1
|
Xin M, Bi F, Wang C, Huang Y, Xu Y, Liang S, Cai T, Xu X, Dong L, Li T, Wang X, Fang Y, Xu Z, Wang M, Song X, Zheng Y, Sun W, Li L. The circadian rhythm: A new target of natural products that can protect against diseases of the metabolic system, cardiovascular system, and nervous system. J Adv Res 2025; 69:495-514. [PMID: 38631431 PMCID: PMC11954810 DOI: 10.1016/j.jare.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/17/2024] [Accepted: 04/07/2024] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND The treatment of metabolic system, cardiovascular system, and nervous system diseases remains to be explored. In the internal environment of organisms, the metabolism of substances such as carbohydrates, lipids and proteins (including biohormones and enzymes) exhibit a certain circadian rhythm to maintain the energy supply and material cycle needed for the normal activities of organisms. As a key factor for the health of organisms, the circadian rhythm can be disrupted by pathological conditions, and this disruption accelerates the progression of diseases and results in a vicious cycle. The current treatments targeting the circadian rhythm for the treatment of metabolic system, cardiovascular system, and nervous system diseases have certain limitations, and the identification of safer and more effective circadian rhythm regulators is needed. AIM OF THE REVIEW To systematically assess the possibility of using the biological clock as a natural product target for disease intervention, this work reviews a range of evidence on the potential effectiveness of natural products targeting the circadian rhythm to protect against diseases of the metabolic system, cardiovascular system, and nervous system. This manuscript focuses on how natural products restore normal function by affecting the amplitude of the expression of circadian factors, sleep/wake cycles and the structure of the gut microbiota. KEY SCIENTIFIC CONCEPTS OF THE REVIEW This work proposes that the circadian rhythm, which is regulated by the amplitude of the expression of circadian rhythm-related factors and the sleep/wake cycle, is crucial for diseases of the metabolic system, cardiovascular system and nervous system and is a new target for slowing the progression of diseases through the use of natural products. This manuscript provides a reference for the molecular modeling of natural products that target the circadian rhythm and provides a new perspective for the time-targeted action of drugs.
Collapse
Affiliation(s)
- Meiling Xin
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong 255000, China; National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100000, China
| | - Fangjie Bi
- Heart Center, Zibo Central Hospital, Zibo, Shandong 255000, China
| | - Chao Wang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong 255000, China
| | - Yuhong Huang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong 255000, China
| | - Yujia Xu
- Department of Echocardiography, Zibo Central Hospital, Zibo, Shandong 255000, China
| | - Shufei Liang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong 255000, China
| | - Tianqi Cai
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong 255000, China
| | - Xiaoxue Xu
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong 255000, China
| | - Ling Dong
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong 255000, China
| | - Tianxing Li
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100000, China; Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xueke Wang
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100000, China; The Second Clinical Medical College, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Yini Fang
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100000, China; Basic Medical College, Zhejiang Chinese Medical University, Hangzhou 310053 China
| | - Zhengbao Xu
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong 255000, China
| | - Meng Wang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong 255000, China
| | - Xinhua Song
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong 255000, China.
| | - Yanfei Zheng
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100000, China.
| | - Wenlong Sun
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong 255000, China.
| | - Lingru Li
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100000, China.
| |
Collapse
|
2
|
Cantele C, Potenziani G, Bonciolini A, Bertolino M, Cardenia V. Effect of Alkylresorcinols Isolated from Wheat Bran on the Oxidative Stability of Minced-Meat Models as Related to Storage. Antioxidants (Basel) 2024; 13:930. [PMID: 39199176 PMCID: PMC11351659 DOI: 10.3390/antiox13080930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 09/01/2024] Open
Abstract
Due to their antioxidant activity, alkylresorcinols (ARs) extracted from by-products could represent promising natural and innovative antioxidants for the food industry. This study tested the ability of ARs isolated from wheat bran to increase the shelf-life of minced-meat models stored at 4 °C for 9 days. Fifteen alk(en)ylresorcinols (C17-C25) were recognized by GC/MS, showing good radical-scavenging (200.70 ± 1.33 μmolTE/g extract) and metal-chelating (1.38 ± 0.30 mgEDTAE/g extract) activities. Two ARs concentrations (0.01% and 0.02%) were compared to sodium ascorbate (0.01% and 0.10%) on color (CIELAB values L*, a*, b*, chroma, and hue) and oxidative stability (lipid hydroperoxides, thiobarbituric acid reactive substances (TBARS), and volatile organic compounds (VOCs)) of minced-beef samples. ARs-treated samples were oxidatively more stable than those formulated with sodium ascorbate and the negative control, with significantly lower contents of hydroperoxides and VOCs (hexanal, 1-hexanol, and 1-octen-3-ol) throughout the experiment (p < 0.001). However, no effect on color stability was observed (p > 0.05). Since 0.01% of ARs was equally or more effective than 0.10% sodium ascorbate, those results carry important implications for the food industry, which could reduce antioxidant amounts by ten times and replace synthetic antioxidants with natural ones.
Collapse
Affiliation(s)
- Carolina Cantele
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Turin, 10095 Grugliasco, TO, Italy; (C.C.); (G.P.); (A.B.); (M.B.)
| | - Giulia Potenziani
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Turin, 10095 Grugliasco, TO, Italy; (C.C.); (G.P.); (A.B.); (M.B.)
| | - Ambra Bonciolini
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Turin, 10095 Grugliasco, TO, Italy; (C.C.); (G.P.); (A.B.); (M.B.)
| | - Marta Bertolino
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Turin, 10095 Grugliasco, TO, Italy; (C.C.); (G.P.); (A.B.); (M.B.)
| | - Vladimiro Cardenia
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Turin, 10095 Grugliasco, TO, Italy; (C.C.); (G.P.); (A.B.); (M.B.)
