1
|
Liu A, Wu H, Dong Z, Fan Q, Huang J, Jin Z, Xiao N, Liu H, Li Z, Ming L. Recent trends in nanocellulose: Metabolism-related, gastrointestinal effects, and applications in probiotic delivery. Carbohydr Polym 2024; 343:122442. [PMID: 39174123 DOI: 10.1016/j.carbpol.2024.122442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/23/2024] [Accepted: 06/26/2024] [Indexed: 08/24/2024]
Abstract
Nanocellulose, a versatile and sustainable nanomaterial derived from cellulose fibers, has attracted considerable attention in various fields due to its unique properties. Similar to dietary fibers, nanocellulose is difficult to digest in the human gastrointestinal tract. The indigestible nanocellulose is fermented by gut microbiota, producing metabolites and potentially exhibiting prebiotic activity in intestinal diseases. Additionally, nanocellulose can serve as a matrix material for probiotic protection and show promising prospects for probiotic delivery. In this review, we summarize the classification of nanocellulose, including cellulose nanocrystals (CNC), cellulose nanofibers (CNF), and bacterial nanocellulose (BNC), highlighting their distinct characteristics and applications. We discuss the metabolism-related characteristics of nanocellulose from oral ingestion to colon fermentation and introduce the prebiotic activity of nanocellulose in intestinal diseases. Furthermore, we provide an overview of commonly used nanocellulose-based encapsulation techniques, such as emulsification, extrusion, freeze drying, and spray drying, as well as the delivery systems employing nanocellulose matrix materials, including microcapsules, emulsions, and hydrogels. Finally, we discuss the challenges associated with nanocellulose metabolism, prebiotic functionality, encapsulation techniques, and delivery systems using nanocellulose matrix material for probiotics. This review will provide new insight into the application of nanocellulose in the treatment of intestinal diseases and probiotic delivery.
Collapse
Affiliation(s)
- Ao Liu
- Institute for Advanced Study, Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi, China
| | - Hailian Wu
- Institute for Advanced Study, Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi, China
| | - Zishu Dong
- Institute for Advanced Study, Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi, China
| | - Qimeng Fan
- Institute for Advanced Study, Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi, China
| | - Jia Huang
- Institute for Advanced Study, Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi, China
| | - Zhengji Jin
- Institute for Advanced Study, Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi, China
| | - Nan Xiao
- Institute for Advanced Study, Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi, China
| | - Hongning Liu
- Institute for Advanced Study, Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi, China.
| | - Zhe Li
- Institute for Advanced Study, Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi, China.
| | - Liangshan Ming
- Institute for Advanced Study, Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi, China.
| |
Collapse
|
2
|
Zhao Q, Lu C, Chang C, Gu L, Li J, Guo L, Hu S, Huang Z, Yang Y, Su Y. Studies on the Properties and Stability Mechanism of Double Emulsion Gels Prepared by Heat-Induced Aggregates of Egg White Protein-Oligosaccharides Glycosylation Products. Foods 2024; 13:1822. [PMID: 38928764 PMCID: PMC11202882 DOI: 10.3390/foods13121822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/04/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Multiple emulsions can dissolve some substances with different properties, such as hydrophilicity and lipophilicity, into different phases. They play an important role in protection, controlled release and targeted release of the encapsulated substances. However, it's poor stability has always been one of the main problems restricting its application in the food industry. For this reason, a heat-induced aggregate (HIA) of Maillard graft product of isomalto-oligosaccharides (IMO), as well as egg white protein (EWP), was used as hydrophilic emulsifier to improve the stability of W1/O/W2 emulsions. Moreover, gelatin was added into the internal aqueous phase (W1) to construct W1/O/W2 emulsion-gels system. The encapsulation efficiency of HIA-stabilized W1/O/W2 emulsions remained nearly unaltered, dropping by only 0.86%, significantly outperforming the conjugates and physical mixture of IMO and EWP in terms of encapsulation stability. The emulsion-gels system was constructed by adding 5% gelatin in the W1, and had the highest EE% and good salt and heat stability after 30 days of storage. This experiment provides guidance for improving the stability of W1/O/W2 emulsions system and its application in the package delivery of functional substances in the food field.
Collapse
Affiliation(s)
- Qianwen Zhao
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China; (Q.Z.); (C.L.); (C.C.); (L.G.); (J.L.); (L.G.); (S.H.); (Y.Y.)
| | - Cheng Lu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China; (Q.Z.); (C.L.); (C.C.); (L.G.); (J.L.); (L.G.); (S.H.); (Y.Y.)
| | - Cuihua Chang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China; (Q.Z.); (C.L.); (C.C.); (L.G.); (J.L.); (L.G.); (S.H.); (Y.Y.)
| | - Luping Gu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China; (Q.Z.); (C.L.); (C.C.); (L.G.); (J.L.); (L.G.); (S.H.); (Y.Y.)
| | - Junhua Li
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China; (Q.Z.); (C.L.); (C.C.); (L.G.); (J.L.); (L.G.); (S.H.); (Y.Y.)
| | - Lulu Guo
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China; (Q.Z.); (C.L.); (C.C.); (L.G.); (J.L.); (L.G.); (S.H.); (Y.Y.)
| | - Shende Hu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China; (Q.Z.); (C.L.); (C.C.); (L.G.); (J.L.); (L.G.); (S.H.); (Y.Y.)
| | - Zijian Huang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China;
| | - Yanjun Yang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China; (Q.Z.); (C.L.); (C.C.); (L.G.); (J.L.); (L.G.); (S.H.); (Y.Y.)
| | - Yujie Su
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China; (Q.Z.); (C.L.); (C.C.); (L.G.); (J.L.); (L.G.); (S.H.); (Y.Y.)
| |
Collapse
|
3
|
Zhang L. Emulsions delivery systems of functional substances for precision nutrition. ADVANCES IN FOOD AND NUTRITION RESEARCH 2024; 112:173-197. [PMID: 39218502 DOI: 10.1016/bs.afnr.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Many functional substances are chemically unstable and exhibit variable water/oil solubility, reducing their bioavailability and efficacy. It is necessary to devise effective measures to improve the unfavorable properties of functional substances and maximize their potential benefits in nutritional interventions. Therefore, the development and application of edible emulsion-based delivery systems for these functional substances using food-grade materials would be highly beneficial for the food industry. In recent years, Pickering emulsions have garnered significant attention in the scientific community due to their characteristic of being free from surfactants. This section focuses on emphasizing the design and preparation of emulsion delivery systems based on functional substances. Additionally, we summarize the current applications of emulsion delivery systems in functional substances. This chapter also discusses the potential advantages of Pickering emulsion systems in the precise nutrition field, including high targeting specificity and nutritional intervention for various diseases. Well-designed Pickering emulsion delivery carriers for functional substances can enhance their stability in food processing and in vivo digestion. To meet the nutritional needs of specific populations for functional foods, utilizing emulsion delivery systems to improve the bioavailability of functional substances will provide a theoretical basis for the precise nutrition of functional substances in functional foods.
