1
|
Henrique JT, Biason MV, dos Santos Mendes P, Cardoso FAR, Leimann FV, Gonçalves OH, Bona E, de Oliveira A, Marques LLM, Fuchs RHB, Droval AA. Enhancing mortadella formulations: Exploring the impact of curcumin microcrystals, cochineal carmine, and annatto dyes on sensory preferences, stability, and antioxidant potential. Food Chem X 2024; 23:101627. [PMID: 39100244 PMCID: PMC11296006 DOI: 10.1016/j.fochx.2024.101627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/03/2024] [Accepted: 07/04/2024] [Indexed: 08/06/2024] Open
Abstract
The effects of adding cochineal carmine and annatto dyes in five mortadella formulations made with curcumin microcrystals were compared, and the preference was evaluated and described sensorially. Based on the optimized formulation obtained with color parameters, two formulations were elaborated: curcumin microcrystals and cochineal carmine were added. During 60 days, pH, objective color, water retention capacity, lipid oxidation, and texture profile analyses were performed. The results demonstrate the possibility of excluding sodium erythorbate from formulations containing curcumin microcrystals. There was no significant difference in lipid oxidation between the samples, presenting at the end of 60 days a value of 0.11 mg and 0.10 mg of MDA kg-1 for the two samples, respectively. There were also no significant differences between the two samples or the evaluated storage times, and the average values obtained for pH, WRC, objective color, and TPA were expected for this type of cooked meat sausage. In the presence of curcumin microcrystals, the synthetic antioxidant, sodium erythorbate, can be eliminated from the formulations, as it does not affect the physical-chemical parameters studied, such as pH, water retention capacity, color objective, and texture profile.
Collapse
Affiliation(s)
- Jacqueline Thomé Henrique
- Department of Food Engineering and Chemical Engineering, Federal University of Technology - Paraná (UTFPR), Campo Mourão, 87301-005, Brazil
| | - Maria Victória Biason
- Department of Food Engineering and Chemical Engineering, Federal University of Technology - Paraná (UTFPR), Campo Mourão, 87301-005, Brazil
| | - Poliana dos Santos Mendes
- Post-Graduation Program of Food Technology (PPGTA), Federal University of Technology - Paraná (UTFPR), Campo Mourão, 87301-005, Brazil
| | - Flávia Aparecida Reitz Cardoso
- Post-Graduation Program of Food Technology (PPGTA), Federal University of Technology - Paraná (UTFPR), Campo Mourão, 87301-005, Brazil
- Post-Graduation Program of Technological Innovations (PPGIT), Federal University of Technology - Paraná, Campo Mourão, 87301-005, Brazil
| | - Fernanda Vitória Leimann
- Post-Graduation Program of Food Technology (PPGTA), Federal University of Technology - Paraná (UTFPR), Campo Mourão, 87301-005, Brazil
| | - Odinei Hess Gonçalves
- Post-Graduation Program of Food Technology (PPGTA), Federal University of Technology - Paraná (UTFPR), Campo Mourão, 87301-005, Brazil
| | - Evandro Bona
- Post-Graduation Program of Food Technology (PPGTA), Federal University of Technology - Paraná (UTFPR), Campo Mourão, 87301-005, Brazil
| | - Anielle de Oliveira
- Post-Graduation Program of Food Technology (PPGTA), Federal University of Technology - Paraná (UTFPR), Campo Mourão, 87301-005, Brazil
| | - Leila Larisa Medeiros Marques
- Department of Food Engineering and Chemical Engineering, Federal University of Technology - Paraná (UTFPR), Campo Mourão, 87301-005, Brazil
| | - Renata Hernandez Barros Fuchs
- Department of Food Engineering and Chemical Engineering, Federal University of Technology - Paraná (UTFPR), Campo Mourão, 87301-005, Brazil
| | - Adriana Aparecida Droval
- Post-Graduation Program of Food Technology (PPGTA), Federal University of Technology - Paraná (UTFPR), Campo Mourão, 87301-005, Brazil
| |
Collapse
|
2
|
Canan C, Kalschne DL, Corso MP, Cursino ACT, Drunkler DA, Cardoso FAR, Bittencourt PRS, Ida EI. Use of phytic acid from rice bran combined with sodium erythorbate as antioxidants in chicken mortadella. Food Chem 2024; 456:139957. [PMID: 38870808 DOI: 10.1016/j.foodchem.2024.139957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 05/14/2024] [Accepted: 06/01/2024] [Indexed: 06/15/2024]
Abstract
The antioxidant effect of purified phytic acid (PPA) from rice bran (rice polishing by-product) combined with sodium erythorbate (SE) was evaluated for the first time in mortadella (added with 60% mechanically separated meat), a cured product with high-fat content and highly prone to oxidation, characteristic in Brazil. PPA proved effective compared to standard analytical grade phytic acid (SPA). Two central composite rotational designs (CCRD) (A and B) were employed to investigate the influence of PPA and SE, and SPA and SE, respectively, on mortadella lipid oxidation evaluated by TBARS after 30 days at 30 °C. Due to the high phytic acid's potent antioxidant capacity, the combination of PPA and SE synergistically reduced mortadella lipid oxidation. Furthermore, PPA from rice bran effectively controlled lipid oxidation in mortadella when combined with SE in the range of 5.0 to 9.0 mmol/kg of SPA and 25.0 to 50.0 mmol/kg of SE.