- AgriForFood Chromatography and Mass Spectrometry Open Access Laboratory, University of Turin, 10095 Grugliasco, TO, Italy
| |
Collapse
|
3
|
Ben Soltana O, Barkallah M, Hentati F, Elhadef K, Ben Hlima H, Smaoui S, Michaud P, Abdelkafi S, Fendri I. Improving the shelf life of minced beef by Cystoseira compressa polysaccharide during storage. Int J Biol Macromol 2024; 273:132863. [PMID: 38838888 DOI: 10.1016/j.ijbiomac.2024.132863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/26/2024] [Accepted: 06/01/2024] [Indexed: 06/07/2024]
Abstract
A polysaccharide extracted from the brown alga Cystoseira compressa (CCPS) was evaluated as a food additive to extend the shelf-life of raw beef meat. The antioxidant potential of CCPS was demonstrated by its inhibition of β-carotene bleaching (64.28 %), superoxide radicals (70.12 %), and hydroxyl radicals (93 %) at a concentration of 10 mg/ml. The polysaccharide also showed antibacterial activity with MIC values between 6.25 mg/ml and 50 mg/ml against five foodborne pathogenic bacteria. Furthermore, CCPS exhibited excellent functional, foaming, and emulsifying properties. Furthermore, microbiological and chemical effects of CCPS at concentrations equivalent to 1 MIC (CCPS-1), 2 MIC (CCPS-2), and 4 MIC (CCPS-3) were conducted. Chemical analyses showed that treated beef had significantly reduced TBARS levels below 2 mg MDA/kg at day 14. The treatment also decreased carbonyl groups, improved heme iron transformation, inhibited microbial growth (p < 0.05), and kept MetMb levels below 40 % by day 14. Moreover, two multivariate approaches, principal component analysis (PCA) and hierarchical cluster analysis (HCA), were effectively used to analyze the results characterizing the main attributes of the stored meat samples. In conclusion, these findings demonstrated that CCPS could be employed as a functional and bioactive component in the meat industry.
Collapse
Affiliation(s)
- Oumaima Ben Soltana
- Laboratoire de Génie Enzymatique et Microbiologie, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, Sfax 3038, Tunisia; Laboratoire de Biotechnologie des Plantes Appliquée à l'Amélioration des Cultures (LR01ES21), Faculté des Sciences de Sfax, Université de Sfax, Sfax, Tunisia
| | - Mohamed Barkallah
- Laboratoire de Génie Enzymatique et Microbiologie, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, Sfax 3038, Tunisia
| | - Faiez Hentati
- Laboratoire de Génie Enzymatique et Microbiologie, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, Sfax 3038, Tunisia
| | - Khaoula Elhadef
- Laboratory of Microbial, Enzymatic Biotechnology and Biomolecules (LBMEB), Center of Biotechnology of Sfax, University of Sfax, Road of Sidi Mansour Km 6, P.O. Box 1177, 3018, Tunisia
| | - Hajer Ben Hlima
- Laboratoire de Génie Enzymatique et Microbiologie, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, Sfax 3038, Tunisia
| | - Slim Smaoui
- Laboratory of Microbial, Enzymatic Biotechnology and Biomolecules (LBMEB), Center of Biotechnology of Sfax, University of Sfax, Road of Sidi Mansour Km 6, P.O. Box 1177, 3018, Tunisia
| | - Philippe Michaud
- Université Clermont Auvergne, CNRS, Clermont Auvergne INP, Institut Pascal, F-63000 Clermont-Ferrand, France
| | - Slim Abdelkafi
- Laboratoire de Génie Enzymatique et Microbiologie, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, Sfax 3038, Tunisia.
| | - Imen Fendri
- Laboratoire de Biotechnologie des Plantes Appliquée à l'Amélioration des Cultures (LR01ES21), Faculté des Sciences de Sfax, Université de Sfax, Sfax, Tunisia
| |
Collapse
|
4
|
Gao L, Sun H, Nagassa M, Li X, Pei H, Liu S, Gu Y, He S. Edible film preparation by anthocyanin extract addition into acetylated cassava starch/sodium carboxymethyl cellulose matrix for oxidation inhibition of pumpkin seeds. Int J Biol Macromol 2024; 267:131439. [PMID: 38593902 DOI: 10.1016/j.ijbiomac.2024.131439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 04/01/2024] [Accepted: 04/04/2024] [Indexed: 04/11/2024]
Abstract
In this study, an edible film was fabricated by incorporating anthocyanin extract from black rice (AEBR) into acetylated cassava starch (ACS)/carboxymethyl-cellulose (CMC) to enhance the shelf life of pumpkin seeds. The effects of AEBR on the rheological properties of film-forming solutions, as well as the structural characterization and physicochemical properties of the film, were evaluated. Rheological properties of solutions revealed that AEBR was evenly dispersed into polymer matrix and bound by hydrogen bonds, as confirmed by Fourier transform infrared spectroscopy analysis. The appropriate AEBR addition could be compatible with polymer matrix and formed a compact film structure, improving the mechanical properties, barrier properties, and opacity. However, with further addition of AEBR, the tensile strength and water vapor permeability decreased and the tight structure was destroyed. After being stored separately under thermal and UV light accelerated conditions for 20 days, the peroxide value and acid value of roasted pumpkin seeds coated with the AEBR film showed a significant reduction. Moreover, the storage stability of AEBR was improved through the embedding of ACS/CMC biopolymers. These results indicated that AEBR film could effectively delay pumpkin seeds oxidation and prolong their shelf life as an antioxidant material.
Collapse
Affiliation(s)
- Lingyan Gao
- School of Food and Biological Engineering, Engineering Research Center of Bio-process of Ministry of Education, Key Laboratory for Agricultural Products Procssing of Anhui Province, Hefei University of Technology, Hefei 230009, Anhui, PR China
| | - Hanju Sun
- School of Food and Biological Engineering, Engineering Research Center of Bio-process of Ministry of Education, Key Laboratory for Agricultural Products Procssing of Anhui Province, Hefei University of Technology, Hefei 230009, Anhui, PR China.
