) and metabolites (e.g., short-chain fatty acids, tryptophan metabolite, bile acids, vitamins and enzymes). Compared with traditional probiotics, it has a more stable chemical structure and higher safety. In recent years, it has been demonstrated that postbiotics are involved in regulating intestinal microecology and improving the progression of CRC, which provides new ideas for the prevention and diagnosis of CRC. In this article, we review the changes in intestinal microbiota in different states of the gut and the mechanisms of anti-tumor activity of postbiotic-related components, and discuss the potential significance of postbiotics in the diagnosis and treatment of CRC. This reviews the changes and pathogenesis of intestinal microbiota in the development of CRC, and summarizes the relevant mechanisms of postbiotics in resisting the development of CRC in recent years, as well as the advantages and limitations of postbiotics in the treatment process of CRC.
Collapse
Affiliation(s)
| | | | | | | | | | - Hua-Zhong Ying
- Key Laboratory of Experimental Animal and Safety Evaluation, Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
5
|
Mantel M, Durand T, Bessard A, Pernet S, Beaudeau J, Guimaraes-Laguna J, Maillard MB, Guédon E, Neunlist M, Le Loir Y, Jan G, Rolli-Derkinderen M. Propionibacterium freudenreichii CIRM-BIA 129 mitigates colitis through S layer protein B-dependent epithelial strengthening. Am J Physiol Gastrointest Liver Physiol 2024; 326:G163-G175. [PMID: 37988603 DOI: 10.1152/ajpgi.00198.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/10/2023] [Accepted: 11/20/2023] [Indexed: 11/23/2023]
Abstract
The growing incidence of human diseases involving inflammation and increased gut permeability makes the quest for protective functional foods more crucial than ever. Propionibacterium freudenreichii (P. freudenreichii) is a beneficial bacterium used in the dairy and probiotic industries. Selected strains exert anti-inflammatory effects, and the present work addresses whether the P. freudenreichii CIRM-BIA129, consumed daily in a preventive way, could protect mice from acute colitis induced by dextran sodium sulfate (DSS), and more precisely, whether it could protect from intestinal epithelial breakdown induced by inflammation. P. freudenreichii CIRM-BIA129 mitigated colitis severity and inhibited DSS-induced permeability. It limited crypt length reduction and promoted the expression of zonula occludens-1 (ZO-1), without reducing interleukin-1β mRNA (il-1β) expression. In vitro, P. freudenreichii CIRM-BIA129 prevented the disruption of a Caco-2 monolayer induced by proinflammatory cytokines. It increased transepithelial electrical resistance (TEER) and inhibited permeability induced by inflammation, along with an increased ZO-1 expression. Extracellular vesicles (EVs) from P. freudenreichii CIRM-BIA129, carrying the surface layer protein (SlpB), reproduced the protective effect of P. freudenreichii CIRM-BIA129. A mutant strain deleted for slpB (ΔslpB), or EVs from this mutant strain, had lost their protective effects and worsened both DSS-induced colitis and inflammation in vivo. These results shown that P. freudenreichii CIRM-BIA129 daily consumption has the potential to greatly alleviate colitis symptoms and, particularly, to counter intestinal epithelial permeability induced by inflammation by restoring ZO-1 expression through mechanisms involving S-layer protein B. They open new avenues for the use of probiotic dairy propionibacteria and/or postbiotic fractions thereof, in the context of gut permeability.NEW & NOTEWORTHY Propionibacterium freudenreichii reduces dextran sodium sulfate (DSS)-induced intestinal permeability in vivo. P. freudenreichii does not inhibit inflammation but damages linked to inflammation. P. freudenreichii inhibits intestinal epithelial breakdown through S-layer protein B. The protective effects of P. freudenreichii depend on S-layer protein B. Extracellular vesicles from P. freudenreichii CB 129 mimic the protective effect of the probiotic.
Collapse
Affiliation(s)
- Marine Mantel
- The Enteric Nervous System In Gut And Brain Disorders, IMAD, Institut National de la Santé et de la Recherche Médicale, Nantes Université, Nantes, France
- Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Unité Mixte de Recherche, L'Institut Agro, Rennes, France
| | - Tony Durand
- The Enteric Nervous System In Gut And Brain Disorders, IMAD, Institut National de la Santé et de la Recherche Médicale, Nantes Université, Nantes, France
| | - Anne Bessard
- The Enteric Nervous System In Gut And Brain Disorders, IMAD, Institut National de la Santé et de la Recherche Médicale, Nantes Université, Nantes, France
| | - Ségolène Pernet
- The Enteric Nervous System In Gut And Brain Disorders, IMAD, Institut National de la Santé et de la Recherche Médicale, Nantes Université, Nantes, France
| | - Julie Beaudeau
- The Enteric Nervous System In Gut And Brain Disorders, IMAD, Institut National de la Santé et de la Recherche Médicale, Nantes Université, Nantes, France
- Centres de Recherche en Nutrition Humaine-Ouest, Nantes, France
| | - Juliana Guimaraes-Laguna
- Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Unité Mixte de Recherche, L'Institut Agro, Rennes, France
| | - Marie-Bernadette Maillard
- Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Unité Mixte de Recherche, L'Institut Agro, Rennes, France
| | - Eric Guédon
- Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Unité Mixte de Recherche, L'Institut Agro, Rennes, France
| | - Michel Neunlist
- The Enteric Nervous System In Gut And Brain Disorders, IMAD, Institut National de la Santé et de la Recherche Médicale, Nantes Université, Nantes, France
| | - Yves Le Loir
- Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Unité Mixte de Recherche, L'Institut Agro, Rennes, France
| | - Gwénaël Jan
- Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Unité Mixte de Recherche, L'Institut Agro, Rennes, France
| | - Malvyne Rolli-Derkinderen
- The Enteric Nervous System In Gut And Brain Disorders, IMAD, Institut National de la Santé et de la Recherche Médicale, Nantes Université, Nantes, France
| |
Collapse
|
6
|
Lê A, Mantel M, Marchix J, Bodinier M, Jan G, Rolli-Derkinderen M. Inflammatory bowel disease therapeutic strategies by modulation of the microbiota: how and when to introduce pre-, pro-, syn-, or postbiotics? Am J Physiol Gastrointest Liver Physiol 2022; 323:G523-G553. [PMID: 36165557 DOI: 10.1152/ajpgi.00002.2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Inflammatory bowel diseases (IBD), a heterogeneous group of inflammatory conditions that encompass both ulcerative colitis and Crohn's disease, represent a major public health concern. The etiology of IBD is not yet fully understood and no cure is available, with current treatments only showing long-term effectiveness in a minority of patients. A need to increase our knowledge on IBD pathophysiology is growing, to define preventive measures, to improve disease outcome, and to develop new effective and lasting treatments. IBD pathogenesis is sustained by aberrant immune responses, associated with alterations of the intestinal epithelial barrier (IEB), modifications of the enteric nervous system, and changes in microbiota composition. Currently, most of the treatments target the inflammation and the immune system, but holistic approaches targeting lifestyle and diet improvements are emerging. As dysbiosis is involved in IBD pathogenesis, pre-, pro-, syn-, and postbiotics are used/tested to reduce the inflammation or strengthen the IEB. The present review will resume these works, pointing out the stage of life, the duration, and the environmental conditions that should go along with microbiota or microbiota-derived treatments.