Collapse
|
4
|
Agriopoulou S, Smaoui S, Chaari M, Varzakas T, Can Karaca A, Jafari SM. Encapsulation of Probiotics within Double/Multiple Layer Beads/Carriers: A Concise Review. Molecules 2024; 29:2431. [PMID: 38893306 PMCID: PMC11173482 DOI: 10.3390/molecules29112431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 06/21/2024] Open
Abstract
An increased demand for natural products nowadays most specifically probiotics (PROs) is evident since it comes in conjunction with beneficial health effects for consumers. In this regard, it is well known that encapsulation could positively affect the PROs' viability throughout food manufacturing and long-term storage. This paper aims to analyze and review various double/multilayer strategies for encapsulation of PROs. Double-layer encapsulation of PROs by electrohydrodynamic atomization or electrospraying technology has been reported along with layer-by-layer assembly and water-in-oil-in-water (W1/O/W2) double emulsions to produce multilayer PROs-loaded carriers. Finally, their applications in food products are presented. The resistance and viability of loaded PROs to mechanical damage, during gastrointestinal transit and shelf life of these trapping systems, are also described. The PROs encapsulation in double- and multiple-layer coatings combined with other technologies can be examined to increase the opportunities for new functional products with amended functionalities opening a novel horizon in food technology.
Collapse
Affiliation(s)
- Sofia Agriopoulou
- Department of Food Science and Technology, University of the Peloponnese, Antikalamos, 24100 Kalamata, Greece;
| | - Slim Smaoui
- Laboratory of Microbial and Enzymatic Biotechnologies and Biomolecules, Center of Biotechnology of Sfax (CBS), University of Sfax, Road of Sidi Mansour Km 6, P.O. Box 1177, Sfax 3018, Tunisia; (S.S.); (M.C.)
| | - Moufida Chaari
- Laboratory of Microbial and Enzymatic Biotechnologies and Biomolecules, Center of Biotechnology of Sfax (CBS), University of Sfax, Road of Sidi Mansour Km 6, P.O. Box 1177, Sfax 3018, Tunisia; (S.S.); (M.C.)
| | - Theodoros Varzakas
- Department of Food Science and Technology, University of the Peloponnese, Antikalamos, 24100 Kalamata, Greece;
| | - Asli Can Karaca
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469 Maslak, Turkey;
| | - Seid Mahdi Jafari
- Faculty of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan 49138-15739, Iran
- Halal Research Center of IRI, Iran Food and Drug Administration, Ministry of Health and Medical Education, Tehran 14158-45371, Iran
| |
Collapse
|
5
|
La Cava E, Di Clemente NA, Gerbino E, Sgroppo S, Gomez-Zavaglia A. Encapsulation of lactic acid bacteria in W 1/O/W 2 emulsions stabilized by mucilage:pectin complexes. Food Res Int 2024; 180:114076. [PMID: 38395576 DOI: 10.1016/j.foodres.2024.114076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 01/23/2024] [Accepted: 01/29/2024] [Indexed: 02/25/2024]
Abstract
Opuntia silvestri mucilage obtained from dried stems was explored as an emulsifier to prepare double emulsions aiming to encapsulate Lactiplantibacillus plantarum CIDCA 83114. W1/O/W2 emulsions were prepared using a two-step emulsification method. The aqueous phase (W1) consisted of L. plantarum CIDCA 83114, and the oil phase (O) of sunflower oil. The second emulsion was prepared by mixing the internal W1/O emulsion with the W2 phase, consisting of 4 % polysaccharides, formulated with different mucilage:(citric)pectin ratios. Their stability was assessed after preparation (day 0) and during storage at 4 °C (28 days). Determinations included creaming index, color, particle size, viscosity, turbidity, and bacterial viability, along with exposure to simulated gastrointestinal conditions. Significant differences were evaluated by analysis of variance (ANOVA) and Duncan's test (P < 0.05). After 28 days storage, bacterial viability in the W1/O/W2 emulsions was above 6 log CFU/mL for all the pectin:mucilage ratios. Emulsions containing mucilage and pectins showed lower creaming indices after 15 days, remaining stable until the end of the storage period. Formulations including 1:1 pectin:mucilage ratio exhibited the highest bacterial viability under simulated gastrointestinal conditions and were more homogeneous in terms of droplet size distributions at day 0, hinting at a synergistic effect between mucilage components (e.g., proteins, Ca2+) and pectin in stabilizing the emulsions. These results showed that Opuntia silvestri mucilage enhanced the stability of emulsions during refrigerated storage, highlighting its potential for encapsulating lactic acid bacteria. This presents an economical and natural alternative to traditional encapsulating materials.