| | - Merga Nagassa
- School of Food and Biological Engineering, Engineering Research Center of Bio-process of Ministry of Education, Key Laboratory for Agricultural Products Procssing of Anhui Province, Hefei University of Technology, Hefei 230009, Anhui, PR China
| | - Xiao Li
- School of Food and Biological Engineering, Engineering Research Center of Bio-process of Ministry of Education, Key Laboratory for Agricultural Products Procssing of Anhui Province, Hefei University of Technology, Hefei 230009, Anhui, PR China
| | - Hui Pei
- School of Food and Biological Engineering, Engineering Research Center of Bio-process of Ministry of Education, Key Laboratory for Agricultural Products Procssing of Anhui Province, Hefei University of Technology, Hefei 230009, Anhui, PR China
| | - Shuyun Liu
- School of Food and Biological Engineering, Engineering Research Center of Bio-process of Ministry of Education, Key Laboratory for Agricultural Products Procssing of Anhui Province, Hefei University of Technology, Hefei 230009, Anhui, PR China
| | - Yingying Gu
- School of Food and Biological Engineering, Engineering Research Center of Bio-process of Ministry of Education, Key Laboratory for Agricultural Products Procssing of Anhui Province, Hefei University of Technology, Hefei 230009, Anhui, PR China
| | - Shudong He
- School of Food and Biological Engineering, Engineering Research Center of Bio-process of Ministry of Education, Key Laboratory for Agricultural Products Procssing of Anhui Province, Hefei University of Technology, Hefei 230009, Anhui, PR China.
| |
Collapse
|
5
|
Othón-Díaz ED, Fimbres-García JO, Flores-Sauceda M, Silva-Espinoza BA, López-Martínez LX, Bernal-Mercado AT, Ayala-Zavala JF. Antioxidants in Oak (Quercus sp.): Potential Application to Reduce Oxidative Rancidity in Foods. Antioxidants (Basel) 2023; 12:antiox12040861. [PMID: 37107236 PMCID: PMC10135015 DOI: 10.3390/antiox12040861] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/26/2023] [Accepted: 03/31/2023] [Indexed: 04/05/2023] Open
Abstract
This review explores the antioxidant properties of oak (Quercus sp.) extracts and their potential application in preventing oxidative rancidity in food products. Oxidative rancidity negatively impacts food quality, causing changes in color, odor, and flavor and reducing the shelf life of products. The use of natural antioxidants from plant sources, such as oak extracts, has gained increasing interest due to potential health concerns associated with synthetic antioxidants. Oak extracts contain various antioxidant compounds, including phenolic acids, flavonoids, and tannins, which contribute to their antioxidative capacity. This review discusses the chemical composition of oak extracts, their antioxidative activity in different food systems, and the safety and potential challenges related to their application in food preservation. The potential benefits and limitations of using oak extracts as an alternative to synthetic antioxidants are highlighted, and future research directions to optimize their application and determine their safety for human consumption are suggested.
Collapse
Affiliation(s)
- Elsa Daniela Othón-Díaz
- Centro de Investigación en Alimentación y Desarrollo, A.C, Carretera Gustavo Enrique Astiazarán Rosas 46, Hermosillo 83304, Sonora, Mexico
| | - Jorge O. Fimbres-García
- Centro de Investigación en Alimentación y Desarrollo, A.C, Carretera Gustavo Enrique Astiazarán Rosas 46, Hermosillo 83304, Sonora, Mexico
| | - Marcela Flores-Sauceda
- Centro de Investigación en Alimentación y Desarrollo, A.C, Carretera Gustavo Enrique Astiazarán Rosas 46, Hermosillo 83304, Sonora, Mexico
| | - Brenda A. Silva-Espinoza
- Centro de Investigación en Alimentación y Desarrollo, A.C, Carretera Gustavo Enrique Astiazarán Rosas 46, Hermosillo 83304, Sonora, Mexico
| | - Leticia X. López-Martínez
- Centro de Investigación en Alimentación y Desarrollo, A.C, Carretera Gustavo Enrique Astiazarán Rosas 46, Hermosillo 83304, Sonora, Mexico
| | - Ariadna T. Bernal-Mercado
- Departamento de Investigación y Posgrado en Alimentos, Universidad de Sonora, Blvd. Luis Encinas y Rosales S/N, Col. Centro, Hermosillo 83000, Sonora, Mexico
| | - Jesus F. Ayala-Zavala
- Centro de Investigación en Alimentación y Desarrollo, A.C, Carretera Gustavo Enrique Astiazarán Rosas 46, Hermosillo 83304, Sonora, Mexico
| |
Collapse
|
6
|
Bergamaschi M, Simoncini N, Spezzano VM, Ferri M, Tassoni A. Antioxidant and Sensory Properties of Raw and Cooked Pork Meat Burgers Formulated with Extract from Non-Compliant Green Coffee Beans. Foods 2023; 12:foods12061264. [PMID: 36981190 PMCID: PMC10047961 DOI: 10.3390/foods12061264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/08/2023] [Accepted: 03/12/2023] [Indexed: 03/19/2023] Open
Abstract
The effects of polyphenol-rich extract obtained from non-compliant defatted green coffee beans (dGCBs) on physicochemical and antioxidant properties, as well as on the sensory profile of vacuum-packed pork burgers stored at 4 °C for 14 days and after cooking were assessed. The dGCB extract obtained by means of supercritical water extraction was analyzed for its polyphenol profile, total phenolic content, radical scavenging, and ferric-reducing antioxidant activities (DPPH and FRAP), Fe2+-chelating capacity, and total iron. The most abundant polyphenol component observed in the dGCB extract was chlorogenic acid, and the alkaloid caffeine was also present. This extract showed antioxidant properties. Thereafter, five formulations of pork meat burgers with added NaCl (1%) were prepared; one without the antioxidant (negative control, C) and one with the use of a synthetic antioxidant (0.05% ascorbic acid = positive control, A), while the other three were supplemented with a different amount of dGCB extract (P15 = 0.15%; P30 = 0.30%; P60 = 0.60%). The addition of dGCB extract increased the antioxidant activity of the raw and cooked burgers and reduced the lipid oxidation of the cooked burgers (0.47, 0.21, and 0.20 vs. 1.28 and 0.55 mg MDA eq./Kg, for P15, P30, and P60 vs. C and A, respectively). No negative effects were observed on the meat’s color parameters and its stability during refrigerated storage and after cooking, nor on sensory attributes (color and aroma) for the lowest concentration of coffee extract. The results obtained indicate that 0.15% dGCB extract is a promising alternative to commercial synthetic antioxidants to improve the quality of refrigerated pork burgers.