Collapse
Affiliation(s)
- Amélie Lê
- The Enteric Nervous System in Gut and Brain Disorders, Institut des Maladies de l'Appareil Digestif, Nantes Université, Institut National pour la Santé et la Recherche Médicale, Nantes, France
| | - Marine Mantel
- The Enteric Nervous System in Gut and Brain Disorders, Institut des Maladies de l'Appareil Digestif, Nantes Université, Institut National pour la Santé et la Recherche Médicale, Nantes, France
- Unité Mixte de Recherche Science et Technologie du Lait et de l'Oeuf, Agrocampus Ouest, Institut Agro, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Rennes, France
| | - Justine Marchix
- The Enteric Nervous System in Gut and Brain Disorders, Institut des Maladies de l'Appareil Digestif, Nantes Université, Institut National pour la Santé et la Recherche Médicale, Nantes, France
| | - Marie Bodinier
- Unité de Recherche 1268 Biopolymères Interactions Assemblages, I Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Pays de la Loire, Nantes, France
| | - Gwénaël Jan
- Unité Mixte de Recherche Science et Technologie du Lait et de l'Oeuf, Agrocampus Ouest, Institut Agro, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Rennes, France
| | - Malvyne Rolli-Derkinderen
- The Enteric Nervous System in Gut and Brain Disorders, Institut des Maladies de l'Appareil Digestif, Nantes Université, Institut National pour la Santé et la Recherche Médicale, Nantes, France
| |
Collapse
|
7
|
Illikoud N, Mantel M, Rolli-Derkinderen M, Gagnaire V, Jan G. Dairy starters and fermented dairy products modulate gut mucosal immunity. Immunol Lett 2022; 251-252:91-102. [DOI: 10.1016/j.imlet.2022.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 10/24/2022] [Accepted: 11/01/2022] [Indexed: 11/07/2022]
|
8
|
de Assis DA, Machado C, Matte C, Ayub MAZ. High Cell Density Culture of Dairy Propionibacterium sp. and Acidipropionibacterium sp.: A Review for Food Industry Applications. FOOD BIOPROCESS TECH 2022; 15:734-749. [PMID: 35069966 PMCID: PMC8761093 DOI: 10.1007/s11947-021-02748-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 12/06/2021] [Indexed: 12/11/2022]
Abstract
The dairy bacteria Propionibacterium sp. and Acidipropionibacterium sp. are versatile and potentially probiotic microorganisms showing outstanding functionalities for the food industry, such as the production of propionic acid and vitamin B12 biosynthesis. They are the only food grade microorganisms able to produce vitamin B12. However, the fermentation batch process using these bacteria present some bioprocess limitations due to strong end-product inhibition, cells slow-growing rates, low product titer, yields and productivities, which reduces the bioprocess prospects for industrial applications. The high cell density culture (HCDC) bioprocess system is known as an efficient approach to overcome most of those problems. The main techniques applied to achieve HCDC of dairy Propionibacterium are the fed-batch cultivation, cell recycling, perfusion, extractive fermentation, and immobilization. In this review, the techniques available and reported to achieve HCDC of Propionibacterium sp. and Acidipropionibacterium sp. are discussed, and the advantages and drawbacks of this system of cultivation in relation to biomass formation, vitamin B12 biosynthesis, and propionic acid production are evaluated.
Collapse
Affiliation(s)
- Dener Acosta de Assis
- Biotechnology & Biochemical Engineering Laboratory (BiotecLab), Food Science and Technology Institute, Federal University of Rio Grande do Sul, Av. Bento Gonçalves 9500, PO Box 15090, ZC 91501-970 Porto Alegre, RS Brazil
| | - Camille Machado
- Biotechnology & Biochemical Engineering Laboratory (BiotecLab), Food Science and Technology Institute, Federal University of Rio Grande do Sul, Av. Bento Gonçalves 9500, PO Box 15090, ZC 91501-970 Porto Alegre, RS Brazil
| | - Carla Matte
- Biotechnology & Biochemical Engineering Laboratory (BiotecLab), Food Science and Technology Institute, Federal University of Rio Grande do Sul, Av. Bento Gonçalves 9500, PO Box 15090, ZC 91501-970 Porto Alegre, RS Brazil
| | - Marco Antônio Záchia Ayub
- Biotechnology & Biochemical Engineering Laboratory (BiotecLab), Food Science and Technology Institute, Federal University of Rio Grande do Sul, Av. Bento Gonçalves 9500, PO Box 15090, ZC 91501-970 Porto Alegre, RS Brazil
| |
Collapse
|
9
|
Tarnaud F, Gaucher F, do Carmo FLR, Illikoud N, Jardin J, Briard-Bion V, Guyomarc'h F, Gagnaire V, Jan G. Differential Adaptation of Propionibacterium freudenreichii CIRM-BIA129 to Cow's Milk Versus Soymilk Environments Modulates Its Stress Tolerance and Proteome. Front Microbiol 2020; 11:549027. [PMID: 33335514 PMCID: PMC7736159 DOI: 10.3389/fmicb.2020.549027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 11/09/2020] [Indexed: 12/12/2022] Open
Abstract
Propionibacterium freudenreichii is a beneficial bacterium that modulates the gut microbiota, motility and inflammation. It is traditionally consumed within various fermented dairy products. Changes to consumer habits in the context of food transition are, however, driving the demand for non-dairy fermented foods, resulting in a considerable development of plant-based fermented products that require greater scientific knowledge. Fermented soymilks, in particular, offer an alternative source of live probiotics. While the adaptation of lactic acid bacteria (LAB) to such vegetable substrates is well documented, little is known about that of propionibacteria. We therefore investigated the adaptation of Propionibacterium freudenreichii to soymilk by comparison to cow's milk. P. freudenreichii grew in cow's milk but not in soymilk, but it did grow in soymilk when co-cultured with the lactic acid bacterium Lactobacillus plantarum. When grown in soymilk ultrafiltrate (SUF, the aqueous phase of soymilk), P. freudenreichii cells appeared thinner and rectangular-shaped, while they were thicker and more rounded in cow's milk utltrafiltrate (MUF, the aqueous phase of cow milk). The amount of extractable surface proteins (SlpA, SlpB, SlpD, SlpE) was furthermore reduced in SUF, when compared to MUF. This included the SlpB protein, previously shown to modulate adhesion and immunomodulation in P. freudenreichii. Tolerance toward an acid and toward a bile salts challenge were enhanced in SUF. By contrast, tolerance toward an oxidative and a thermal challenge were enhanced in MUF. A whole-cell proteomic approach further identified differential expression of 35 proteins involved in amino acid transport and metabolism (including amino acid dehydrogenase, amino acid transporter), 32 proteins involved in carbohydrate transport and metabolism (including glycosyltransferase, PTS), indicating metabolic adaptation to the substrate. The culture medium also modulated the amount of stress proteins involved in stress remediation: GroEL, OpuCA, CysK, DnaJ, GrpE, in line with the modulation of stress tolerance. Changing the fermented substrate may thus significantly affect the fermentative and probiotic properties of dairy propionibacteria. This needs to be considered when developing new fermented functional foods.