Collapse
Affiliation(s)
- Enzo La Cava
- Facultad de Ciencias Exactas y Naturales y Agrimensura, Universidad Nacional del Nordeste (UNNE) and Instituto de Química Básica y Aplicada del Nordeste Argentino (IQUIBA-NEA) UNNE-CONICET, Avenida Libertad 5470, 3400 Corrientes, Argentina
| | - Natalia A Di Clemente
- Center for Research and Development in Food Cryotechnology (CIDCA, CCT-CONICET La Plata) RA1900, La Plata, Argentina
| | - Esteban Gerbino
- Center for Research and Development in Food Cryotechnology (CIDCA, CCT-CONICET La Plata) RA1900, La Plata, Argentina
| | - Sonia Sgroppo
- Facultad de Ciencias Exactas y Naturales y Agrimensura, Universidad Nacional del Nordeste (UNNE) and Instituto de Química Básica y Aplicada del Nordeste Argentino (IQUIBA-NEA) UNNE-CONICET, Avenida Libertad 5470, 3400 Corrientes, Argentina
| | - Andrea Gomez-Zavaglia
- Center for Research and Development in Food Cryotechnology (CIDCA, CCT-CONICET La Plata) RA1900, La Plata, Argentina.
| |
Collapse
|
6
|
Soto LP, Sirini NE, Frizzo LS, Zbrun MV, Zimmermann JA, Ruiz MJ, Rosmini MR, Sequeira GJ, Miotti C, Signorini ML. Lactic acid bacteria viability in different refrigerated food matrices: a systematic review and Meta‑analysis. Crit Rev Food Sci Nutr 2023; 63:12178-12206. [PMID: 35848093 DOI: 10.1080/10408398.2022.2099807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The aim of this systematic review and meta-analysis was to determine which variables affect the viability of lactic acid bacteria (LAB) added to different types of refrigerated foods during the first 28 days. Scopus, ScienceDirect, PubMed and Cochrane Central Register of Reviews databases were searched from 1997 to April 2022. A total of 278 studies, which showed randomized and controlled experiments published in peer reviewed journals, were included. The viability of LAB in different moments during the storage process was synthesized as mean point estimate (MPE) via random-effects meta-analyses and the effect of multiple factors on the LAB´s viability was evaluated by multiple meta-regression. The meta-analysis showed that the decrease in LAB viability will be more abrupt the greater the initial dose. The physical structure of food may influence bacterial viability. Fruit was the type of product that most quickly lost viability. Co-culture of two or more species did not affect viability. Preservation methods had an unfavorable effect and prebiotics had a beneficial effect on bacterial viability. Viability was genus dependent. The data obtained in this study provide an overview of the factors to be taken into account for the design of new foods.
Collapse
Affiliation(s)
- Lorena P Soto
- Laboratory of Food Analysis, Institute of Veterinary Science (ICiVet Litoral), National University of the Litoral, National Council of Scientific and Technical Research (UNL/CONICET), Esperanza, Province of Santa Fe, Argentina
- Department of Public Health, Faculty of Veterinary Science, National University of the Littoral, Esperanza, Province of Santa Fe, Argentina
| | - Noelí E Sirini
- Laboratory of Food Analysis, Institute of Veterinary Science (ICiVet Litoral), National University of the Litoral, National Council of Scientific and Technical Research (UNL/CONICET), Esperanza, Province of Santa Fe, Argentina
| | - Laureano S Frizzo
- Laboratory of Food Analysis, Institute of Veterinary Science (ICiVet Litoral), National University of the Litoral, National Council of Scientific and Technical Research (UNL/CONICET), Esperanza, Province of Santa Fe, Argentina
- Department of Public Health, Faculty of Veterinary Science, National University of the Littoral, Esperanza, Province of Santa Fe, Argentina
| | - María V Zbrun
- Department of Public Health, Faculty of Veterinary Science, National University of the Littoral, Esperanza, Province of Santa Fe, Argentina
- Dairy Chain Research Institute, EEA Rafaela, Rafaela, Province of Santa Fe, Argentina
| | - Jorge A Zimmermann
- Laboratory of Food Analysis, Institute of Veterinary Science (ICiVet Litoral), National University of the Litoral, National Council of Scientific and Technical Research (UNL/CONICET), Esperanza, Province of Santa Fe, Argentina
| | - María J Ruiz
- Laboratory of Food Analysis, Institute of Veterinary Science (ICiVet Litoral), National University of the Litoral, National Council of Scientific and Technical Research (UNL/CONICET), Esperanza, Province of Santa Fe, Argentina
| | - Marcelo R Rosmini
- Department of Public Health, Faculty of Veterinary Science, National University of the Littoral, Esperanza, Province of Santa Fe, Argentina
| | - Gabriel J Sequeira
- Department of Public Health, Faculty of Veterinary Science, National University of the Littoral, Esperanza, Province of Santa Fe, Argentina
| | - Camila Miotti
- Dairy Chain Research Institute, EEA Rafaela, Rafaela, Province of Santa Fe, Argentina
| | - Marcelo L Signorini
- Department of Public Health, Faculty of Veterinary Science, National University of the Littoral, Esperanza, Province of Santa Fe, Argentina
- Dairy Chain Research Institute, EEA Rafaela, Rafaela, Province of Santa Fe, Argentina
| |
Collapse
|
7
|
Kristina Enggi C, Sulistiawati S, Stephanie S, Tangdilintin F, Anas Achmad A, Adelia Putri R, Burhanuddin H, Arjuna A, Manggau MA, Dian Permana A. Development of probiotic loaded multilayer microcapsules incorporated into dissolving microneedles for potential improvement treatment of vulvovaginal candidiasis: A proof of concept study. J Colloid Interface Sci 2023; 648:203-219. [PMID: 37301145 DOI: 10.1016/j.jcis.2023.05.165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 04/29/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023]
Abstract
Vulvovaginal candidiasis (VVC) is a vaginal infection caused by abnormal growth of Candida sp., especially Candida albicans, in the vaginal mucosa. A shift in vaginal microbiota is prominent in VVC. The presence of Lactobacillus plays a vital role in maintaining vaginal health. However, several studies have reported resistance of Candida sp. against azoles drugs, which is recommended as VVC treatment. The use of L. plantarum as a probiotic would be an alternative to treat VVC. In order to exert their therapeutic activity, the probiotics needed to remain viable. Multilayer double emulsion was formulated to obtain L. plantarum loaded microcapsules (MCs), thus improving its viability. Furthermore, a vaginal drug delivery system using dissolving microneedles (DMNs) for VVC treatment was developed for the first time. These DMNs showed sufficient mechanical and insertion properties, dissolved rapidly upon insertion, facilitating probiotic release. All formulations proved non-irritating, non-toxic, and safe to apply on the vaginal mucosa. Essentially, the DMNs could inhibit the growth of Candida albicans up to 3-fold than hydrogel and patch dosage forms in ex vivo infection model. Therefore, this study successfully developed the formulation of L. plantarum-loaded MCs with multilayer double emulsion and its combination in DMNs for vaginal delivery to treat VVC.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Andi Arjuna
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia.