Collapse
Affiliation(s)
- Monica Bergamaschi
- Dipartimento Carni, Stazione Sperimentale per l’Industria delle Conserve Alimentari, Viale Tanara 31/A, 43121 Parma, Italy; (N.S.); (V.M.S.)
- Correspondence: ; Tel.: +39-0521795234
| | - Nicoletta Simoncini
- Dipartimento Carni, Stazione Sperimentale per l’Industria delle Conserve Alimentari, Viale Tanara 31/A, 43121 Parma, Italy; (N.S.); (V.M.S.)
| | - Vincenzo Maria Spezzano
- Dipartimento Carni, Stazione Sperimentale per l’Industria delle Conserve Alimentari, Viale Tanara 31/A, 43121 Parma, Italy; (N.S.); (V.M.S.)
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Parco delle Scienze 27/A, 43124 Parma, Italy
| | - Maura Ferri
- Department of Biological, Geological and Environmental Sciences, Alma Mater Studiorum—University of Bologna, Via Irnerio 42, 40126 Bologna, Italy; (M.F.); (A.T.)
| | - Annalisa Tassoni
- Department of Biological, Geological and Environmental Sciences, Alma Mater Studiorum—University of Bologna, Via Irnerio 42, 40126 Bologna, Italy; (M.F.); (A.T.)
| |
Collapse
|
7
|
Sirgedaitė-Šėžienė V, Čėsnienė I, Leleikaitė G, Baliuckas V, Vaitiekūnaitė D. Phenolic and Antioxidant Compound Accumulation of Quercus robur Bark Diverges Based on Tree Genotype, Phenology and Extraction Method. Life (Basel) 2023; 13:life13030710. [PMID: 36983864 PMCID: PMC10051228 DOI: 10.3390/life13030710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 02/28/2023] [Accepted: 03/04/2023] [Indexed: 03/08/2023] Open
Abstract
Oak bark is a rich niche for beneficial bioactive compounds. It is known that the amount of the compounds found in plant tissues can depend on species, genotype, growth site, etc., but it is unclear whether oak phenology, i.e., late or early bud burst, can also influence the amount of phenols and antioxidants that can be extracted. We tested two Quercus robur populations expressing different phenology and five half-sib families in each population to see how phenology, genotype, as well as extrahent differences (75% methanol or water) can determine the total phenol, total flavonoid content, as well as antioxidant activity. Significant statistical differences were found between half-sib families of the same population, between populations representing different oak phenology and different extrahents used. We determined that the extraction of flavonoids was more favorable when using water. So was antioxidant activity using one of the indicators, when significant differences between extrahents were observed. Furthermore, in families where there was a significant difference, phenols showed better results when using methanol. Overall, late bud burst families exhibited higher levels in all parameters tested. Thus, we recommend that for further bioactive compound extraction, all these factors be noted.
Collapse
|
8
|
Effects of Cherry ( Prunus cerasus L.) Powder Addition on the Physicochemical Properties and Oxidation Stability of Jiangsu-Type Sausage during Refrigerated Storage. Foods 2022; 11:foods11223590. [PMID: 36429182 PMCID: PMC9689877 DOI: 10.3390/foods11223590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/04/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
Effects of different levels (1%, 3% and 5%) of cherry powder on the physiochemical properties and antioxidant activity of Jiangsu-type sausages were investigated at 4 °C for 30 days. The results show that the sensory evaluation values and physicochemical properties of the sausages had no significant differences compared to the control group when cherry powder addition was 1%, and the alcohols, aldehydes and esters were increased after the addition of cherry powder improved the flavor of sausages. However, higher concentration of cherry powder (3% and 5%) exerted adverse influences on sensory evaluation values and physicochemical properties of sausages compared with the control. The addition of cherry powder could better inhibit lipid and protein oxidation of sausages, and the cherry powder concentration has a positive correlation with its effect on the inhibition of lipid and protein oxidation. In addition, cherry powder could effectively control TVB-N values of sausages during chilled storage. All these results indicate that 1% cherry powder could not only guarantee the physicochemical properties of sausages, but also inhibited the oxidation of sausages during chilled storage.
Collapse
|
9
|
Timón M, Andrés AI, Sorrentino L, Cardenia V, Petrón MJ. Effect of Phenolic Compounds from Almond Skins Obtained by Water Extraction on Pork Patty Shelf Life. Antioxidants (Basel) 2022; 11:2175. [PMID: 36358547 PMCID: PMC9686502 DOI: 10.3390/antiox11112175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 12/24/2023] Open
Abstract
The extraction of phenols from almond skin using water has not been applied before. The purpose of this study was to obtain aqueous extracts from almond skin to be added to pork patties to prolong their shelf life. Four different varieties of almonds were studied and aqueous extracts were obtained. The antioxidant capacity and composition of phenol compounds of the extracts were determined. Results showed that the use of water produces extracts with phenol compounds and antioxidant capacity, with the Antoñeta variety presenting the best performance in terms of antioxidant behavior. The most abundant phenolic compounds identified were isorhamentin-3-O-rutinoside, catechin and protocatechuic acid, all of them had a hydrophilic character due to the -OH groups in their molecules. The effect of almond skin extracts (ALMOND) on the shelf life of pork patties was compared with the effects of a control without extract (CONTROL NEG) and a control with sodium ascorbate (CONTROL POS). Throughout storage, values of pH, weight loss, headspace composition, color, TBARs and psychrotrophic aerobic bacteria were studied. CONTROL POS samples showed the lowest lipid oxidation values in comparison to CONTROL NEG or ALMOND extract samples.