Collapse
Affiliation(s)
- Cristiane Canan
- Departamento Acadêmico de Alimentos, Universidade Tecnológica Federal do Paraná, Medianeira, Paraná, Brazil; Centro de Ciências Agrárias, Universidade Estadual de Londrina, Londrina, Brazil.
| | - Daneysa Lahis Kalschne
- Departamento Acadêmico de Alimentos, Universidade Tecnológica Federal do Paraná, Medianeira, Paraná, Brazil
| | - Marines Paula Corso
- Departamento Acadêmico de Alimentos, Universidade Tecnológica Federal do Paraná, Medianeira, Paraná, Brazil.
| | | | - Deisy Alessandra Drunkler
- Departamento Acadêmico de Alimentos, Universidade Tecnológica Federal do Paraná, Medianeira, Paraná, Brazil.
| | | | | | - Elza Iouko Ida
- Centro de Ciências Agrárias, Universidade Estadual de Londrina, Londrina, Brazil.
| |
Collapse
|
3
|
Coelho VS, Aguiar LL, Grancieri M, Lourenço JMP, Braga DP, Saraiva SH, Costa AGV, Silva PI. Incorporation of microencapsulated polyphenols from jabuticaba peel (Plinia spp.) into a dairy drink: stability, in vitro bioaccessibility, and glycemic response. Food Res Int 2024; 189:114567. [PMID: 38876609 DOI: 10.1016/j.foodres.2024.114567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 05/20/2024] [Accepted: 05/26/2024] [Indexed: 06/16/2024]
Abstract
This work incorporated bioactives extracted from jabuticaba peel in the form of concentrated extract (JBE) and microencapsulated powders with maltodextrin (MDP) and gum arabic (GAP) in a dairy drink, evaluating its stability, in vitro bioaccessibility, and glycemic response. We evaluated the pH, acidity, colorimetry, total phenolics and anthocyanins, antioxidant capacity, degradation kinetics and half-life of anthocyanins, bioaccessibility, and postprandial glycemic physicochemical characteristics response in healthy individuals. The drinks incorporated with polyphenols (JBE, GAP, and MDP) and the control dairy drink (CDD) maintained stable pH and acidity over 28 days. In color, the parameter a*, the most relevant to the study, was reduced for all formulations due to degradation of anthocyanins. Phenolic and antioxidant content remained constant. In bioaccessibility, we found that after the gastrointestinal simulation, there was a decrease in phenolics and anthocyanins in all formulations. In the glycemic response, we observed that the smallest incremental areas of glucose were obtained for GAP and JBE compared to CDD, demonstrating that polyphenols reduced glucose absorption. Then, the bioactives from jabuticaba peel, incorporated into a dairy drink, showed good storage stability and improved the product's functional aspects.
Collapse
Affiliation(s)
- Vinicius Serafim Coelho
- Postgraduate Program in Food Science and Technology, Centre of Agricultural and Engineering Sciences, Federal University of Espírito Santo (UFES), zip code: 29500-000, Alegre-ES, Brazil
| | - Lara Louzada Aguiar
- Postgraduate Program in Food Science and Technology, Centre of Agricultural and Engineering Sciences, Federal University of Espírito Santo (UFES), zip code: 29500-000, Alegre-ES, Brazil
| | - Mariana Grancieri
- Postgraduate Program in Food Science and Technology, Centre of Agricultural and Engineering Sciences, Federal University of Espírito Santo (UFES), zip code: 29500-000, Alegre-ES, Brazil
| | | | | | - Sergio Henriques Saraiva
- Postgraduate Program in Food Science and Technology, Centre of Agricultural and Engineering Sciences, Federal University of Espírito Santo (UFES), zip code: 29500-000, Alegre-ES, Brazil; Food Engineering Department, UFES, zip code: 29500-000, Alegre-ES, Brazil
| | - André Gustavo Vasconcelos Costa
- Postgraduate Program in Food Science and Technology, Centre of Agricultural and Engineering Sciences, Federal University of Espírito Santo (UFES), zip code: 29500-000, Alegre-ES, Brazil; Pharmacy and Nutrition Department, UFES, zip code: 29500-000, Alegre-ES, Brazil
| | - Pollyanna Ibrahim Silva
- Postgraduate Program in Food Science and Technology, Centre of Agricultural and Engineering Sciences, Federal University of Espírito Santo (UFES), zip code: 29500-000, Alegre-ES, Brazil; Food Engineering Department, UFES, zip code: 29500-000, Alegre-ES, Brazil.
| |
Collapse
|
4
|
Siddiqui SA, Erol Z, Rugji J, Taşçı F, Kahraman HA, Toppi V, Musa L, Di Giacinto G, Bahmid NA, Mehdizadeh M, Castro-Muñoz R. An overview of fermentation in the food industry - looking back from a new perspective. BIORESOUR BIOPROCESS 2023; 10:85. [PMID: 38647968 PMCID: PMC10991178 DOI: 10.1186/s40643-023-00702-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 10/25/2023] [Indexed: 04/25/2024] Open
Abstract
Fermentation is thought to be born in the Fertile Crescent, and since then, almost every culture has integrated fermented foods into their dietary habits. Originally used to preserve foods, fermentation is now applied to improve their physicochemical, sensory, nutritional, and safety attributes. Fermented dairy, alcoholic beverages like wine and beer, fermented vegetables, fruits, and meats are all highly valuable due to their increased storage stability, reduced risk of food poisoning, and enhanced flavor. Over the years, scientific research has associated the consumption of fermented products with improved health status. The fermentation process helps to break down compounds into more easily digestible forms. It also helps to reduce the amount of toxins and pathogens in food. Additionally, fermented foods contain probiotics, which are beneficial bacteria that help the body to digest food and absorb nutrients. In today's world, non-communicable diseases such as cardiovascular disease, type 2 diabetes, cancer, and allergies have increased. In this regard, scientific investigations have demonstrated that shifting to a diet that contains fermented foods can reduce the risk of non-communicable diseases. Moreover, in the last decade, there has been a growing interest in fermentation technology to valorize food waste into valuable by-products. Fermentation of various food wastes has resulted in the successful production of valuable by-products, including enzymes, pigments, and biofuels.
Collapse
Affiliation(s)
- Shahida Anusha Siddiqui
- Technical University of Munich, Campus Straubing for Biotechnology and Sustainability, Essigberg 3, 94315, Straubing, Germany.