| | | | - Andi Dian Permana
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia.
| |
Collapse
|
8
|
Jiang Z, Tian J, Bai X, McClements DJ, Ma C, Liu X, Liu F. Improving probiotic survival using water-in-oil-in-water (W 1/O/W 2) emulsions: Role of fish oil in inner phase and sodium alginate in outer phase. Food Chem 2023; 417:135889. [PMID: 36933430 DOI: 10.1016/j.foodchem.2023.135889] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 02/17/2023] [Accepted: 03/04/2023] [Indexed: 03/18/2023]
Abstract
Aqueous probiotic suspensions were dispersed in an oil phase consisting of fish oil and medium chain triglycerides to form W1/O emulsions. These emulsions were then homogenized with an aqueous solution containing soybean protein isolate and sodium alginate to form W1/O/W2 emulsions. Fish oil was used to promote the growth of the probiotics and increase their ability to adhere to the intestinal mucosa. Sodium alginate increased the viscosity, stability, and probiotic encapsulation efficiency of the double emulsions, which was mainly attributed to its interactions with adsorbed soy proteins. The encapsulation efficiency of the probiotics in the double emulsions was relatively high (>96%). In vitro simulated digestion experiments showed that the double emulsions significantly increased the number of viable probiotics remaining after passing through the entire gastrointestinal tract. This study suggests that encapsulation of probiotics in double emulsions may increase their viability under gastrointestinal conditions, thereby enhancing their efficacy in functional foods.
Collapse
Affiliation(s)
- Zhaowei Jiang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Junqing Tian
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Xiangqi Bai
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | | | - Cuicui Ma
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Xuebo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Fuguo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China.
| |
Collapse
|
9
|
Zhao J, Bhandari B, Gaiani C, Prakash S. Fermentation of almond-based gel incorporated with double emulsion (W1/O/W2): a study on gel properties and effectiveness of double emulsion as a fat replacer. FOOD STRUCTURE 2023. [DOI: 10.1016/j.foostr.2023.100322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
10
|
Dijamentiuk A, Mangavel C, Elfassy A, Michaux F, Burgain J, Rondags E, Delaunay S, Ferrigno S, Revol-Junelles AM, Borges F. Invert emulsions alleviate biotic interactions in bacterial mixed culture. Microb Cell Fact 2023; 22:16. [PMID: 36670385 PMCID: PMC9854087 DOI: 10.1186/s12934-022-02014-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 12/31/2022] [Indexed: 01/21/2023] Open
Abstract
The large application potential of microbiomes has led to a great need for mixed culture methods. However, microbial interactions can compromise the maintenance of biodiversity during cultivation in a reactor. In particular, competition among species can lead to a strong disequilibrium in favor of the fittest microorganism. In this study, an invert emulsion system was designed by dispersing culture medium in a mixture of sunflower oil and the surfactant PGPR. Confocal laser scanning microscopy revealed that this system allowed to segregate microorganisms in independent droplets. Granulomorphometric analysis showed that the invert emulsion remains stable during at least 24 h, and that the introduction of bacteria did not have a significant impact on the structure of the invert emulsion. A two-strain antagonistic model demonstrated that this invert emulsion system allows the propagation of two strains without the exclusion of the less-fit bacterium. The monitoring of single-strain cultures of bacteria representative of a cheese microbiota revealed that all but Brevibacterium linens were able to grow. A consortium consisting of Lactococcus lactis subsp. lactis biovar diacetylactis, Streptococcus thermophilus, Leuconostoc mesenteroides, Staphylococcus xylosus, Lactiplantibacillus plantarum and Carnobacterium maltaromaticum was successfully cultivated without detectable biotic interactions. Metabarcoding analysis revealed that the system allowed a better maintenance of alpha diversity and produced a propagated bacterial consortium characterized by a structure closer to the initial state compared to non-emulsified medium. This culture system could be an important tool in the field of microbial community engineering.
Collapse
Affiliation(s)
- Alexis Dijamentiuk
- grid.29172.3f0000 0001 2194 6418LIBio, Université de Lorraine, Nancy, France
| | - Cécile Mangavel
- grid.29172.3f0000 0001 2194 6418LIBio, Université de Lorraine, Nancy, France
| | - Annelore Elfassy
- grid.29172.3f0000 0001 2194 6418LIBio, Université de Lorraine, Nancy, France
| | - Florentin Michaux
- grid.29172.3f0000 0001 2194 6418LIBio, Université de Lorraine, Nancy, France
| | - Jennifer Burgain
- grid.29172.3f0000 0001 2194 6418LIBio, Université de Lorraine, Nancy, France
| | - Emmanuel Rondags
- grid.29172.3f0000 0001 2194 6418LRGP, Université de Lorraine, Nancy, France
| | - Stéphane Delaunay
- grid.29172.3f0000 0001 2194 6418LRGP, Université de Lorraine, Nancy, France
| | - Sandie Ferrigno
- grid.29172.3f0000 0001 2194 6418IECL, Equipe BIGS, INRIA Nancy, Université de Lorraine, Nancy, France
| | | | | |
Collapse
|
11
|
Determination of the Dominating Coalescence Pathways in Double Emulsion Formulations by Use of Microfluidic Emulsions. Processes (Basel) 2023. [DOI: 10.3390/pr11010234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
In water-in-oil-in-water (W1/O/W2) double emulsions several irreversible instability phenomena lead to changes. Besides diffusive processes, coalescence of droplets is the main cause of structural changes. In double emulsions, inner droplets can coalesce with each other (W1–W1 coalescence), inner droplets can be released via coalescence (W1–W2 coalescence) and oil droplets can coalesce with each other (O–O coalescence). Which of the coalescence pathways contributes most to the failure of the double emulsion structure cannot be determined by common measurement techniques. With monodisperse double emulsions produced with microfluidic techniques, each coalescence path can be observed and quantified simultaneously. By comparing the occurrence of all possible coalescence events, different hydrophilic surfactants in combination with PGPR are evaluated and discussed with regard to their applicability in double emulsion formulations. When variating the hydrophilic surfactant, the stability against all three coalescence mechanisms changes. This shows that measuring only one of the coalescence mechanisms is not sufficient to describe the stability of a double emulsion. While some surfactants are able to stabilize against all three possible coalescence mechanisms, some display mainly one of the coalescence mechanisms or in some cases all three mechanisms are observed simultaneously.