Collapse
Affiliation(s)
- Marisa Timón
- Food Technology, School of Agricultural Engineering, University of Extremadura, 06007 Badajoz, Spain
| | - Ana Isabel Andrés
- Food Technology, School of Agricultural Engineering, University of Extremadura, 06007 Badajoz, Spain
| | - Ludovico Sorrentino
- Department of Agricultural, Forest and Food Sciences, University of Turin, 10095 Grugliasco, TO, Italy
| | - Vladimiro Cardenia
- Department of Agricultural, Forest and Food Sciences, University of Turin, 10095 Grugliasco, TO, Italy
| | - María Jesús Petrón
- Food Technology, School of Agricultural Engineering, University of Extremadura, 06007 Badajoz, Spain
| |
Collapse
|
10
|
Ismail NA, Ab Aziz MF, Mohammad Rashedi IF. Antioxidant, physicochemical, and sensory properties of buffalo meat patties incorporated with roselle (Hibiscus sabdariffa L.), wolfberry (Lycium barbarum L.), and beetroot (Beta vulgaris L.) purées. INTERNATIONAL FOOD RESEARCH JOURNAL 2022. [DOI: 10.47836/ifrj.29.5.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The present work evaluated the antioxidant, physicochemical, and sensory properties of buffalo meat patties incorporated with 2% roselle (Hibiscus sabdariffa L.), wolfberry (Lycium barbarum L.), or beetroot (Beta vulgaris L.), and chill-stored (4°C) for 11 days. 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay, 2-thiobarbituric acid reactive substances (TBARS), shrinkage, cooking yield, water holding capacity, pH, colour, textural properties, and sensory evaluation of the patties were examined. Patties incorporated with roselle, wolfberry, and beetroot had increased scavenging activity, thus decreasing oxidative activity in the patties during storage. Cooking yield was improved in all treatments with significant decrease in pH in both cooked and uncooked roselle-incorporated patties. No changes were observed for the texture of all samples, while roselle-incorporated patties maintained the redness after the 11th day of storage. Sensory attributes of the modified patties were acceptable to all panellists. In conclusion, the incorporation of roselle in buffalo meat patties showed more beneficial effects than the other purées tested in improving the quality of the patties while maintaining their sensory properties.
Collapse
|
11
|
Śmiecińska K, Gugołek A, Kowalska D. Effects of Garlic ( Allium sativum L.) and Ramsons ( Allium ursinum L.) on Lipid Oxidation and the Microbiological Quality, Physicochemical Properties and Sensory Attributes of Rabbit Meat Burgers. Animals (Basel) 2022; 12:1905. [PMID: 35892554 PMCID: PMC9367434 DOI: 10.3390/ani12151905] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/22/2022] [Accepted: 07/25/2022] [Indexed: 11/16/2022] Open
Abstract
The aim of this study was to evaluate the quality of rabbit meat burgers with the addition of garlic (Allium Sativum L.) powder (G), ramsons (Allium ursinum L.) powder (R) or their combination (GR). The effects of additives on lipid oxidation, color parameters, microbiological quality and organoleptic properties of raw and oven-baked burgers were analyzed before and after refrigerated storage. Four meat formulations were prepared: control (C)-without additives, with the addition of G (0.35 g/100 g of meat), R (0.35 g/100 g of meat) and GR (0.35 g/100 g of meat each). The addition of GR induced an increase in pH and TBARS values in raw and oven-baked burgers. The pH of raw and oven-baked burgers was also affected by storage time (ST), and it was lower after 7 days of storage (ST7) than before storage (ST0). TBARS values were higher at ST7 only in raw burgers. The addition of R and GR decreased the values of color parameter L* (lightness) relative to G and C in raw and oven-baked burgers. The greatest changes in parameter a* (redness) were observed after the addition of R and GR, both before and after heat treatment. The values of parameter b* (yellowness) increased after the addition of R, GR (raw and oven-baked burgers) and G (raw burgers). In raw burgers, color saturation (C*) was higher in groups R and GR than in groups C and G, and the value of hue angle (h°) was lower in burgers with GR than in those with G and R. In oven-baked burgers, the values of C* and h° were lower in group GR than in the remaining treatments (C, G and R). In raw burgers, ST had no effect on the values of L*, whereas the values of parameters a*, b*, C* and h° were lower at ST7 than at ST0. In oven-baked burgers, the values of L* were higher at ST0 than at ST7, and the values of a*, b*, C* and h° were higher at ST7 than at ST0. The tested additives had no influence on the presence of off-odors in raw burgers. This parameter was affected by ST, and its value was lower at ST0 than at ST7. The appearance and overall acceptability of burgers were affected only by additives, and raw burgers containing GR received the lowest scores. After heat treatment, control burgers scored lowest for all attributes, whereas burgers with the addition of R and GR received the highest scores. The analyzed additives had no effect on the growth of Enterobacteriacea, Pseudomonas spp., lactic acid bacteria or total aerobic psychrotrophic bacteria. However, the counts of all identified bacteria increased at ST7. In conclusion, garlic powder and ramsons powder can be added to rabbit meat burgers to extend their shelf life and improve their eating quality.
Collapse
Affiliation(s)
- Katarzyna Śmiecińska
- Department of Commodity Science and Processing of Animal Raw Materials, University of Warmia and Mazury in Olsztyn, Oczapowskiego 5, 10-719 Olsztyn, Poland
| | - Andrzej Gugołek
- Department of Fur-Bearing Animal Breeding and Game Management, University of Warmia and Mazury in Olsztyn, Oczapowskiego 5, 10-719 Olsztyn, Poland;
| | - Dorota Kowalska
- Department of Small Livestock Breeding, National Research Institute of Animal Production, Balice, 32-083 Kraków, Poland;
| |
Collapse
|
12
|
Awad AM, Kumar P, Ismail‐Fitry MR, Jusoh S, Ab Aziz MF, Sazili AQ. Overview of plant extracts as natural preservatives in meat. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16796] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
| | - Pavan Kumar
- Halal Products Research Institute Universiti Putra Malaysia UPM Serdang Malaysia
- Department of Livestock Products Technology College of Veterinary Science Guru Angad Dev Veterinary and Animal Sciences University Ludhiana India
| | - Mohammad Rashedi Ismail‐Fitry
- Department of Food Technology, Faculty of Food Science and Technology Universiti Putra Malaysia UPM Serdang Malaysia
| | - Shokri Jusoh
- Department of Animal Science, Faculty of Agriculture Universiti Putra Malaysia UPM Serdang Malaysia
| | - Muhamad Faris Ab Aziz
- Department of Animal Science, Faculty of Agriculture Universiti Putra Malaysia UPM Serdang Malaysia
| | - Awis Qurni Sazili
- Halal Products Research Institute Universiti Putra Malaysia UPM Serdang Malaysia
- Department of Animal Science, Faculty of Agriculture Universiti Putra Malaysia UPM Serdang Malaysia
- Halal Product Research Institute Universiti Putra Malaysia UPM Serdang Malaysia
| |
Collapse
|
13
|
Zahid MA, Eom JU, Parvin R, Seo JK, Yang HS. Changes in Quality Traits and Oxidation Stability of Syzygium aromaticum Extract-Added Cooked Ground Beef during Frozen Storage. Antioxidants (Basel) 2022; 11:antiox11030534. [PMID: 35326184 PMCID: PMC8944691 DOI: 10.3390/antiox11030534] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/05/2022] [Accepted: 03/07/2022] [Indexed: 12/10/2022] Open
Abstract
This study was accomplished by comparing the oxidative stability of (0.1%) Syzygium aromaticum extract (SAE) and (0.02%) butylated hydroxytoluene (BHT)-added cooked ground beef with an antioxidant free-control sample during frozen storage. All samples showed a non-significant (p > 0.05) effect on pH, thawing loss, redness, and yellowness values during storage. Incorporation of BHT and SAE led to a significant (p < 0.05) reduction in thiobarbituric acid-reactive substances (TBARS) and volatile levels as an active antioxidant. The generation of less volatiles found in SAE-treated samples up to 6 months (p < 0.05) of storage. Therefore, SAE-protected ground beef can lead to lower lightness, lipid oxidation, and volatile compounds levels after cooking compared with control and BHT samples.