Collapse
Affiliation(s)
| | - Floriane Gaucher
- INRAE, Institut Agro, STLO, Rennes, France
- Bioprox, Levallois-Perret, France
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Rodovalho VDR, da Luz BSR, Rabah H, do Carmo FLR, Folador EL, Nicolas A, Jardin J, Briard-Bion V, Blottière H, Lapaque N, Jan G, Le Loir Y, de Carvalho Azevedo VA, Guédon E. Extracellular Vesicles Produced by the Probiotic Propionibacterium freudenreichii CIRM-BIA 129 Mitigate Inflammation by Modulating the NF-κB Pathway. Front Microbiol 2020; 11:1544. [PMID: 32733422 PMCID: PMC7359729 DOI: 10.3389/fmicb.2020.01544] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 06/15/2020] [Indexed: 12/20/2022] Open
Abstract
Extracellular vesicles (EVs) are nanometric spherical structures involved in intercellular communication, whose production is considered to be a widespread phenomenon in living organisms. Bacterial EVs are associated with several processes that include survival, competition, pathogenesis, and immunomodulation. Among probiotic Gram-positive bacteria, some Propionibacterium freudenreichii strains exhibit anti-inflammatory activity, notably via surface proteins such as the surface-layer protein B (SlpB). We have hypothesized that, in addition to surface exposure and secretion of proteins, P. freudenreichii may produce EVs and thus export immunomodulatory proteins to interact with the host. In order to demonstrate their production in this species, EVs were purified from cell-free culture supernatants of the probiotic strain P. freudenreichii CIRM-BIA 129, and their physicochemical characterization, using transmission electron microscopy and nanoparticle tracking analysis (NTA), revealed shapes and sizes typical of EVs. Proteomic characterization showed that EVs contain a broad range of proteins, including immunomodulatory proteins such as SlpB. In silico protein-protein interaction predictions indicated that EV proteins could interact with host proteins, including the immunomodulatory transcription factor NF-κB. This potential interaction has a functional significance because EVs modulate inflammatory responses, as shown by IL-8 release and NF-κB activity, in HT-29 human intestinal epithelial cells. Indeed, EVs displayed an anti-inflammatory effect by modulating the NF-κB pathway; this was dependent on their concentration and on the proinflammatory inducer (LPS-specific). Moreover, while this anti-inflammatory effect partly depended on SlpB, it was not abolished by EV surface proteolysis, suggesting possible intracellular sites of action for EVs. This is the first report on identification of P. freudenreichii-derived EVs, alongside their physicochemical, biochemical and functional characterization. This study has enhanced our understanding of the mechanisms associated with the probiotic activity of P. freudenreichii and identified opportunities to employ bacterial-derived EVs for the development of bioactive products with therapeutic effects.