- German Institute of Food Technologies (DIL E.V.), Prof.-Von-Klitzing Str. 7, 49610, Quakenbrück, Germany.
| | - Zeki Erol
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Burdur Mehmet Akif Ersoy University, İstiklal Campus, 15030, Burdur, Turkey
| | - Jerina Rugji
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Burdur Mehmet Akif Ersoy University, İstiklal Campus, 15030, Burdur, Turkey
| | - Fulya Taşçı
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Burdur Mehmet Akif Ersoy University, İstiklal Campus, 15030, Burdur, Turkey
| | - Hatice Ahu Kahraman
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Burdur Mehmet Akif Ersoy University, İstiklal Campus, 15030, Burdur, Turkey
| | - Valeria Toppi
- Department of Veterinary Medicine, University of Perugia, 06126, Perugia, Italy
| | - Laura Musa
- Department of Veterinary Medicine and Animal Sciences, University of Milan, 26900, Lodi, Italy
| | - Giacomo Di Giacinto
- Department of Veterinary Medicine, University of Perugia, 06126, Perugia, Italy
| | - Nur Alim Bahmid
- Research Center for Food Technology and Processing, National Research and Innovation Agency (BRIN), Gading, Playen, Gunungkidul, 55861, Yogyakarta, Indonesia
| | - Mohammad Mehdizadeh
- Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
- Ilam Science and Technology Park, Ilam, Iran
| | - Roberto Castro-Muñoz
- Tecnologico de Monterrey, Campus Toluca, Av. Eduardo Monroy Cárdenas 2000, San Antonio Buenavista, 50110, Toluca de Lerdo, Mexico.
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdansk University of Technology, G. Narutowicza St. 11/12, 80-233, Gdansk, Poland.
| |
Collapse
|
5
|
Elbanna AM, Sabala RF, Abd-Elghany SM, Imre K, Morar A, Herman V, Sallam KI. Nisin and Organic Acid Salts Improved the Microbial Quality, Extended the Shelf Life, and Maintained the Sensory Attributes of Semidry Beef Luncheon Marketed at Adverse (35-40 °C) Ambient Summer Temperatures. Foods 2023; 12:4283. [PMID: 38231702 DOI: 10.3390/foods12234283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/20/2023] [Accepted: 11/24/2023] [Indexed: 01/19/2024] Open
Abstract
Semidry beef luncheon may undergo deteriorative changes during storage at ambient temperatures in tropical and subtropical regions including Egypt. This study was conducted in a meat plant in Egypt with the aim of overcoming the economic losses from the returns of spoiled unsold beef luncheon displayed in grocery stores at adverse summer temperatures of 37 °C or more. Ten approaches were applied using different preservatives, comprising sodium nitrite, nisin, potassium sorbate, and organic acid salts (a combination of sodium lactate, sodium acetate, and sodium diacetate). In addition, the product was cooked at different temperatures and was stored for 21 days at 37 °C, during which time the shelf life, microbial quality, pH, and sensory attributes were investigated. By Day 21 of storage, the luncheon contained 50 mg/kg sodium nitrite, 25 mg/kg nisin, and 1000 mg/kg organic acid salts and, when cooked at a final core temperature of 92 °C, exhibited reductions in aerobic plate count, anaerobic plate count, lactic acid bacterial count, and mold and yeast counts by 4.32, 3.54, 3.47, and 1.89 log10 CFU/g, respectively, when compared with the control. The sensory attributes and pH were also maintained in the final products of such treatment, with no product return and the avoidance of economic loss. This study presents a novel approach for solving the major problem of the deteriorative changes that occur in semidry luncheon sausage and similar meat products which require rejection with a huge economic loss, especially in tropical and semitropical areas of the world that have similar problems of high climatic temperatures and a low availability of energy or technological resources.
Collapse
Affiliation(s)
- Ahmed Medhat Elbanna
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Rana Fahmi Sabala
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Samir Mohammed Abd-Elghany
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Kálmán Imre
- Department of Animal Production and Veterinary Public Health, Faculty of Veterinary Medicine, University of Life Sciences "King Mihai I" from Timișoara, 300645 Timișoara, Romania
| | - Adriana Morar
- Department of Animal Production and Veterinary Public Health, Faculty of Veterinary Medicine, University of Life Sciences "King Mihai I" from Timișoara, 300645 Timișoara, Romania
| | - Viorel Herman
- Department of Infectious Diseases and Preventive Medicine, Faculty of Veterinary Medicine, University of Life Sciences "King Mihai I" from Timişoara, 300645 Timișoara, Romania
| | - Khalid Ibrahim Sallam
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
6
|
Plaskova A, Mlcek J. New insights of the application of water or ethanol-water plant extract rich in active compounds in food. Front Nutr 2023; 10:1118761. [PMID: 37057062 PMCID: PMC10086256 DOI: 10.3389/fnut.2023.1118761] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 03/03/2023] [Indexed: 03/30/2023] Open
Abstract
Plants are recognized as natural sources of antioxidants (e.g., polyphenols, flavonoids, vitamins, and other active compounds) that can be extracted by green solvents like water, ethanol, or their binary mixtures. Plant extracts are becoming more used as food additives in various food systems due to their antioxidant abilities. Their application in food increases the shelf life of products by preventing undesirable changes in nutritional and sensory properties, such as the formation off-flavors in lipid-rich food. This review summarizes the most recent literature about water or ethanol-water plant extracts used as flavors, colorings, and preservatives to fortify food and beverages. This study is performed with particular attention to describing the benefits of plant extract-fortified products such as meat, vegetable oils, biscuits, pastries, some beverages, yogurt, cheese, and other dairy products. Antioxidant-rich plant extracts can positively affect food safety by partially or fully replacing synthetic antioxidants, which have lately been linked to safety and health issues such as toxicological and carcinogenic consequences. On the other hand, the limitations and challenges of using the extract in food should be considered, like stability, level of purity, compatibility with matrix, price, sensory aspects like distinct taste, and others. In the future, continuous development and a tendency to use these natural extracts as food ingredients are expected, as indicated by the number of published works in this area, particularly in the past decade.