Collapse
Affiliation(s)
- Mohammad Ashrafuzzaman Zahid
- Department of Nutrition and Food Technology, Jashore University of Science and Technology, Jashore 7408, Bangladesh; (M.A.Z.); (R.P.)
| | - Jeong-Uk Eom
- Division of Applied Life Science (BK21Four), Gyeongsang National University, 501 Jinju-daero, Jinju 52828, Korea; (J.-U.E.); (J.-K.S.)
| | - Rashida Parvin
- Department of Nutrition and Food Technology, Jashore University of Science and Technology, Jashore 7408, Bangladesh; (M.A.Z.); (R.P.)
- Division of Applied Life Science (BK21Four), Gyeongsang National University, 501 Jinju-daero, Jinju 52828, Korea; (J.-U.E.); (J.-K.S.)
| | - Jin-Kyu Seo
- Division of Applied Life Science (BK21Four), Gyeongsang National University, 501 Jinju-daero, Jinju 52828, Korea; (J.-U.E.); (J.-K.S.)
| | - Han-Sul Yang
- Division of Applied Life Science (BK21Four), Gyeongsang National University, 501 Jinju-daero, Jinju 52828, Korea; (J.-U.E.); (J.-K.S.)
- Institute of Agriculture and Life Science, Gyeongsang National University, 501 Jinju-daero, Jinju 52828, Korea
- Correspondence: ; Tel.: +82-55-772-1948; Fax: +82-55-772-1949
| |
Collapse
|
14
|
Babaoğlu AS, Ünal K, Dilek NM, Poçan HB, Karakaya M. Antioxidant and antimicrobial effects of blackberry, black chokeberry, blueberry, and red currant pomace extracts on beef patties subject to refrigerated storage. Meat Sci 2022; 187:108765. [DOI: 10.1016/j.meatsci.2022.108765] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 02/04/2022] [Accepted: 02/06/2022] [Indexed: 01/08/2023]
|
15
|
Alarcón M, Pérez-Coello MS, Díaz-Maroto MC, Alañón ME, Soriano A. Effect of winery by-product extracts on oxidative stability, volatile organic compounds and aroma profile of cooked pork model systems during chilled storage. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112260] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
16
|
Wang Z, He Z, Zhang D, Chen X, Li H. Effects of purslane extract on the quality indices of rabbit meat patties under chilled storage. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15644] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Zefu Wang
- College of Food Science Southwest University Chongqing China
| | - Zhifei He
- College of Food Science Southwest University Chongqing China
- Chongqing Engineering Research Center of Regional Food Chongqing China
| | - Dong Zhang
- College of Food Science Southwest University Chongqing China
| | - Xiaosi Chen
- College of Food Science Southwest University Chongqing China
| | - Hongjun Li
- College of Food Science Southwest University Chongqing China
- Chongqing Engineering Research Center of Regional Food Chongqing China
| |
Collapse
|
17
|
Alarcón M, Pérez-Coello MS, Díaz-Maroto MC, Alañón ME, García-Ruiz A, Soriano A. Inactive dry yeast to improve the oxidative stability of Spanish dry-fermented sausage “salchichón”. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111385] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
18
|
Ricci A, Bertani G, Maoloni A, Bernini V, Levante A, Neviani E, Lazzi C. Antimicrobial Activity of Fermented Vegetable Byproduct Extracts for Food Applications. Foods 2021; 10:foods10051092. [PMID: 34069051 PMCID: PMC8156661 DOI: 10.3390/foods10051092] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/05/2021] [Accepted: 05/11/2021] [Indexed: 12/17/2022] Open
Abstract
To prevent foodborne diseases and extend shelf-life, antimicrobial agents may be used in food to inhibit the growth of undesired microorganisms. In addition to the prevention of foodborne diseases, another huge concern of our time is the recovery of agri-food byproducts. In compliance with these challenges, the aim of this work was to more deeply investigate the antimicrobial activity of extracts derived from fermented tomato, melon, and carrot byproducts, previously studied. All the fermented extracts had antimicrobial activity both in vitro and in foodstuff, showing even higher activity than commercial preservatives, tested for comparison against spoilage microorganisms and foodborne pathogens such as Salmonella spp., L. monocytogenes, and B. cereus. These promising results highlight an unstudied aspect for the production of innovative natural preservatives, exploitable to improve the safety and shelf-life of various categories of foodstuff.
Collapse
Affiliation(s)
- Annalisa Ricci
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 49/A, 43124 Parma, Italy; (A.R.); (G.B.); (A.L.); (E.N.); (C.L.)
| | - Gaia Bertani
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 49/A, 43124 Parma, Italy; (A.R.); (G.B.); (A.L.); (E.N.); (C.L.)
| | - Antonietta Maoloni
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy;
| | - Valentina Bernini
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 49/A, 43124 Parma, Italy; (A.R.); (G.B.); (A.L.); (E.N.); (C.L.)