Collapse
Affiliation(s)
- Vinícius de Rezende Rodovalho
- INRAE, Institut Agro, STLO, Rennes, France.,Laboratory of Cellular and Molecular Genetics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Brenda Silva Rosa da Luz
- INRAE, Institut Agro, STLO, Rennes, France.,Laboratory of Cellular and Molecular Genetics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | - Fillipe Luiz Rosa do Carmo
- Laboratory of Cellular and Molecular Genetics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Edson Luiz Folador
- Biotechnology Center, Federal University of Paraíba, João Pessoa, Brazil
| | | | | | | | - Hervé Blottière
- INRAE, AgroParisTech, Paris-Saclay University, Micalis Institute, Jouy-en-Josas, France
| | - Nicolas Lapaque
- INRAE, AgroParisTech, Paris-Saclay University, Micalis Institute, Jouy-en-Josas, France
| | | | | | - Vasco Ariston de Carvalho Azevedo
- Laboratory of Cellular and Molecular Genetics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | |
Collapse
|
11
|
Rolim FR, Freitas Neto OC, Oliveira MEG, Oliveira CJ, Queiroga RC. Cheeses as food matrixes for probiotics: In vitro and in vivo tests. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.04.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
12
|
Rabah H, do Carmo FLR, Carvalho RDDO, Cordeiro BF, da Silva SH, Oliveira ER, Lemos L, Cara DC, Faria AMC, Garric G, Harel-Oger M, Le Loir Y, Azevedo V, Bouguen G, Jan G. Beneficial Propionibacteria within a Probiotic Emmental Cheese: Impact on Dextran Sodium Sulphate-Induced Colitis in Mice. Microorganisms 2020; 8:E380. [PMID: 32156075 PMCID: PMC7142753 DOI: 10.3390/microorganisms8030380] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/03/2020] [Accepted: 03/05/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUNDS AND AIMS Inflammatory Bowel Diseases (IBD), including Ulcerative Colitis (UC), coincide with alterations in the gut microbiota. Consumption of immunomodulatory strains of probiotic bacteria may induce or prolong remission in UC patients. Fermented foods, including cheeses, constitute major vectors for bacteria consumption. New evidences revealed anti-inflammatory effects in selected strains of Propionibacterium freudenreichii. We thus hypothesized that consumption of a functional cheese, fermented by such a strain, may exert a positive effect on IBD. METHODS We investigated the impact of cheese fermented by P. freudenreichii on gut inflammation. We developed an experimental single-strain cheese solely fermented by a selected immunomodulatory strain of P. freudenreichii, CIRM-BIA 129. We moreover produced, in industrial conditions, an Emmental cheese using the same strain, in combination with Lactobacillus delbrueckii CNRZ327 and Streptococcus thermophilus LMD-9, as starters. Consumption of both cheeses was investigated with respect to prevention of Dextran Sodium Sulphate (DSS)-induced colitis in mice. RESULTS Consumption of the single-strain experimental cheese, or of the industrial Emmental, both fermented by P. freudenreichii CIRM-BIA 129, reduced severity of subsequent DSS-induced colitis, weight loss, disease activity index and histological score. Both treatments, in a preventive way, reduced small bowel Immunoglobulin A (IgA) secretion, restored occludin gene expression and prevented induction of Tumor Necrosis Factor α (TNFα), Interferon γ (IFNγ) and Interleukin-17 (IL-17). CONCLUSIONS A combination of immunomodulatory strains of starter bacteria can be used to manufacture an anti-inflammatory cheese, as revealed in an animal model of colitis. This opens new perspectives for personalised nutrition in the context of IBD.
Collapse
Affiliation(s)
- Houem Rabah
- STLO, INRA, Agrocampus Ouest, 35 000 Rennes, France
- Pôle Agronomique Ouest, Régions Bretagne et Pays de la Loire, F-35 042 Rennes, France
| | - Fillipe Luiz Rosa do Carmo
- Departamento de Genética, Ecologia e evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais CP 486 CEP 31270-901, Brazil
| | | | - Barbara Fernandes Cordeiro
- Departamento de Genética, Ecologia e evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais CP 486 CEP 31270-901, Brazil
| | - Sara Heloisa da Silva
- Departamento de Genética, Ecologia e evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais CP 486 CEP 31270-901, Brazil
| | - Emiliano Rosa Oliveira
- Departamento de Genética, Ecologia e evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais CP 486 CEP 31270-901, Brazil
| | - Luisa Lemos
- Departamento de Genética, Ecologia e evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais CP 486 CEP 31270-901, Brazil
| | - Denise Carmona Cara
- Departamento de Genética, Ecologia e evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais CP 486 CEP 31270-901, Brazil
| | - Ana Maria Caetano Faria
- Departamento de Genética, Ecologia e evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais CP 486 CEP 31270-901, Brazil
| | | | | | - Yves Le Loir
- STLO, INRA, Agrocampus Ouest, 35 000 Rennes, France
| | - Vasco Azevedo
- Departamento de Genética, Ecologia e evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais CP 486 CEP 31270-901, Brazil
| | - Guillaume Bouguen
- CHU Rennes, Univ Rennes, INSERM, CIC1414, Institut NUMECAN (Nutrition Metabolism and Cancer), F-35000 Rennes, France
| | - Gwénaël Jan
- STLO, INRA, Agrocampus Ouest, 35 000 Rennes, France
| |
Collapse
|
13
|
Gaucher F, Rabah H, Kponouglo K, Bonnassie S, Pottier S, Dolivet A, Marchand P, Jeantet R, Blanc P, Jan G. Intracellular osmoprotectant concentrations determine Propionibacterium freudenreichii survival during drying. Appl Microbiol Biotechnol 2020; 104:3145-3156. [PMID: 32076782 PMCID: PMC7062905 DOI: 10.1007/s00253-020-10425-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 11/22/2019] [Accepted: 01/31/2020] [Indexed: 02/06/2023]
Abstract
Propionibacterium freudenreichii is a beneficial bacterium widely used in food as a probiotic and as a cheese-ripening starter. In these different applications, it is produced, dried, and stored before being used. Both freeze-drying and spray-drying were considered for this purpose. Freeze-drying is a discontinuous process that is energy-consuming but that allows high cell survival. Spray-drying is a continuous process that is more energy-efficient but that can lead to massive bacterial death related to heat, osmotic, and oxidative stresses. We have shown that P. freudenreichii cultivated in hyperconcentrated rich media can be spray-dried with limited bacterial death. However, the general stress tolerance conferred by this hyperosmotic constraint remained a black box. In this study, we modulated P. freudenreichii growth conditions and monitored both osmoprotectant accumulation and stress tolerance acquisition. Changing the ratio between the carbohydrates provided and non-protein nitrogen during growth under osmotic constraint modulated osmoprotectant accumulation. This, in turn, was correlated with P. freudenreichii tolerance towards different stresses, on the one hand, and towards freeze-drying and spray-drying, on the other. Surprisingly, trehalose accumulation correlated with spray-drying survival and glycine betaine accumulation with freeze-drying. This first report showing the ability to modulate the trehalose/GB ratio in osmoprotectants accumulated by a probiotic bacterium opens new perspectives for the optimization of probiotics production.