Collapse
|
12
|
Klojdová I, Stathopoulos C. W/o/w multiple emulsions: A novel trend in functional ice cream preparations? Food Chem X 2022; 16:100451. [PMID: 36185104 PMCID: PMC9523348 DOI: 10.1016/j.fochx.2022.100451] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/12/2022] [Accepted: 09/18/2022] [Indexed: 11/26/2022] Open
Abstract
The possible applications of w/o/w multiple emulsions (MEs) in ice creams are described. W/o/w MEs enable the encapsulation of sensitive compounds. Fat content is reduced using w/o/w MEs without losing the creaminess of the final products. Ice cream is a very suitable matrix for application of Pickering emulsions.
Ice cream is a popular product worldwide. Unfortunatelly, it contains a significant amount of fat. In this review, promising strategies for the use of w/o/w multiple emulsion structures in creams are assessed. W/o/w multiple emulsions (MEs) enable reduction the fat without losing the creamy taste and mouthfeel and also encapsulation of sensitive compounds. The encouraging application and formation of MEs in ice cream mixtures is supported by the use of natural food ingredients, such as fiber, which helps to stabilize the whole system and improves nutritional value. The future trends may be focused on the target stabilizations using Pickering paticles (PPs). The possible advantages, manufacture, evaluation methods, and predicted future prospects of MEs in ice creams are discussed.
Collapse
|
13
|
Blazheva D, Mihaylova D, Averina OV, Slavchev A, Brazkova M, Poluektova EU, Danilenko VN, Krastanov A. Antioxidant Potential of Probiotics and Postbiotics: A Biotechnological Approach to Improving Their Stability. RUSS J GENET+ 2022. [DOI: 10.1134/s1022795422090058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Gu Q, Yin Y, Yan X, Liu X, Liu F, McClements DJ. Encapsulation of multiple probiotics, synbiotics, or nutrabiotics for improved health effects: A review. Adv Colloid Interface Sci 2022; 309:102781. [DOI: 10.1016/j.cis.2022.102781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/20/2022] [Accepted: 09/20/2022] [Indexed: 11/01/2022]
|
15
|
Ding X, Xu Y, Wang Y, Xie L, Liang S, Li D, Wang Y, Wang J, Zhan X. Carboxymethyl konjac glucomannan-chitosan complex nanogels stabilized double emulsions incorporated into alginate hydrogel beads for the encapsulation, protection and delivery of probiotics. Carbohydr Polym 2022; 289:119438. [DOI: 10.1016/j.carbpol.2022.119438] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/26/2022] [Accepted: 03/29/2022] [Indexed: 01/13/2023]
|
16
|
Camelo-Silva C, Verruck S, Ambrosi A, Di Luccio M. Innovation and Trends in Probiotic Microencapsulation by Emulsification Techniques. FOOD ENGINEERING REVIEWS 2022. [DOI: 10.1007/s12393-022-09315-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
17
|
Jiang Z, Li M, McClements DJ, Liu X, Liu F. Recent advances in the design and fabrication of probiotic delivery systems to target intestinal inflammation. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107438] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
18
|
Encapsulation of Different Types of Probiotic Bacteria within Conventional/Multilayer Emulsion and Its Effect on the Properties of Probiotic Yogurt. J FOOD QUALITY 2022. [DOI: 10.1155/2022/7923899] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Microencapsulation of probiotic cells within emulsion is an efficient method to enhance the viability of probiotic bacteria. In the present study, free and encapsulated probiotic cells (Lactobacillus rhamnosus and Lactobacillus plantarum) in simple and multilayer emulsions were used to produce a set of probiotic yogurts. In all samples, an increasing trend in syneresis and acidity values and a decreasing trend in pH and viability of probiotic cells were observed during the storage time. However, the changes in these parameters were more significant for free-loaded probiotic samples. Moreover, the free cells showed poor survival in the yogurt samples by decreasing the viable cell count of probiotics from 7.71–7.59 logs CFU/mL to 6.93–6.82 log CFU/mL during storage, while encapsulation in the multilayer emulsion showed an insignificant reduction from 7.65–7.59 logs CFU/mL to 7.55–7.45 log CFU/mL at the end of storage. The obtained results showed that the type of probiotic bacteria had no significant effects on the physicochemical and structural properties of samples. However, encapsulating probiotics in multilayer emulsion led to a more homogenous structure in yogurt. The sensorial properties were also not affected by the probiotic type and the encapsulation method. Consequently, the multilayer emulsion can provide an ideal delivery carrier for encapsulating probiotic bacteria in dairy products.