Collapse
Affiliation(s)
| | - Jiri Mlcek
- Department of Food Analysis and Chemistry, Faculty of Technology, Tomas Bata University in Zlin, Zlin, Czechia
| |
Collapse
|
7
|
Bioactive Compounds from Fruits as Preservatives. Foods 2023; 12:foods12020343. [PMID: 36673435 PMCID: PMC9857965 DOI: 10.3390/foods12020343] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/02/2023] [Accepted: 01/09/2023] [Indexed: 01/13/2023] Open
Abstract
The use of additives with preservative effects is a common practice in the food industry. Although their use is regulated, natural alternatives have gained more attention among researchers and professionals in the food industry in order to supply processed foods with a clean label. Fruits are essential components in a healthy diet and have also been associated with improved health status and a lower risk of developing diseases. This review aims to provide an overview of the main bioactive compounds (polyphenols, betalain, and terpenes) naturally found in fruits, their antioxidant and antimicrobial activity in vitro, and their preservative effect in different foods. Many extracts obtained from the skin (apple, grape, jabuticaba, orange, and pomegranate, for instance), pulp (such as red pitaya), and seeds (guarana, grape, and jabuticaba) of fruits are of great value due to the presence of multiple compounds (punicalagin, catechin, gallic acid, limonene, β-pinene, or γ-terpinene, for instance). In terms of antioxidant activity, some fruits that stand out are date, jabuticaba, grape, and olive, which interact with different radicals and show different mechanisms of action in vitro. Antimicrobial activity is observed for natural extracts and essential oils (especially from citrus fruits) that limit the growth of many microorganisms (Bacillus subtilis, Escherichia coli, Penicillium digitatum, and Pseodomonas aeruginosa, for instance). Studies in foods have revealed that the use of extracts or essential oils as free or encapsulated forms or incorporated into films and coatings can inhibit microbial growth, slow oxidative reactions, reduce the accumulation of degradative products, and also preserve sensory attributes, especially with films and coatings. Future studies could focus on the advances of extracts and essential oils to align their use with the development of healthier foods (especially for meat products) and explore the inhibition of spoilage microorganisms in dairy products, for instance.
Collapse
|
8
|
da Silva Moura M, da Silva Gomes da Costa B, Giaconia MA, de Andrade RR, Braga ARC, Braga MB. Jaboticaba powders production by freeze‐drying: Influence of octenyl succinic anhydride‐modified starch concentrations over anthocyanins and physical properties. J FOOD PROCESS ENG 2022. [DOI: 10.1111/jfpe.14256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Milena da Silva Moura
- Department of Chemical Engineering Universidade Federal de São Paulo (UNIFESP) Diadema SP Brazil
| | | | | | - Rafael Ramos de Andrade
- Department of Chemical Engineering Universidade Federal de São Paulo (UNIFESP) Diadema SP Brazil
| | - Anna Rafaela Cavalcante Braga
- Department of Chemical Engineering Universidade Federal de São Paulo (UNIFESP) Diadema SP Brazil
- Department of Biosciences Universidade Federal de São Paulo (UNIFESP) Santos SP Brazil
| | - Matheus Boeira Braga
- Department of Chemical Engineering Universidade Federal de São Paulo (UNIFESP) Diadema SP Brazil
| |
Collapse
|
9
|
Bellucci ERB, Bis-Souza CV, Domínguez R, Bermúdez R, Barretto ACDS. Addition of Natural Extracts with Antioxidant Function to Preserve the Quality of Meat Products. Biomolecules 2022; 12:1506. [PMID: 36291715 PMCID: PMC9599661 DOI: 10.3390/biom12101506] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 09/30/2022] [Accepted: 10/16/2022] [Indexed: 09/29/2023] Open
Abstract
Antioxidants are used to prevent oxidation reactions and inhibit the development of unwanted sensory characteristics that decrease the nutritional quality, acceptance, and shelf-life of processed meat products, improving their stability. Synthetic antioxidants, although efficient, are related to the development of diseases because they present toxic and carcinogenic effects. Thus, researchers and the meat industry are studying natural alternatives to synthetic antioxidants to be used in meat products, thus meeting the demand of consumers who seek foods without additives in their composition. These natural extracts have compounds that exert antioxidant activity in different meat products by different mechanisms. Thus, this review work aimed to gather studies that applied natural extracts derived from different plant sources as possible antioxidants in meat products and their action in preserving the quality of these products.