Collapse
Affiliation(s)
- Floriane Gaucher
- UMR STLO, INRAE, Agrocampus Ouest, 35042, Rennes, France.,Bioprox, 6 rue Barbès, 92532, Levallois-Perret, France
| | - Houem Rabah
- UMR STLO, INRAE, Agrocampus Ouest, 35042, Rennes, France.,Pôle Agronomique Ouest, Régions Bretagne et Pays de la Loire, 35042, Rennes, France
| | | | - Sylvie Bonnassie
- UMR STLO, INRAE, Agrocampus Ouest, 35042, Rennes, France.,Université de Rennes I, Rennes, France
| | - Sandrine Pottier
- CNRS, ISCR - UMR 6226, University Rennes, PRISM, BIOSIT - UMS 3480, 35000, Rennes, France
| | - Anne Dolivet
- UMR STLO, INRAE, Agrocampus Ouest, 35042, Rennes, France
| | | | - Romain Jeantet
- UMR STLO, INRAE, Agrocampus Ouest, 35042, Rennes, France
| | | | - Gwénaël Jan
- UMR STLO, INRAE, Agrocampus Ouest, 35042, Rennes, France.
| |
Collapse
|
14
|
Probiotic Propionibacterium freudenreichii requires SlpB protein to mitigate mucositis induced by chemotherapy. Oncotarget 2019; 10:7198-7219. [PMID: 31921383 PMCID: PMC6944450 DOI: 10.18632/oncotarget.27319] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 10/21/2019] [Indexed: 02/07/2023] Open
Abstract
Propionibacterium freudenreichii CIRM-BIA 129 (P. freudenreichii wild type, WT) is a probiotic bacterium, which exerts immunomodulatory effects. This strain possesses extractable surface proteins, including SlpB, which are involved in anti-inflammatory effect and in adhesion to epithelial cells. We decided to investigate the impact of slpB gene mutation on immunomodulation in vitro and in vivo. In an in vitro assay, P. freudenreichii WT reduced expression of IL-8 (p<0.0001) and TNF-α (p<0.0001) cytokines in LPS-stimulated HT-29 cells. P. freudenreichii ΔslpB, lacking the SlpB protein, failed to do so. Subsequently, both strains were investigated in vivo in a 5-FU-induced mucositis mice model. Mucositis is a common side effect of cytotoxic chemotherapy with 5-FU, characterized by mucosal injury, inflammation, diarrhea, and weight loss. The WT strain prevented weight loss, reduced inflammation and consequently histopathological scores. Furthermore, it regulated key markers, including Claudin-1 (cld1, p<0.0005) and IL-17a (Il17a, p<0.0001) genes, as well as IL-12 (p<0.0001) and IL-1β (p<0.0429) cytokines levels. Mutant strain displayed opposite regulatory effect on cld1 expression and on IL-12 levels. This work emphasizes the importance of SlpB in P. freudenreichii ability to reduce mucositis inflammation. It opens perspectives for the development of probiotic products to decrease side effects of chemotherapy using GRAS bacteria with immunomodulatory surface protein properties.
Collapse
|
15
|
Gaucher F, Gagnaire V, Rabah H, Maillard MB, Bonnassie S, Pottier S, Marchand P, Jan G, Blanc P, Jeantet R. Taking Advantage of Bacterial Adaptation in Order to Optimize Industrial Production of Dry Propionibacterium freudenreichii. Microorganisms 2019; 7:microorganisms7100477. [PMID: 31652621 PMCID: PMC6843336 DOI: 10.3390/microorganisms7100477] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 10/14/2019] [Accepted: 10/18/2019] [Indexed: 12/22/2022] Open
Abstract
Propionibacterium freudenreichii is a beneficial bacterium, used both as a probiotic and as a cheese starter. Large-scale production of P. freudenreichii is required to meet growing consumers’ demand. Production, drying and storage must be optimized, in order to guarantee high P.freudenreichii viability within powders. Compared to freeze-drying, spray drying constitutes the most productive and efficient, yet the most stressful process, imposing severe oxidative and thermal constraints. The aim of our study was to provide the tools in order to optimize the industrial production of dry P.freudenreichii. Bacterial adaptation is a well-known protective mechanism and may be used to improve bacterial tolerance towards technological stresses. However, the choice of bacterial adaptation type must consider industrial constraints. In this study, we combined (i) modulation of the growth medium composition, (ii) heat-adaptation, and (iii) osmoadaptation, in order to increase P.freudenreichii tolerance towards technological stresses, including thermal and oxidative constraints, using an experimental design. We further investigated optimal growth and adaptation conditions, by monitoring intracellular compatible solutes accumulation. Glucose addition, coupled to heat-adaptation, triggered accumulation of trehalose and of glycine betaine, which further provided high tolerance towards spray drying and storage. This work opens new perspectives for high quality and fast production of live propionibacteria at the industrial scale.
Collapse
Affiliation(s)
- Floriane Gaucher
- UMR STLO, Agrocampus Ouest, INRA, F-35042 Rennes, France.
- Bioprox, 6 rue Barbès, 92532 Levallois-Perret, France.
| | | | - Houem Rabah
- UMR STLO, Agrocampus Ouest, INRA, F-35042 Rennes, France.
- Bba, Pôle Agronomique Ouest, Régions Bretagne et Pays de la Loire, F-35042 Rennes, France.
| | | | - Sylvie Bonnassie
- UMR STLO, Agrocampus Ouest, INRA, F-35042 Rennes, France.
- Université de Rennes I, University Rennes, 35000 Rennes, France.
| | - Sandrine Pottier
- University Rennes, CNRS, ISCR-UMR 6226, PRISM, BIOSIT-UMS 3480, F-35000 Rennes, France.
| | | | - Gwénaël Jan
- UMR STLO, Agrocampus Ouest, INRA, F-35042 Rennes, France.
| | | | - Romain Jeantet
- UMR STLO, Agrocampus Ouest, INRA, F-35042 Rennes, France.
| |
Collapse
|
16
|
Gaucher F, Kponouglo K, Rabah H, Bonnassie S, Ossemond J, Pottier S, Jardin J, Briard-Bion V, Marchand P, Blanc P, Jeantet R, Jan G. Propionibacterium freudenreichii CIRM-BIA 129 Osmoadaptation Coupled to Acid-Adaptation Increases Its Viability During Freeze-Drying. Front Microbiol 2019; 10:2324. [PMID: 31681198 PMCID: PMC6797830 DOI: 10.3389/fmicb.2019.02324] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 09/23/2019] [Indexed: 12/12/2022] Open
Abstract
Propionibacterium freudenreichii is a beneficial bacterium with documented effects on the gut microbiota and on inflammation. Its presence within the animal and human intestinal microbiota was correlated with immunomodulatory effects, mediated by both propionibacterial surface components and by secreted metabolites. It is widely implemented, both in the manufacture of fermented dairy products such as Swiss-type cheeses, and in the production of probiotic food complements, under the form of freeze-dried powders. The bottleneck of this drying process consists in the limited survival of bacteria during drying and storage. Protective pre-treatments have been applied to other bacteria and may, in a strain-dependent manner, confer enhanced resistance. However, very little information was yet published on P. freudenreichii adaptation to freeze-drying. In this report, an immunomodulatory strain of this probiotic bacterium was cultured under hyperosmotic constraint in order to trigger osmoadaptation. This adaptation was then combined with acid or thermal pre-treatment. Such combination led to accumulation of key stress proteins, of intracellular compatible solute glycine betaine, to modulation of the propionibacterial membrane composition, and to enhanced survival upon freeze-drying. This work opens new perspectives for efficient production of live and active probiotic propionibacteria.