Collapse
|
19
|
Silva MP, da S. Mesquita M, V. Rubio FT, Thomazini M, Favaro-Trindade CS. Fortification of yoghurt drink with microcapsules loaded with Lacticaseibacillus paracasei BGP-1 and guaraná seed extract. Int Dairy J 2022. [DOI: 10.1016/j.idairyj.2021.105230] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
20
|
Morsy MK, Morsy OM, Abdelmonem MA, Elsabagh R. Anthocyanin-Colored Microencapsulation Effects on Survival Rate of Lactobacillus rhamnosus GG, Color Stability, and Sensory Parameters in Strawberry Nectar Model. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02758-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
AbstractProbiotic microencapsulation is a promising way to produce functional food, while their stability and sensory acceptability still a challenge. This study aims to enhance the functional properties of strawberry (Fragaria × ananassa, cultivar Camarosa) nectar and sensory acceptance using novel anthocyanin-colored microencapsulation of Lactobacillus rhamnosus. Four formulations (F1–F4) of coated materials (alginate, whey protein, and pullulan) integrated with anthocyanin pigment were used for encapsulation. The physical properties of microencapsulated probiotics (size, color, efficiency, stability, and survival rate) and quality parameters of nectar (pH, anthocyanin, and sensory acceptability) during 4 weeks of storage at 4 and 25 °C were evaluated. All formulations exhibited high encapsulation efficiency (> 89%), medium bead size (406–504 μm), and proper color (red color). The microencapsulated cells were stable in simulated gastrointestinal and processing conditions (up 7 log10 CFU mL−1) compared to free cells. F4 (alginate 2% + anthocyanin 0.1% + whey protein 2% + pullulan 2% + cocoa butter 1% + L. rhamnosus GG) showed the greatest viability in nectar during storage (6.72 log10 CFU mL−1/4 °C/4 weeks), while a significant decrease in pH (< 2) and anthocyanin (< 60 mg 100 g−1) was observed in nectar-containing free cells. The sensory scores with a difference-preference test as exploratory and preliminary responses revealed that colored probiotic microcapsules enhanced the sensory characters (up to 4 weeks) and commercially accepted (> 80% agreed) of strawberry nectar. Results demonstrated that anthocyanin-colored alginate-whey protein-pullulan matrix had the potential to enhance probiotic viability in functional nectar without negative impact.
Collapse
|
21
|
Díaz-Ruiz R, Laca A, Sánchez M, Fernández MR, Matos M, Gutiérrez G. Addition of Trans-Resveratrol-Loaded Highly Concentrated Double Emulsion to Yoghurts: Effect on Physicochemical Properties. Int J Mol Sci 2021; 23:ijms23010085. [PMID: 35008506 PMCID: PMC8744663 DOI: 10.3390/ijms23010085] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/15/2021] [Accepted: 12/19/2021] [Indexed: 12/20/2022] Open
Abstract
Trans-resveratrol (RSV) needs to be encapsulated to maintain its beneficial properties on the human body. This is due to its extreme photosensitivity, short biological half-life, and easy oxidation. In this study, the use of double emulsions for RSV encapsulation and their further application on functional yoghurts was studied. Different types of yoghurts were prepared: with and without RSV and with two types of volumetric emulsion formulations (20/80 and 30/70). In order to study the influence of the addition of double emulsions to the physical properties of the prepared yoghurts, they were characterised fresh and after a month under storage at 4 °C, in terms of droplet size, morphology, stability, rheology, texturometry, colorimetry, and antioxidant capacity. Results obtained showed that the presence of emulsion in the yoghurts produced a generalised decrease in the predominant droplet size (from 48 µm to 15-25 µm) and an increase in the stability. Additionally, a predominantly elastic character was observed. The firmness values obtained were very similar for all the yoghurts analysed and did not suffer important modifications with time. A slight colour variation was observed with storage time in the control sample, whereas a more notable variation in the case of emulsion yoghurts was observed. An appreciable increase of the antioxidant capacity of the final functional yoghurt (100 g) was observed when it contained 5-8 mg of RSV. Encapsulated RSV added to yoghurts presented a larger protection against RSV oxidation compared with free RSV, presenting a larger antioxidant inhibition after one month of storage. Moreover, the antioxidant capacity of yoghurts with encapsulated RSV was not affected under storage, since slight reductions (3%) were registered after one month of storage at 4 °C.
Collapse
Affiliation(s)
- Rocío Díaz-Ruiz
- Department of Chemical and Environmental Engineering, University of Oviedo, Julián Clavería 8, 33006 Oviedo, Spain; (R.D.-R.); (A.L.); (M.S.); (M.R.F.); (M.M.)
- Instituto Universitario de Biotecnología de Asturias, University of Oviedo, 33006 Oviedo, Spain
| | - Amanda Laca
- Department of Chemical and Environmental Engineering, University of Oviedo, Julián Clavería 8, 33006 Oviedo, Spain; (R.D.-R.); (A.L.); (M.S.); (M.R.F.); (M.M.)
| | - Marta Sánchez
- Department of Chemical and Environmental Engineering, University of Oviedo, Julián Clavería 8, 33006 Oviedo, Spain; (R.D.-R.); (A.L.); (M.S.); (M.R.F.); (M.M.)
| | - Manuel Ramón Fernández
- Department of Chemical and Environmental Engineering, University of Oviedo, Julián Clavería 8, 33006 Oviedo, Spain; (R.D.-R.); (A.L.); (M.S.); (M.R.F.); (M.M.)
| | - María Matos
- Department of Chemical and Environmental Engineering, University of Oviedo, Julián Clavería 8, 33006 Oviedo, Spain; (R.D.-R.); (A.L.); (M.S.); (M.R.F.); (M.M.)
- Instituto Universitario de Biotecnología de Asturias, University of Oviedo, 33006 Oviedo, Spain
| | - Gemma Gutiérrez
- Department of Chemical and Environmental Engineering, University of Oviedo, Julián Clavería 8, 33006 Oviedo, Spain; (R.D.-R.); (A.L.); (M.S.); (M.R.F.); (M.M.)