Collapse
Affiliation(s)
- Elisa Rafaela Bonadio Bellucci
- Department of Food Technology and Engineering, UNESP—São Paulo State University, Street Cristóvão Colombo, 2265, São José do Rio Preto 15054-000, SP, Brazil
| | - Camila Vespúcio Bis-Souza
- Department of Food Technology and Engineering, UNESP—São Paulo State University, Street Cristóvão Colombo, 2265, São José do Rio Preto 15054-000, SP, Brazil
| | - Rubén Domínguez
- Centro Tecnológico de la Carne de Galicia, Avda. Galicia nº 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain
| | - Roberto Bermúdez
- Centro Tecnológico de la Carne de Galicia, Avda. Galicia nº 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain
| | - Andrea Carla da Silva Barretto
- Department of Food Technology and Engineering, UNESP—São Paulo State University, Street Cristóvão Colombo, 2265, São José do Rio Preto 15054-000, SP, Brazil
| |
Collapse
|
10
|
Francelin MF, dos Santos IF, Claus T, Visentainer JV, Feihrmann AC, Gomes RG, Vieira AMS. Effects of
Moringa oleifera
Lam. leaves extract on physicochemical, fatty acids profile, oxidative stability, microbiological and sensory properties of chicken mortadella. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | | | - Thiago Claus
- Department of Chemical, Universidade Estadual de Maringá Paraná Brazil
| | | | | | | | | |
Collapse
|
11
|
Zhao L, Sun X, Wu J, Su L, Yang F, Jin Y, Zhang M, Ao C. Effects of Allium mongolicum Regel and its extracts on the quality of fermented mutton sausages. Food Sci Nutr 2022; 10:169-178. [PMID: 35035919 PMCID: PMC8751437 DOI: 10.1002/fsn3.2657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 11/17/2022] Open
Abstract
The study aimed to evaluate the effects of Allium mongolicum Regel (AMR) and its water- and fat-soluble extracts on the quality of fermented mutton sausages. Sausages were produced with mutton and fat. Four treatments: CO, without Allium mongolicum Regel and its extracts, used as control; AMR with Allium mongolicum Regel; AWE with water-soluble extract of Allium mongolicum Regel; and AFE with liposoluble extract from Allium mongolicum Regel, were produced and analyzed for pH, water activity (a w), free amino acids, fatty acids, and volatiles were, respectively, in fermented mutton sausages during processing (0, 2, 5, and 7 days). The results showed that the pH values of the liposoluble extract from Allium mongolicum Regel (AFE), respectively, are lower than that of sample CO at the end of fermentation and ripening. The a w in all group of sausages significantly dropped to 0.88 at the end of ripening (Day 7). Adding Allium mongolicum Regel and its water-soluble extract can improve the serine (SER) content of fermented mutton sausage. The contents of five essential amino acids (EAA) were added when adding Allium mongolicum Regel and its fat-soluble extract. The total fatty acid (TFA) in the treatments increased during drying and ripening. The addition of Allium mongolicum Regel and its extract can increase the content of volatile flavor substances such as 3-hydroxy-2-butanone, 3-methylbutyraldehyde, hexanal, octanal, and nonanal at the later stage of maturity, so as to improve the flavor substances in fermented mutton sausage. Water-soluble extract of Allium mongolicum Regel (AWE) and AFE treatments had more intense flavor at the end of ripening (Day 7). The flavor of fermented mutton sausage can be improved by adding Allium mongolicum Regel and its extracts into fermented mutton sausage.
Collapse
Affiliation(s)
- Lihua Zhao
- College of Food Science and EngineeringInner Mongolia Agricultural UniversityHuhhotChina
| | - Xueying Sun
- College of Food Science and EngineeringInner Mongolia Agricultural UniversityHuhhotChina
| | - Jing Wu
- College of Food Science and EngineeringInner Mongolia Agricultural UniversityHuhhotChina
| | - Lin Su
- College of Food Science and EngineeringInner Mongolia Agricultural UniversityHuhhotChina
| | - Fan Yang
- Erdos Environment Vocational CollegeErdosChina
| | - Ye Jin
- College of Food Science and EngineeringInner Mongolia Agricultural UniversityHuhhotChina
| | - Meizhi Zhang
- Vocational and Technical College of Inner Mongolia Agricultural UniversityBaotouChina
| | - Changjin Ao
- College of Animal ScienceInner Mongolia Agricultural UniversityHuhhotChina
| |
Collapse
|
12
|
Inada KOP, Leite IB, Martins ABN, Fialho E, Tomás-Barberán FA, Perrone D, Monteiro M. Jaboticaba berry: A comprehensive review on its polyphenol composition, health effects, metabolism, and the development of food products. Food Res Int 2021; 147:110518. [PMID: 34399496 DOI: 10.1016/j.foodres.2021.110518] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 06/04/2021] [Accepted: 06/10/2021] [Indexed: 12/12/2022]
Abstract
Jaboticaba, a popular Brazilian berry, has been studied due to its relevant polyphenol composition, health benefits and potential use for the development of derived food products. Considering that around 200 articles have been published in recent years, this review aims to provide comprehensive and updated information, as well as a critical discussion on: (i) jaboticaba polyphenolic composition and extraction methods for their accurate determination; (ii) jaboticaba polyphenol's metabolism; (iii) biological effects of the fruit and the relationship with its polyphenols and their metabolites; (iv) challenges in the development of jaboticaba derived products. The determination of jaboticaba polyphenols should employ hydrolysis procedures during extraction, followed by liquid chromatographic analysis. Jaboticaba polyphenols, mainly anthocyanins and ellagitannins, are extensively metabolized, and their metabolites are probably the most important contributors to the relevant health effects associated with the fruit, such as antioxidant, anti-inflammatory, antidiabetic, hepatoprotective and hypolipidemic. Most of the technological processing of jaboticaba fruit and its residues is related to their application as a colorant, antioxidant, antimicrobial and source of polyphenols. The scientific literature still lacks studies on the metabolism and bioactivity of polyphenols from jaboticaba in humans, as well as the effect of technological processes on these issues.
Collapse
Affiliation(s)
- Kim Ohanna Pimenta Inada
- Laboratório de Alimentos Funcionais, Instituto de Nutrição Josué de Castro, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, CCS, Bloco J, 2° andar, sala 16, 21941-902 Rio de Janeiro, Brazil; Laboratório de Bioquímica Nutricional e de Alimentos, Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Av. Athos da Silveira Ramos 149, CT, Bloco A, sala 528A, 21941-909 Rio de Janeiro, Brazil; Instituto de Nutrição, Universidade Estadual do Rio de Janeiro, R. São Francisco Xavier, 524, Pavilhão João Lyra Filho, 12° andar, Bloco D, sala 12.002, 20550-900 Rio de Janeiro, Brazil.
| | - Iris Batista Leite
- Laboratório de Alimentos Funcionais, Instituto de Nutrição Josué de Castro, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, CCS, Bloco J, 2° andar, sala 16, 21941-902 Rio de Janeiro, Brazil
| | - Ana Beatriz Neves Martins
- Laboratório de Bioquímica Nutricional e de Alimentos, Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Av. Athos da Silveira Ramos 149, CT, Bloco A, sala 528A, 21941-909 Rio de Janeiro, Brazil
| | - Eliane Fialho
- Laboratório de Alimentos Funcionais, Instituto de Nutrição Josué de Castro, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, CCS, Bloco J, 2° andar, sala 16, 21941-902 Rio de Janeiro, Brazil.