- SITEIA.PARMA—Centro Interdipartimentale sulla Sicurezza, Tecnologie e Innovazione Agroalimentare, University of Parma, Tecnopolo Pad. 33 Campus Universitario, 43124 Parma, Italy
- Correspondence:
| | - Alessia Levante
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 49/A, 43124 Parma, Italy; (A.R.); (G.B.); (A.L.); (E.N.); (C.L.)
| | - Erasmo Neviani
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 49/A, 43124 Parma, Italy; (A.R.); (G.B.); (A.L.); (E.N.); (C.L.)
- SITEIA.PARMA—Centro Interdipartimentale sulla Sicurezza, Tecnologie e Innovazione Agroalimentare, University of Parma, Tecnopolo Pad. 33 Campus Universitario, 43124 Parma, Italy
| | - Camilla Lazzi
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 49/A, 43124 Parma, Italy; (A.R.); (G.B.); (A.L.); (E.N.); (C.L.)
- SITEIA.PARMA—Centro Interdipartimentale sulla Sicurezza, Tecnologie e Innovazione Agroalimentare, University of Parma, Tecnopolo Pad. 33 Campus Universitario, 43124 Parma, Italy
| |
Collapse
|
19
|
Plant Extracts Obtained with Green Solvents as Natural Antioxidants in Fresh Meat Products. Antioxidants (Basel) 2021; 10:antiox10020181. [PMID: 33513904 PMCID: PMC7912489 DOI: 10.3390/antiox10020181] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/21/2021] [Accepted: 01/23/2021] [Indexed: 12/23/2022] Open
Abstract
Plants are rich in bioactive compounds (BACs), mainly polyphenols, which are valuable choices to replace synthetic antioxidants in meat products. These natural antioxidants from plants, in the form of extracts and essential oils (EOs), have been obtained from different sources such as fruits (dragon fruit, guarana, pomegranate), vegetables, (cabbage, onion), herbs, and spices (epazote, ginger, rosemary, sage, thyme, turmeric, winter savory) by several extraction processes. However, in the context of current directives there is a notable incentive for “green” solvents to replace organic ones and conventional techniques, in order to avoid harm to the environment, operator, and consumer health. In addition, the recycling of co-products from the processing of these plant materials allow us to obtain valuable BACs from under-exploited materials, contributing to the revalorization of these wastes. The resulting extracts allow us to maintain the quality of meat products, exhibiting similar or better antioxidant properties compared to those shown by synthetic ones. Their incorporation in fresh meat products would maintain the oxidative stability, stabilizing colour parameters, decreasing the formation of metmyoglobin, lipid, and protein oxidation and the generation of lipid-derived volatile compounds, without affecting sensory attributes. In addition, these novel ingredients contribute to improve both technological and functional characteristics, thus diversifying the offer of so-called “wellness foods”. In this review, the application of plant extracts as natural antioxidants in several fresh meat products is presented, showing their efficacy as scavenging radicals and imparting additional health benefits.
Collapse
|
20
|
Alarcón M, López-Viñas M, Pérez-Coello MS, Díaz-Maroto MC, Alañón ME, Soriano A. Effect of Wine Lees as Alternative Antioxidants on Physicochemical and Sensorial Composition of Deer Burgers Stored during Chilled Storage. Antioxidants (Basel) 2020; 9:antiox9080687. [PMID: 32748839 PMCID: PMC7463938 DOI: 10.3390/antiox9080687] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 07/27/2020] [Accepted: 07/30/2020] [Indexed: 01/09/2023] Open
Abstract
Wine lees from two grape varieties (Vitis vinifera L. Cv. “verdejo” and “palomino”) were studied as natural preservatives in deer burgers compared with the traditional additive sodium ascorbate. Burgers packed in modified atmosphere packaging and stored in refrigeration were analyzed at 0, 4, 8, and 12 days. The addition of lees (2.5% and 5%) produced a reduction of pH and variations in color (L* and a*), higher antioxidant capacity and phenolic content, lower lipid and protein oxidation, and the inhibition of psychotrophic aerobic bacteria and enterobacteria during the storage time. Likewise, burgers with lees kept the aldehydes concentration (volatile compounds indicators of lipid oxidation) over storage time, while esters, acids, and other compounds, previously present in lees, increased. These changes provided new odor and taste attributes like wine, bakery, and raisin notes. Therefore, the addition of wine lees had an antioxidant and antimicrobial effect and produced new sensory attributes in deer burgers.
Collapse
Affiliation(s)
- Marina Alarcón
- Area of Food Technology, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, Avda. Camilo José Cela 10, 13071 Ciudad Real, Spain; (M.A.); (M.L.-V.); (M.S.P.-C.)
- Regional Institute for Applied Scientific Research (IRICA), University of Castilla-La Mancha, Avda. Camilo José Cela 10, 13071 Ciudad Real, Spain;
| | - Manuel López-Viñas
- Area of Food Technology, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, Avda. Camilo José Cela 10, 13071 Ciudad Real, Spain; (M.A.); (M.L.-V.); (M.S.P.-C.)
| | - María Soledad Pérez-Coello
- Area of Food Technology, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, Avda. Camilo José Cela 10, 13071 Ciudad Real, Spain; (M.A.); (M.L.-V.); (M.S.P.-C.)
- Regional Institute for Applied Scientific Research (IRICA), University of Castilla-La Mancha, Avda. Camilo José Cela 10, 13071 Ciudad Real, Spain;
| | - María Consuelo Díaz-Maroto
- Regional Institute for Applied Scientific Research (IRICA), University of Castilla-La Mancha, Avda. Camilo José Cela 10, 13071 Ciudad Real, Spain;
| | - María Elena Alañón
- Area of Food Technology, Higher Technical School of Agronomic Engineering, University of Castilla-La Mancha, Ronda de Calatrava 7, 13071 Ciudad Real, Spain;
| | - Almudena Soriano
- Area of Food Technology, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, Avda. Camilo José Cela 10, 13071 Ciudad Real, Spain; (M.A.); (M.L.-V.); (M.S.P.-C.)