- Instituto Universitario de Biotecnología de Asturias, University of Oviedo, 33006 Oviedo, Spain
- Correspondence: ; Tel.: +34-985103509; Fax: +34-985103434
| |
Collapse
|
22
|
Pandey P, Mettu S, Mishra HN, Ashokkumar M, Martin GJ. Multilayer co-encapsulation of probiotics and γ-amino butyric acid (GABA) using ultrasound for functional food applications. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111432] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
23
|
Barajas-Álvarez P, González-Ávila M, Espinosa-Andrews H. Recent Advances in Probiotic Encapsulation to Improve Viability under Storage and Gastrointestinal Conditions and Their Impact on Functional Food Formulation. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1928691] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Paloma Barajas-Álvarez
- Food Technology, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C, Zapopan, Jalisco, Mexico
| | - Marisela González-Ávila
- Medical and Pharmaceutical Biotechnology, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C, Guadalajara, Jalisco, Mexico
| | - Hugo Espinosa-Andrews
- Food Technology, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C, Zapopan, Jalisco, Mexico
| |
Collapse
|
24
|
Langlois L, Akhtar N, Tam KC, Dixon B, Reid G. Fishing for the right probiotic: Host-microbe interactions at the interface of effective aquaculture strategies. FEMS Microbiol Rev 2021; 45:6284803. [PMID: 34037775 DOI: 10.1093/femsre/fuab030] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 05/24/2021] [Indexed: 02/06/2023] Open
Abstract
Effective aquaculture management strategies are paramount to global food security. Growing demands stimulate the intensification of production and create the need for practices that are both economically viable and environmentally sustainable. Importantly, pathogenic microbes continue to be detrimental to fish growth and survival. In terms of host health, the intestinal mucosa and its associated consortium of microbes have a critical role in modulating fitness and present an attractive opportunity to promote health at this interface. In light of this, the administration of probiotic microorganisms is being considered as a means to restore and sustain health in fish. Current evidence suggests that certain probiotic strains might be able to augment immunity, enhance growth rate, and protect against infection in salmonids, the most economically important family of farmed finfish. This review affirms the relevance of host-microbe interactions in salmonids in light of emerging evidence, with an emphasis on intestinal health. In addition, the current understanding of the mode of action of probiotics in salmonid fish is discussed, along with delivery systems that can effectively carry the living microbes.
Collapse
Affiliation(s)
- Luana Langlois
- Canadian Centre for Human Microbiome and Probiotics Research, Lawson Health Research Institute, 268 Grosvenor St, N6A 4V2, London, Ontario, Canada.,Department of Microbiology and Immunology, The University of Western Ontario, 1151 Richmond St, N6A 5C1, London, Ontario, Canada
| | - Nadeem Akhtar
- Department of Chemical Engineering, University of Waterloo, 200 University Ave W, N2L 3G1, Waterloo, Ontario, Canada.,Department of Biology, University of Waterloo, 200 University Avenue W, N2L 3G1, Waterloo, Ontario, Canada
| | - Kam C Tam
- Department of Chemical Engineering, University of Waterloo, 200 University Ave W, N2L 3G1, Waterloo, Ontario, Canada
| | - Brian Dixon
- Department of Biology, University of Waterloo, 200 University Avenue W, N2L 3G1, Waterloo, Ontario, Canada
| | - Gregor Reid
- Canadian Centre for Human Microbiome and Probiotics Research, Lawson Health Research Institute, 268 Grosvenor St, N6A 4V2, London, Ontario, Canada.,Department of Microbiology and Immunology, The University of Western Ontario, 1151 Richmond St, N6A 5C1, London, Ontario, Canada.,Department of Surgery, The University of Western Ontario, St. Joseph's Health Care London, 268 Grosvenor St, N6A 4V2, London, Ontario, Canada
| |
Collapse
|
25
|
Mohd Isa NS, El Kadri H, Vigolo D, Gkatzionis K. Optimisation of bacterial release from a stable microfluidic-generated water-in-oil-in-water emulsion. RSC Adv 2021; 11:7738-7749. [PMID: 35423274 PMCID: PMC8695039 DOI: 10.1039/d0ra10954a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 02/09/2021] [Indexed: 11/25/2022] Open
Abstract
Application of droplet microfluidics for the encapsulation of bacteria in water-in-oil-in-water (W/O/W) emulsion allows for production of monodisperse droplets with controllable size. In this study the release of bacteria from W/O/W emulsion, the effect of the double emulsion structure on bacterial growth and metabolic activity, and the stability and mechanism of bacterial release were investigated. W/O/W emulsions were formed using a double flow-focusing junction microfluidic device under controlled pressure to produce droplets of approximately 100 μm in diameter containing an inner aqueous phase (W1) of about 40–50 μm in diameter. GFP-labelled Escherichia coli (E. coli-GFP) bacteria were encapsulated within the W1 droplets and the stability of emulsions was studied by monitoring droplet size and creaming behaviour. The double emulsions were stabilised using a hydrophilic (Tween 80) and a lipophilic surfactant (polyglycerol polyricinoleate) and were destabilised by altering the osmotic balance, adding NaCl either in the inner W1 phase (hypo-osmotic) or outer W2 phase (hyper-osmotic). The release of E. coli-GFP was monitored by plating on agar whereby the colony form unit (CFU) of the released bacteria was determined while fluorescent microscopy was employed to observe the mechanism of release from the droplets. The release of E. coli-GFP was significantly increased with higher concentrations of NaCl and lower amounts of Tween 80. Microscopic observation revealed a two-step mechanism for the release of bacteria: double W/O/W emulsion droplet splitting to release W1 droplets forming a secondary double emulsion followed by the collapse of W1 droplets to release E. coli-GFP into the continuous aqueous phase. Encapsulation enhanced viability and metabolic activity. Nutrients can cross the oil layer. Bacterial release increased while emulsion stability decreased at high osmotic pressure and low surfactant concentration. Two-step release mechanism observed.![]()
Collapse
Affiliation(s)
- Nur Suaidah Mohd Isa
- Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu 21030 Kuala Terengganu Terengganu Malaysia.,School of Chemical Engineering, University of Birmingham Birmingham B15 2TT UK
| | - Hani El Kadri
- School of Chemical Engineering, University of Birmingham Birmingham B15 2TT UK
| | - Daniele Vigolo
- School of Chemical Engineering, University of Birmingham Birmingham B15 2TT UK.,School of Biomedical Engineering, University of Sydney NSW 2006 Australia
| | - Konstantinos Gkatzionis
- School of Chemical Engineering, University of Birmingham Birmingham B15 2TT UK.,Department of Food Science and Nutrition, School of the Environment, University of the Aegean Metropolite Ioakeim 2 81400 Myrina Lemnos Greece
| |
Collapse
|
26
|
Herzi S, Essafi W. Magnesium release behavior from W/O/W emulsions incorporated into yogurt: Application to food supplementation. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.14942] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Sameh Herzi
- Laboratoire Matériaux, Traitement et Analyse Pôle Technologique de Sidi Thabet Institut National de Recherche et d’Analyse Physico‐Chimique Sidi Thabet Tunisia
- Institut National Agronomique de Tunisie Tunis Mahrajène Tunisia
| | - Wafa Essafi
- Laboratoire Matériaux, Traitement et Analyse Pôle Technologique de Sidi Thabet Institut National de Recherche et d’Analyse Physico‐Chimique Sidi Thabet Tunisia
| |
Collapse
|
27
|
Piazentin ACM, da Silva TMS, Florence-Franco AC, Bedani R, Converti A, de Souza Oliveira RP. Soymilk fermentation: effect of cooling protocol on cell viability during storage and in vitro gastrointestinal stress. Braz J Microbiol 2020; 51:1645-1654. [PMID: 32865712 PMCID: PMC7688817 DOI: 10.1007/s42770-020-00369-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 08/21/2020] [Indexed: 11/26/2022] Open
Abstract
This work covers soymilk fermentation by starter and probiotic cultures and explores the influence of cooling protocol on cell viability, organic acid production, sugar consumption, fatty acid profile, and cell survival to in vitro gastrointestinal stress. After fermentation at 37 °C by mono- or co-cultures of Streptococcus thermophilus (St), Lactobacillus bulgaricus (Lb), and Lactobacillus paracasei (Lp), fermented soymilk was cooled directly at 4 °C for 28 days or cooled in two phases (TPC), i.e., by preceding that step by another at 25 °C for 8 h. Soybean milk fermentation by Lb alone lasted longer (15 h) than by StLb or StLbLp (9 h). In ternary culture, TPC increased Lp viability, linoleic, and lactic acid concentrations by 3.8, 22.6, and 96.2%, respectively, whereas the cooling protocol did not influence Lp and St counts after in vitro gastrointestinal stress. Graphical abstract.