| | - Francisco A Tomás-Barberán
- Research Group on Quality, Safety and Bioactivity of Plant Foods, CEBAS-CSIC, P.O. Box 164, 30100 Campus de Espinardo, Murcia, Spain.
| | - Daniel Perrone
- Laboratório de Bioquímica Nutricional e de Alimentos, Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Av. Athos da Silveira Ramos 149, CT, Bloco A, sala 528A, 21941-909 Rio de Janeiro, Brazil.
| | - Mariana Monteiro
- Laboratório de Alimentos Funcionais, Instituto de Nutrição Josué de Castro, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, CCS, Bloco J, 2° andar, sala 16, 21941-902 Rio de Janeiro, Brazil.
| |
Collapse
|
13
|
Benvenutti L, Zielinski AAF, Ferreira SRS. Jaboticaba (Myrtaceae cauliflora) fruit and its by-products: Alternative sources for new foods and functional components. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.03.044] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
14
|
Liu Q, Zhang M, Bhandari B, Yang C. Modification of pork‐skin jelly by enzymatic cross‐linking: melting resistance and quality improvement. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.14859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Qiong Liu
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi Jiangsu214122China
| | - Min Zhang
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi Jiangsu214122China
- International Joint Laboratory on Food Safety Jiangnan University Wuxi Jiangsu214122China
| | - Bhesh Bhandari
- School of Agriculture and Food Sciences University of Queensland St Lucia QLD4072Australia
| | - Chaohui Yang
- Yechun Food Production and Distribution Co., Ltd. Yangzhou Jiangsu225000China
| |
Collapse
|
15
|
PORFÍRIO MCP, GONÇALVES MS, BORGES MV, LEITE CXDS, SANTOS MRC, SILVA AGD, FONTAN GCR, LEÃO DJ, JESUS RMD, GUALBERTO SA, LANNES SCDS, SILVA MVD. Development of isotonic beverage with functional attributes based on extract of Myrciaria jabuticaba (Vell) Berg. FOOD SCIENCE AND TECHNOLOGY 2020. [DOI: 10.1590/fst.14319] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
16
|
Aykın-Dinçer E, Güngör KK, Çağlar E, Erbaş M. The use of beetroot extract and extract powder in sausages as natural food colorant. INTERNATIONAL JOURNAL OF FOOD ENGINEERING 2020. [DOI: 10.1515/ijfe-2019-0052] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Four colorants (control, carmine, beetroot extract and beetroot extract powder) and two methods (fermentation and heat treatment) were used in the production of sausages. The betalain content, total phenolic substance content and ORAC and TEAC values of concentrated beetroot extract were 562.08 mg/L, 27.72 mg GAE/mL, 33.96 µmol TE/mL and 35.70 mmol TE/L, respectively. The moisture content, pH value, lightness (L*), yellowness (b*) and odor values of heat-processed sausages were higher than those of fermented sausages. 2-thiobarbituric acid reactive substances (TBARS) values were lower in sausages with beetroot extract (20.51 μmol·MDA/kg) and powder (19.03 μmol MDA/kg) than for control and carmine treatments. The use of beetroot extract and powder positively affected the sensory appearance, color, flavor and overall acceptance of sausages. Thus, beetroot extract and powder could be used as alternatives to carmine in sausage production.
Collapse
Affiliation(s)
- Elif Aykın-Dinçer
- Department of Food Engineering, Faculty of Engineering , Akdeniz University , Antalya , 07058 , Turkey
| | - Keziban Kübra Güngör
- Department of Food Engineering, Faculty of Engineering , Akdeniz University , Antalya , 07058 , Turkey
| | - Emine Çağlar
- Department of Food Engineering, Faculty of Engineering , Akdeniz University , Antalya , 07058 , Turkey
| | - Mustafa Erbaş
- Department of Food Engineering, Faculty of Engineering , Akdeniz University , Antalya , 07058 , Turkey
| |
Collapse
|
17
|
Jaberi R, Kaban G, Kaya M. The effect of barberry (
Berberis vulgaris
L.) extract on the physicochemical properties, sensory characteristics, and volatile compounds of chicken frankfurters. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.14501] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Rahimeh Jaberi
- Faculty of Agriculture, Department of Food Engineering Atatürk University Erzurum Turkey
| | - Güzin Kaban
- Faculty of Agriculture, Department of Food Engineering Atatürk University Erzurum Turkey
| | - Mükerrem Kaya
- Faculty of Agriculture, Department of Food Engineering Atatürk University Erzurum Turkey
| |
Collapse
|
18
|
Calderón‐Oliver M, Escalona‐Buendía HB, Ponce‐Alquicira E. Effect of the addition of microcapsules with avocado peel extract and nisin on the quality of ground beef. Food Sci Nutr 2020; 8:1325-1334. [PMID: 32180942 PMCID: PMC7063373 DOI: 10.1002/fsn3.1359] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 10/19/2019] [Accepted: 10/22/2019] [Indexed: 01/05/2023] Open
Abstract
This study evaluated the incorporation of microcapsules containing nisin and avocado peel extract on the shelf life of ground beef. Ten treatments were studied and divided into two groups: one packaged under vacuum and the other in permeable packaging. Each group contained: (a) control, (b) extract, (c) nisin, (d) empty microcapsules (only wall microcapsule system), and (e) microcapsules with extract and nisin. The samples containing the microcapsules presented lower bacterial growth and less oxidation. On day 10, the vacuum-packaged samples with microencapsulated preservative presented a reduction in the oxidation of proteins of approximately 45%, of 30% in the growth of mesophiles, and of 38% in the growth of coliforms, as well as a reduction in the changes in the pH and ɑ W that occur during storage, compared with the permeable control. The combination of microcapsules with vacuum packaging reduced the physicochemical and microbiological changes that occur in the controls.