Collapse
Affiliation(s)
- Floriane Gaucher
- UMR STLO, Agrocampus Ouest, INRA, Rennes, France
- Bioprox, Levallois-Perret, France
| | | | - Houem Rabah
- UMR STLO, Agrocampus Ouest, INRA, Rennes, France
- Bba, Pôle Agronomique Ouest, Régions Bretagne et Pays de la Loire, Rennes, France
| | - Sylvie Bonnassie
- UMR STLO, Agrocampus Ouest, INRA, Rennes, France
- Université de Rennes I, Rennes, France
| | | | - Sandrine Pottier
- CNRS, ISCR – UMR 6226, PRISM, BIOSIT – UMS 3480 Université de Rennes I, Rennes, France
| | | | | | | | | | | | - Gwénaël Jan
- UMR STLO, Agrocampus Ouest, INRA, Rennes, France
| |
Collapse
|
17
|
Chen J, Chen Q, Xie C, Ahmad W, Jiang L, Zhao L. Effects of simulated gastric and intestinal digestion on chitooligosaccharides in two
in vitro
models. Int J Food Sci Technol 2019. [DOI: 10.1111/ijfs.14337] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Jiayi Chen
- State Key Laboratory of Bioreactor Engineering, R&D Center of Separation and Extraction Technology in Fermentation Industry East China University of Science and Technology Shanghai 200237 China
| | - Qiming Chen
- State Key Laboratory of Bioreactor Engineering, R&D Center of Separation and Extraction Technology in Fermentation Industry East China University of Science and Technology Shanghai 200237 China
| | - Chuanqi Xie
- State Key Laboratory of Bioreactor Engineering, R&D Center of Separation and Extraction Technology in Fermentation Industry East China University of Science and Technology Shanghai 200237 China
| | - Waheed Ahmad
- State Key Laboratory of Bioreactor Engineering, R&D Center of Separation and Extraction Technology in Fermentation Industry East China University of Science and Technology Shanghai 200237 China
| | - Lihua Jiang
- State Key Laboratory of Bioreactor Engineering, R&D Center of Separation and Extraction Technology in Fermentation Industry East China University of Science and Technology Shanghai 200237 China
| | - Liming Zhao
- State Key Laboratory of Bioreactor Engineering, R&D Center of Separation and Extraction Technology in Fermentation Industry East China University of Science and Technology Shanghai 200237 China
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology (SCICBT) Shanghai 200237 China
| |
Collapse
|
18
|
Gaucher F, Bonnassie S, Rabah H, Leverrier P, Pottier S, Jardin J, Briard-Bion V, Marchand P, Jeantet R, Blanc P, Jan G. Benefits and drawbacks of osmotic adjustment in Propionibacterium freudenreichii. J Proteomics 2019; 204:103400. [PMID: 31152938 DOI: 10.1016/j.jprot.2019.103400] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 05/02/2019] [Accepted: 05/19/2019] [Indexed: 02/08/2023]
Abstract
Propionibacterium freudenreichii is a beneficial bacterium used as a cheese starter and as a probiotic. Indeed, selected strains of P. freudenreichii combine both technological and health-promoting abilities. Moreover, during large-scale industrial production of dried bacteria and during consumption, P. freudenreichii may undergo different stressful processes. Osmotic adaptation was shown to enhance P. freudenreichii tolerance towards stresses, which are encountered during freeze-drying and during digestion. In this report, we compared the osmoadaptation molecular mechanisms of two P. freudenreichii strains. Both osmotolerance and osmoadaptation were strain-dependent and had different effects on multiple stress tolerance, depending on the presence of osmoprotectants. Availability of glycine betaine (GB) restored the growth of one of the two strains. In this strain, osmotic preadaptation enhanced heat, oxidative and acid stresses tolerance, as well as survival upon freeze-drying. However, addition of GB in the medium had deleterious effects on stress tolerance, while restoring optimal growth under hyperosmotic constraint. In the other strain, neither salt nor GB enhanced stress tolerance, which was constitutively low. Accordingly, whole cell proteomics revealed that mechanisms triggered by salt in the presence and in the absence of GB are different between strains. Osmotic adjustment may thus have deleterious effects on industrial abilities of P. freudenreichii. BIOLOGICAL SIGNIFICANCE: Propionibacteria are found in various niches including fodder, silage, rumen, milk and cheeses. This means adaptation towards different ecological environments with different physicochemical parameters. Propionibacterium freudenreichii, in particular, is furthermore used both as dairy starter and as probiotic and is thus submitted to high scale industrial production. Production and subsequent stabilization still need optimization. Drying processes like freeze-drying are stressful. Osmotic adjustments may modulated tolerance towards drying. However, they are strain-dependent, medium-dependent and may either reduce or increase stress tolerance. A case-by-case study, for each strain-medium thus seems necessary. In this work, we identify key proteins involved in osmoadaptation and give new insights into adaptation mechanisms in P. freudenreichii. This opens new perspectives for the selections of strains and for the choice of the growth medium composition.