Collapse
Affiliation(s)
- Anna Carolina Meireles Piazentin
- Department of Biochemical and Pharmaceutical Technology, University of São Paulo, Prof. Lineu Prestes, 580 - Bloco 16, Sao Paulo, 05508-000, Brazil
| | - Thamires Maria Simões da Silva
- Department of Biochemical and Pharmaceutical Technology, University of São Paulo, Prof. Lineu Prestes, 580 - Bloco 16, Sao Paulo, 05508-000, Brazil
| | - Ana Carolina Florence-Franco
- French Institute of Health and Medical Research, Inserm, Toulouse Purpan Pathophysiology Center, CPTP, Toulouse, France
| | - Raquel Bedani
- Department of Biochemical and Pharmaceutical Technology, University of São Paulo, Prof. Lineu Prestes, 580 - Bloco 16, Sao Paulo, 05508-000, Brazil
| | - Attilio Converti
- Department of Civil, Chemical and Environmental Engineering, Pole of Chemical Engineering, University of Genoa, Via Opera Pia 15, 16145, Genoa, Italy
| | - Ricardo Pinheiro de Souza Oliveira
- Department of Biochemical and Pharmaceutical Technology, University of São Paulo, Prof. Lineu Prestes, 580 - Bloco 16, Sao Paulo, 05508-000, Brazil.
| |
Collapse
|
28
|
Beldarrain-Iznaga T, Villalobos-Carvajal R, Leiva-Vega J, Sevillano Armesto E. Influence of multilayer microencapsulation on the viability of Lactobacillus casei using a combined double emulsion and ionic gelation approach. FOOD AND BIOPRODUCTS PROCESSING 2020. [DOI: 10.1016/j.fbp.2020.08.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
29
|
Lactobacillus acidophilus loaded pickering double emulsion with enhanced viability and colon-adhesion efficiency. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2019.108928] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
30
|
The resistance of Bacillus, Bifidobacterium, and Lactobacillus strains with claimed probiotic properties in different food matrices exposed to simulated gastrointestinal tract conditions. Food Res Int 2019; 125:108542. [PMID: 31554104 DOI: 10.1016/j.foodres.2019.108542] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 07/09/2019] [Accepted: 07/09/2019] [Indexed: 12/15/2022]
Abstract
The resistance of Bifidobacterium, Lactobacillus, and Bacillus strains with claimed probiotic properties in different food matrices was evaluated. Lactobacillus paracasei PXN 37, Lactobacillus acidophilus La-5, Bifidobacterium animalis subsp. lactis Bb-12, Bifidobacterium breve PXN 25, Bacillus subtilis PXN 21, Bacillus coagulans GBI30 6086 and Bacillus coagulans MTCC 5856 strains were inoculated in "requeijão cremoso" cheese, pasteurized orange juice, and bread. Further, the counts of the strains with claimed probiotic properties were determined throughout the products' shelf-life. Additionally, the survival (%), at the beginning and at the end of their shelf-life, of each strain with claimed probiotic properties inoculated in the three foods was estimated by using a static in vitro system simulating the gastric (pH 2), enteric I (pH 5) and enteric II (pH 7) phases of gastrointestinal tract (GIT). Overall, it has been found that the Bacillus strains with claimed probiotic properties showed greater viability than probiotic Bifidobacterium and Lactobacillus strains no matter the food studied. The percentage of survival of the Bacillus strains with claimed probiotic properties were always above 83%. The Bacillus strains with claimed probiotic properties were able to survive well in all the food matrices tested. Therefore, this study shows that these strains of Bacillus may comprise a feasible strategy for expanding the range of "probiotic food" choices given their high resistance to the composition of foods, manufacturing steps, and resistance to simulated GIT conditions.
Collapse
|
31
|
Klojdová I, Štětina J, Horáčková Š. W/O/W Multiple Emulsions as the Functional Component of Dairy Products. Chem Eng Technol 2019. [DOI: 10.1002/ceat.201800586] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Iveta Klojdová
- UCT PragueDepartment of Dairy, Fat and Cosmetics Technická 5 166 28 Prague Czech Republic
| | - Jiří Štětina
- UCT PragueDepartment of Dairy, Fat and Cosmetics Technická 5 166 28 Prague Czech Republic
| | - Šárka Horáčková
- UCT PragueDepartment of Dairy, Fat and Cosmetics Technická 5 166 28 Prague Czech Republic
| |
Collapse
|