Collapse
Affiliation(s)
- Mariel Calderón‐Oliver
- Tecnologico de MonterreyEscuela de Ingeniería y CienciasToluca de LerdoMexico
- Departamento de BiotecnologíaUniversidad Autónoma MetropolitanaIztapalapaMexico
| | | | | |
Collapse
|
19
|
Jabuticaba residues (Myrciaria jaboticaba (Vell.) Berg) are rich sources of valuable compounds with bioactive properties. Food Chem 2020; 309:125735. [DOI: 10.1016/j.foodchem.2019.125735] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 10/16/2019] [Accepted: 10/16/2019] [Indexed: 12/14/2022]
|
20
|
Júnior MM, de Oliveira TP, Gonçalves OH, Leimann FV, Medeiros Marques LL, Fuchs RHB, Cardoso FAR, Droval AA. Substitution of synthetic antioxidant by curcumin microcrystals in mortadella formulations. Food Chem 2019; 300:125231. [PMID: 31374430 DOI: 10.1016/j.foodchem.2019.125231] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 07/16/2019] [Accepted: 07/22/2019] [Indexed: 12/18/2022]
Abstract
This research was to compare mortadella elaborated with synthetic antioxidant and microcrystals of curcumin in relation to its physicochemical and sensorial characteristics for a period of 90 days. It was detect no differences between the three evaluated treatments in relation to the pH, color, and texture profile features. The mortadella with curcumin microcrystals showed significantly lower TBARS values at the end of the storage when compared to the other treatments. In the sensory analysis, the addition of curcumin decreased the acceptance of color's sample and the purchase intention, but no significant difference was observed among the other attributes. The color of the sample containing curcumin also became worse than its day-of-production standard during storage. The results obtained suggest the potential of curcumin in replacing synthetic antioxidants in cooked meat sausage, since it practically does not modify its physicochemical characteristics, besides preventing the oxidation of the food.
Collapse
Affiliation(s)
- Mário Muraoka Júnior
- Department of Food Engineering, Federal University of Technology - Paraná (UTFPR), Campo Mourão 87301-005, Brazil
| | - Thaise Pascoato de Oliveira
- Post-Graduation Program of Technological Innovation (PPGIT), Federal University of Technology - Paraná (UTFPR), Campo Mourão 87301-005, Brazil
| | - Odinei Hess Gonçalves
- Post-Graduation Program of Food Technology (PPGTA), Federal University of Technology - Paraná (UTFPR), Campo Mourão 87301-005, Brazil
| | - Fernanda Vitória Leimann
- Post-Graduation Program of Food Technology (PPGTA), Federal University of Technology - Paraná (UTFPR), Campo Mourão 87301-005, Brazil
| | | | - Renata Hernandez Barros Fuchs
- Post-Graduation Program of Food Technology (PPGTA), Federal University of Technology - Paraná (UTFPR), Campo Mourão 87301-005, Brazil
| | - Flávia Aparecida Reitz Cardoso
- Post-Graduation Program of Technological Innovation (PPGIT), Federal University of Technology - Paraná (UTFPR), Campo Mourão 87301-005, Brazil.
| | - Adriana Aparecida Droval
- Department of Food Engineering, Federal University of Technology - Paraná (UTFPR), Campo Mourão 87301-005, Brazil
| |
Collapse
|
21
|
Fidelis M, de Moura C, Kabbas Junior T, Pap N, Mattila P, Mäkinen S, Putnik P, Bursać Kovačević D, Tian Y, Yang B, Granato D. Fruit Seeds as Sources of Bioactive Compounds: Sustainable Production of High Value-Added Ingredients from By-Products within Circular Economy. Molecules 2019; 24:E3854. [PMID: 31731548 PMCID: PMC6864632 DOI: 10.3390/molecules24213854] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 10/14/2019] [Accepted: 10/18/2019] [Indexed: 11/24/2022] Open
Abstract
The circular economy is an umbrella concept that applies different mechanisms aiming to minimize waste generation, thus decoupling economic growth from natural resources. Each year, an estimated one-third of all food produced is wasted; this is equivalent to 1.3 billion tons of food, which is worth around US$1 trillion or even $2.6 trillion when social and economic costs are included. In the fruit and vegetable sector, 45% of the total produced amount is lost in the production (post-harvest, processing, and distribution) and consumption chains. Therefore, it is necessary to find new technological and environmentally friendly solutions to utilize fruit wastes as new raw materials to develop and scale up the production of high value-added products and ingredients. Considering that the production and consumption of fruits has increased in the last years and following the need to find the sustainable use of different fruit side streams, this work aimed to describe the chemical composition and bioactivity of different fruit seeds consumed worldwide. A comprehensive focus is given on the extraction techniques of water-soluble and lipophilic compounds and in vitro/in vivo functionalities, and the link between chemical composition and observed activity is holistically explained.
Collapse
Affiliation(s)
- Marina Fidelis
- MSc in Food Science and Technology, Ponta Grossa 84035010, Brazil;
| | - Cristiane de Moura
- Graduate Program in Chemistry, State University of Ponta Grossa, Avenida Carlos Cavalcanti, 4748, Ponta Grossa 84030900, Brazil; (C.d.M.); (T.K.J.)
| | - Tufy Kabbas Junior
- Graduate Program in Chemistry, State University of Ponta Grossa, Avenida Carlos Cavalcanti, 4748, Ponta Grossa 84030900, Brazil; (C.d.M.); (T.K.J.)
| | - Nora Pap
- Food Processing and Quality, Innovative Food System, Production Systems Unit, Natural Resources Institute Finland (Luke), Tietotie 2, FI-02150 Espoo, Finland; (N.P.); (P.M.); (S.M.)
| | - Pirjo Mattila
- Food Processing and Quality, Innovative Food System, Production Systems Unit, Natural Resources Institute Finland (Luke), Tietotie 2, FI-02150 Espoo, Finland; (N.P.); (P.M.); (S.M.)