Collapse
Affiliation(s)
- Floriane Gaucher
- UMR STLO, Agrocampus Ouest, INRA, F-35042 Rennes, France; Bioprox, 6 rue Barbès, 92532 Levallois-Perret, France
| | - Sylvie Bonnassie
- UMR STLO, Agrocampus Ouest, INRA, F-35042 Rennes, France; Université de Rennes I, Univ. Rennes, Rennes, France
| | - Houem Rabah
- UMR STLO, Agrocampus Ouest, INRA, F-35042 Rennes, France; Bba, Pôle Agronomique Ouest, Régions Bretagne et Pays de la Loire, F-35042 Rennes, France
| | - Pauline Leverrier
- de Duve Institute, Université catholique de Louvain, Avenue Hippocrate 75, Brussels 1200, Belgium
| | - Sandrine Pottier
- Univ. Rennes, CNRS, ISCR, - UMR 6226, PRISM, BIOSIT - UMS 3480, F-35000 Rennes, France
| | - Julien Jardin
- UMR STLO, Agrocampus Ouest, INRA, F-35042 Rennes, France
| | | | | | - Romain Jeantet
- UMR STLO, Agrocampus Ouest, INRA, F-35042 Rennes, France
| | | | - Gwénaël Jan
- UMR STLO, Agrocampus Ouest, INRA, F-35042 Rennes, France.
| |
Collapse
|
19
|
Gaucher F, Bonnassie S, Rabah H, Marchand P, Blanc P, Jeantet R, Jan G. Review: Adaptation of Beneficial Propionibacteria, Lactobacilli, and Bifidobacteria Improves Tolerance Toward Technological and Digestive Stresses. Front Microbiol 2019; 10:841. [PMID: 31068918 PMCID: PMC6491719 DOI: 10.3389/fmicb.2019.00841] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 04/02/2019] [Indexed: 01/15/2023] Open
Abstract
This review deals with beneficial bacteria, with a focus on lactobacilli, propionibacteria, and bifidobacteria. As being recognized as beneficial bacteria, they are consumed as probiotics in various food products. Some may also be used as starters in food fermentation. In either case, these bacteria may be exposed to various environmental stresses during industrial production steps, including drying and storage, and during the digestion process. In accordance with their adaptation to harsh environmental conditions, they possess adaptation mechanisms, which can be induced by pretreatments. Adaptive mechanisms include accumulation of compatible solutes and of energy storage compounds, which can be largely modulated by the culture conditions. They also include the regulation of energy production pathways, as well as the modulation of the cell envelop, i.e., membrane, cell wall, surface layers, and exopolysaccharides. They finally lead to the overexpression of molecular chaperones and of stress-responsive proteases. Triggering these adaptive mechanisms can improve the resistance of beneficial bacteria toward technological and digestive stresses. This opens new perspectives for the improvement of industrial processes efficiency with regard to the survival of beneficial bacteria. However, this bibliographical survey evidenced that adaptive responses are strain-dependent, so that growth and adaptation should be optimized case-by-case.
Collapse
Affiliation(s)
- Floriane Gaucher
- STLO, Agrocampus Ouest, Institut National de la Recherche Agronomique, Paris, France
- Bioprox, Levallois-Perret, France
| | - Sylvie Bonnassie
- STLO, Agrocampus Ouest, Institut National de la Recherche Agronomique, Paris, France
- Science de la Vie et de la Terre, Université de Rennes 1, Rennes, France
| | - Houem Rabah
- STLO, Agrocampus Ouest, Institut National de la Recherche Agronomique, Paris, France
- Pôle Agronomique Ouest, Bba, Rennes, France
| | | | | | - Romain Jeantet
- STLO, Agrocampus Ouest, Institut National de la Recherche Agronomique, Paris, France
| | - Gwénaël Jan
- STLO, Agrocampus Ouest, Institut National de la Recherche Agronomique, Paris, France
| |
Collapse
|
20
|
Huang S, Rabah H, Ferret-Bernard S, Le Normand L, Gaucher F, Guerin S, Nogret I, Le Loir Y, Chen XD, Jan G, Boudry G, Jeantet R. Propionic fermentation by the probiotic Propionibacterium freudenreichii to functionalize whey. J Funct Foods 2019. [DOI: 10.1016/j.jff.2018.11.043] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
21
|
Rabah H, Ferret-Bernard S, Huang S, Le Normand L, Cousin FJ, Gaucher F, Jeantet R, Boudry G, Jan G. The Cheese Matrix Modulates the Immunomodulatory Properties of Propionibacterium freudenreichii CIRM-BIA 129 in Healthy Piglets. Front Microbiol 2018; 9:2584. [PMID: 30420848 PMCID: PMC6215859 DOI: 10.3389/fmicb.2018.02584] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 10/10/2018] [Indexed: 12/15/2022] Open
Abstract
Propionibacterium freudenreichii is a beneficial bacterium, used as a cheese starter, which presents versatile probiotic properties. These properties are strain-dependent. We hypothesized they may also be delivery vehicle-dependent. In this study, we thus explored in healthy piglets how the cheese matrix affects the immunomodulatory properties of P. freudenreichii. During 2 weeks, three groups of weaned piglets consumed, respectively, P. freudenreichii as a liquid culture (PF-culture), P. freudenreichii under the form of a cheese (PF-cheese), or a control sterile cheese matrix (Cheese-matrix). The in vivo metabolic activity of P. freudenreichii was assessed by determining short chain fatty acids (SCFA) concentration and bifidobacteria population in feces. Whatever the delivery vehicle, P. freudenreichii was metabolically active in piglets' colon and enhanced both bifidobacteria and SCFA in feces. P. freudenreichii consumption decreased the secretion of TNFα and of IL-10 by peripheral blood mononuclear cells (PBMC). It did not alter IL-10, IFNγ, IL-17, and TNFα secretion in mesenteric lymph node immune cells (MLNC). PF-cheese enhanced significantly Treg phenotype, while PF-culture decreased significantly Th17 phenotype in PBMC and MLNC. Remarkably, only PF-cheese induced an increase of Th2 phenotype in PBMC and MLNC. Ex vivo stimulation of PBMC and MLNC by Lipopolysaccharides and Concanavalin A emphasized the difference in the immunomodulatory responses between PF-culture and PF-cheese group, as well as between PBMC and MLNC. This study shows the importance to consider the delivery vehicle for probiotic administration. It confirms the anti-inflammatory potential of P. freudenreichii. It opens new perspectives for the use propionibacteria-fermented products as preventive agents for inflammatory bowel diseases and intestinal infectious diseases.
Collapse
Affiliation(s)
- Houem Rabah
- STLO, INRA, Agrocampus Ouest, Rennes, France
- Pôle Agronomique Ouest, Rennes, France
| | | | - Song Huang
- STLO, INRA, Agrocampus Ouest, Rennes, France
| | - Laurence Le Normand
- INRA, INSERM, Univ Rennes, Nutrition Metabolisms and Cancer, NuMeCan, Rennes, France
| | | | - Floriane Gaucher
- STLO, INRA, Agrocampus Ouest, Rennes, France
- Bioprox, Levallois-Perret, France
| | | | - Gaëlle Boudry
- INRA, INSERM, Univ Rennes, Nutrition Metabolisms and Cancer, NuMeCan, Rennes, France
| | - Gwénaël Jan
- STLO, INRA, Agrocampus Ouest, Rennes, France
| |
Collapse
|
22
|
Huang S, Gaucher F, Cauty C, Jardin J, Le Loir Y, Jeantet R, Chen XD, Jan G. Growth in Hyper-Concentrated Sweet Whey Triggers Multi Stress Tolerance and Spray Drying Survival in Lactobacillus casei BL23: From the Molecular Basis to New Perspectives for Sustainable Probiotic Production. Front Microbiol 2018; 9:2548. [PMID: 30405593 PMCID: PMC6204390 DOI: 10.3389/fmicb.2018.02548] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 10/05/2018] [Indexed: 12/14/2022] Open
Abstract
Lactobacillus casei BL23 has a recognized probiotic potential, which includes immune modulation, protection toward induced colitis, toward induced colon cancer and toward dissemination of pathogens. In L. casei, as well as in other probiotics, both probiotic and technological abilities are highly dependent (1) on the substrate used to grow bacteria and (2) on the process used to dry and store this biomass. Production and storage of probiotics, at a reasonable financial and environmental cost, becomes a crucial challenge. Food-grade media must be used, and minimal process is preferred. In this context, we have developed a “2-in-1” medium used both to grow and to dry L. casei BL23, considered a fragile probiotic strain. This medium consists in hyper-concentrated sweet whey (HCSW). L. casei BL23 grows in HCSW up to 30% dry matter, which is 6 times-concentrated sweet whey. Compared to isotonic sweet whey (5% dry matter), these growth conditions enhanced tolerance of L. casei BL23 toward heat, acid and bile salts stress. HCSW also triggered intracellular accumulation of polyphosphate, of glycogen and of trehalose. A gel-free global proteomic differential analysis further evidenced overexpression of proteins involved in pathways known to participate in stress adaptation, including environmental signal transduction, oxidative and metal defense, DNA repair, protein turnover and repair, carbohydrate, phosphate and amino acid metabolism, and in osmoadaptation. Accordingly, HCSW cultures of L. casei BL23 exhibited enhanced survival upon spray drying, a process known to drastically affect bacterial viability. This work opens new perspectives for sustainable production of dried probiotic lactobacilli, using food industry by-products and lowering energy costs.
Collapse
Affiliation(s)
- Song Huang
- Suzhou Key Laboratory of Green Chemical Engineering, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Material Science, Soochow University, Jiangsu, China.,UMR1253 STLO, Agrocampus Ouest, INRA, Rennes, France
| | - Floriane Gaucher
- UMR1253 STLO, Agrocampus Ouest, INRA, Rennes, France.,Bioprox, Levallois-Perret, France
| | - Chantal Cauty
- UMR1253 STLO, Agrocampus Ouest, INRA, Rennes, France
| | - Julien Jardin
- UMR1253 STLO, Agrocampus Ouest, INRA, Rennes, France
| | - Yves Le Loir
- UMR1253 STLO, Agrocampus Ouest, INRA, Rennes, France
| | - Romain Jeantet
- Suzhou Key Laboratory of Green Chemical Engineering, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Material Science, Soochow University, Jiangsu, China.,UMR1253 STLO, Agrocampus Ouest, INRA, Rennes, France
| | - Xiao Dong Chen
- Suzhou Key Laboratory of Green Chemical Engineering, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Material Science, Soochow University, Jiangsu, China
| | - Gwénaël Jan
- UMR1253 STLO, Agrocampus Ouest, INRA, Rennes, France
| |
Collapse
|
23
|
Wang H, Zhang L, Xu S, Pan J, Zhang Q, Lu R. Surface-Layer Protein from Lactobacillus acidophilus NCFM Inhibits Lipopolysaccharide-Induced Inflammation through MAPK and NF-κB Signaling Pathways in RAW264.7 Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:7655-7662. [PMID: 29975056 DOI: 10.1021/acs.jafc.8b02012] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The objective of our research was to evaluate the molecular mechanism of the anti-inflammatory effects of surface-layer protein (Slp) derived from Lactobacillus acidophilus NCFM in lipopolysaccharide-induced RAW264.7 cells. Our results presented that Slp, with an apparent size of 46 kDa, attenuated the production of TNF-α, IL-1β, and reactive oxygen species (ROS), by inhibiting the MAPK and NF-κB signaling pathways. In addition, 10 μg mL-1 of Slp significantly inhibited NO and PGE2 production ( P < 0.001) through downregulating the expression levels of iNOS and COX-2 protein. Furthermore, Slp was found to inhibit NF-κB p65 translocation into the nucleus to activate inflammatory gene transcription. These findings suggest that Slp is a potential immune-modulating bioactive protein derived from probiotics and holds promise for use as an additive in functional foods.
Collapse
Affiliation(s)
- Huifang Wang
- School of Food Science and Technology , Jiangnan University , 1800 Lihu Avenue , Wuxi , Jiangsu 214122 , China
| | - Li Zhang
- Jiangsu Institute of Nuclear Medicine , Key Laboratory of Nuclear Medicine, Ministry of Health , 20 Qian Rong , Wuxi , Jiangsu 214063 , China
| | - Shichen Xu
- School of Food Science and Technology , Jiangnan University , 1800 Lihu Avenue , Wuxi , Jiangsu 214122 , China
- Jiangsu Institute of Nuclear Medicine , Key Laboratory of Nuclear Medicine, Ministry of Health , 20 Qian Rong , Wuxi , Jiangsu 214063 , China
| | - Jie Pan
- School of Food Science and Technology , Jiangnan University , 1800 Lihu Avenue , Wuxi , Jiangsu 214122 , China
| | - Qiuxiang Zhang
- School of Food Science and Technology , Jiangnan University , 1800 Lihu Avenue , Wuxi , Jiangsu 214122 , China
| | - Rongrong Lu
- School of Food Science and Technology , Jiangnan University , 1800 Lihu Avenue , Wuxi , Jiangsu 214122 , China
| |
Collapse
|