| | - Sari Mäkinen
- Food Processing and Quality, Innovative Food System, Production Systems Unit, Natural Resources Institute Finland (Luke), Tietotie 2, FI-02150 Espoo, Finland; (N.P.); (P.M.); (S.M.)
| | - Predrag Putnik
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (P.P.); (D.B.K.)
| | - Danijela Bursać Kovačević
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (P.P.); (D.B.K.)
| | - Ye Tian
- Food Chemistry and Food Development Unit, Department of Biochemistry, University of Turku, FI-20014 Turku, Finland; (Y.T.); (B.Y.)
| | - Baoru Yang
- Food Chemistry and Food Development Unit, Department of Biochemistry, University of Turku, FI-20014 Turku, Finland; (Y.T.); (B.Y.)
| | - Daniel Granato
- Food Processing and Quality, Innovative Food System, Production Systems Unit, Natural Resources Institute Finland (Luke), Tietotie 2, FI-02150 Espoo, Finland; (N.P.); (P.M.); (S.M.)
| |
Collapse
|
22
|
Romão PVM, Palozi RAC, Guarnier LP, Silva AO, Lorençone BR, Nocchi SR, Moura CCDFS, Lourenço ELB, Silva DB, Gasparotto Junior A. Cardioprotective effects of Plinia cauliflora (Mart.) Kausel in a rabbit model of doxorubicin-induced heart failure. JOURNAL OF ETHNOPHARMACOLOGY 2019; 242:112042. [PMID: 31254629 DOI: 10.1016/j.jep.2019.112042] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 06/08/2019] [Accepted: 06/24/2019] [Indexed: 06/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE In Brazil, the fruit of a native species that is popularly known as "jabuticaba" (Plinia cauliflora [Mart.] Kausel) is widely consumed fresh or used for the production of liqueur, juice, and jelly. In Brazilian folk medicine, this species is used to treat asthma, throat inflammation, and gastrointestinal and cardiovascular disturbances. However, no previous studies have reported its cardioprotective effects. AIM To evaluate the possible cardioprotective effects of a hydroethanolic extract of Plinia cauliflora (EEPC) in female rabbits in a model of doxorubicin-induced heart failure. MATERIAL AND METHODS EEPC was obtained and fractionated by solid phase extraction, and its constituents were determined by liquid chromatography coupled to diode array detector and mass spectrometry (LC-DAD-MS). Thirty female New Zealand rabbits received doxorubicin administration for 6 weeks to induce heart failure. EEPC was orally administered at doses of 75 and 150 mg/kg daily for 42 days. Enalapril (5 mg/kg) was used as a reference cardioprotective drug. At the end of the experimental period, blood pressure and heart rate were recorded. Serum parameters, including lipid profile, troponin, creatinine, nitrotyrosine, malondialdehyde, nitrite, and brain natriuretic peptide, were measured. The electrocardiographic profile and renal vascular reactivity were evaluated. Cardiac histopathology and ventricular morphometry were performed, and the tissue enzymatic antioxidant system was investigated. RESULTS A total of 37 compounds were detected in EEPC, including organic acids, phenolic acid derivatives, flavonoids, anthocyanins, and hydrolysable tannins (gallotannins and ellagitannins). EEPC treatment induced a cardiorenal protective response, prevented hemodynamic and functional alterations, and prevented ventricle remodeling. These effects were associated with the normalization of creatinine and brain natriuretic peptide levels and modulation of the tecidual antioxidant defense system. CONCLUSION The present study demonstrated that EEPC may prevent doxorubicin-induced heart failure by modulating the antioxidant defense system, reducing reactive oxygen species-induced damage, preventing alterations of hemodynamic and endothelial function, and preventing damage to the cardiac structure. EEPC, especially at the highest dose tested, may be considered a cardioprotective coadjuvant to prevent doxorubicin-induced cardiotoxicity.
Collapse
Affiliation(s)
- Paulo Vitor Moreira Romão
- Laboratório de Eletrofisiologia e Farmacologia Cardiovascular (LEFaC), Faculdade de Ciências da Saúde, Universidade Federal da Grande Dourados, Dourados, MS, Brazil
| | - Rhanany Alan Calloi Palozi
- Laboratório de Eletrofisiologia e Farmacologia Cardiovascular (LEFaC), Faculdade de Ciências da Saúde, Universidade Federal da Grande Dourados, Dourados, MS, Brazil
| | - Lucas Pires Guarnier
- Laboratório de Eletrofisiologia e Farmacologia Cardiovascular (LEFaC), Faculdade de Ciências da Saúde, Universidade Federal da Grande Dourados, Dourados, MS, Brazil
| | - Aniely Oliveira Silva
- Laboratório de Eletrofisiologia e Farmacologia Cardiovascular (LEFaC), Faculdade de Ciências da Saúde, Universidade Federal da Grande Dourados, Dourados, MS, Brazil
| | - Bethânia Rosa Lorençone
- Laboratório de Eletrofisiologia e Farmacologia Cardiovascular (LEFaC), Faculdade de Ciências da Saúde, Universidade Federal da Grande Dourados, Dourados, MS, Brazil
| | - Samara Requena Nocchi
- Laboratório de Produtos Naturais e Espectrometria de Massas (LaPNEM), Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição (FACFAN), Universidade Federal do Mato Grosso do Sul, Campo Grande, MS, Brazil
| | | | | | - Denise Brentan Silva
- Laboratório de Produtos Naturais e Espectrometria de Massas (LaPNEM), Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição (FACFAN), Universidade Federal do Mato Grosso do Sul, Campo Grande, MS, Brazil
| | - Arquimedes Gasparotto Junior
- Laboratório de Eletrofisiologia e Farmacologia Cardiovascular (LEFaC), Faculdade de Ciências da Saúde, Universidade Federal da Grande Dourados, Dourados, MS, Brazil.
| |
Collapse
|