- Regional Institute for Applied Scientific Research (IRICA), University of Castilla-La Mancha, Avda. Camilo José Cela 10, 13071 Ciudad Real, Spain;
- Correspondence: ; Tel.: +34-926-295300 (ext. 3437)
| |
Collapse
|
21
|
Zahid MA, Seo JK, Parvin R, Ko J, Park JY, Yang HS. Assessment of the Stability of Fresh Beef Patties with the Addition of Clove Extract during Frozen Storage. Food Sci Anim Resour 2020; 40:601-612. [PMID: 32734267 PMCID: PMC7372992 DOI: 10.5851/kosfa.2020.e37] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/23/2020] [Accepted: 05/07/2020] [Indexed: 11/06/2022] Open
Abstract
The study assessed the stability for fresh beef patties with the inclusion of clove extract (CE) as a natural antioxidant in comparison to butylated hydroxytoluene (BHT) and ascorbic acid (AA) at frozen storage. Four different patties were made dependent on the added antioxidants: control (added no antioxidants), added with 0.02% BHT, 0.05% AA, and 0.1% CE. Inclusion of BHT, AA, and CE resulted in a significant reduction of thiobarbituric acid reactive substances (TBARS) and hue angle (h°) value and increase of redness (CIE a*) and chroma (C*) values (p<0.05). BHT, AA, and CE were observed effectively to retard lipid oxidation and increase color stability. BHT and AA revealed significantly (p<0.05) higher thiol content than the control and CE. However, the reduction percentage for thiol content in CE treated patties was lower than the control and AA-treated patties from first to last time of storage. Moreover, inclusion of AA and CE led to significantly (p<0.05) increased heme iron content when compared to BHT and the control. In conclusion, CE can replace the application of AA and BHT while improving lipid stability, heme iron content, and color stableness of fresh beef patties throughout frozen storage.
Collapse
Affiliation(s)
- Md Ashrafuzzaman Zahid
- Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju 52828, Korea.,Department of Nutrition and Food Technology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Jin-Kyu Seo
- Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju 52828, Korea.,Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Korea
| | - Rashida Parvin
- Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju 52828, Korea.,Department of Nutrition and Food Technology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Jonghyun Ko
- Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju 52828, Korea
| | - Jun-Young Park
- Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju 52828, Korea
| | - Han-Sul Yang
- Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju 52828, Korea.,Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Korea.,Department of Agriculture, University of Arkansas at Pine Bluff, AR 71601, USA
| |
Collapse
|
22
|
Influence of Reheating Methods and Frozen Storage on Physicochemical Characteristics and Warmed-Over Flavor of Nutmeg Extract-Enriched Precooked Beef Meatballs. Antioxidants (Basel) 2020; 9:antiox9080670. [PMID: 32727026 PMCID: PMC7465611 DOI: 10.3390/antiox9080670] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/06/2020] [Accepted: 07/10/2020] [Indexed: 11/17/2022] Open
Abstract
The effects of convection-oven precooking, frozen storage (−18 °C/ two months) and four different reheating methods—namely, boiling, pan-roasting, convection oven and microwave oven on pH, color, texture, antioxidant activity and warmed-over flavor of beef meatballs were investigated. In this study, four kinds of beef meatballs were prepared: with added butylated hydroxyl toluene (0.02% BHT, M1); with nutmeg extract (0.02%, M2); with nutmeg powder (0.02%, M3) and control (no antioxidant). Addition of (0.02%) nutmeg extracts in beef meatballs M2 resulted in a significant (p < 0.05) decrease in lipid and protein oxidation, hardness and gumminess values after convection oven precooking. Again, M2 reheated by microwave oven significantly (p < 0.05) reduced cooking loss, gumminess, springiness, rancid flavor, saltiness and burnt taste and increased oxidative stability, redness and adhesiveness with the chewiness intensity and overall acceptability compared to control, M1 and M3. Conclusively, the addition of nutmeg extracts (0.02%) as a natural plant antioxidant to precooked beef meatballs can result in reduced lipid and protein oxidation levels, stabilized color and texture values and improved overall acceptance after reheated by microwave oven during two months of frozen storage.
Collapse
|
23
|
Olszewska MA, Gędas A, Simões M. Antimicrobial polyphenol-rich extracts: Applications and limitations in the food industry. Food Res Int 2020; 134:109214. [PMID: 32517896 DOI: 10.1016/j.foodres.2020.109214] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 03/31/2020] [Accepted: 04/01/2020] [Indexed: 02/07/2023]
Abstract
One of the common ways to prevent food spoilage throughout product's shelf life is by using artificial/synthetic preservatives. However, the growing negative perception of consumers over synthetic preservatives has encouraged the food industry to consider their natural alternatives. Plant extracts, increasingly recognized as consumer-friendly, represent a valuable source of active compounds, mostly polyphenols, with potent antimicrobial and antibiofilm activities. Hence, this article focuses mainly on the antimicrobial activity of plant-based polyphenol-rich extracts as well as on their potential use and limitations in the food industry. Some new trends such as antimicrobial food packaging combined with plant extracts and photodynamic inactivation (PDI) combined with a natural photosensitiser, curcumin, are discussed as well.
Collapse
Affiliation(s)
- Magdalena A Olszewska
- Department of Industrial and Food Microbiology, Faculty of Food Science, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland.
| | - Astrid Gędas
- Department of Industrial and Food Microbiology, Faculty of Food Science, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Manuel Simões
- Laboratory for Process Engineering, Environment, Biotechnology and Energy (LEPABE), Department of Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal.
| |
Collapse
|
24
|
Zahid MA, Choi JY, Seo JK, Parvin R, Ko J, Yang HS. Effects of clove extract on oxidative stability and sensory attributes in cooked beef patties at refrigerated storage. Meat Sci 2020; 161:107972. [DOI: 10.1016/j.meatsci.2019.107972] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 10/17/2019] [Accepted: 10/17/2019] [Indexed: 11/25/2022]
|
25
|
Bajić M, Ročnik T, Oberlintner A, Scognamiglio F, Novak U, Likozar B. Natural plant extracts as active components in chitosan-based films: A comparative study. Food Packag Shelf Life 2019. [DOI: 10.1016/j.fpsl.2019.100365] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
26
|
Lee MA, Kim TK, Hwang KE, Choi YJ, Park SH, Kim CJ, Choi YS. Kimchi extracts as inhibitors of colour deterioration and lipid oxidation in raw ground pork meat during refrigerated storage. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:2735-2742. [PMID: 30350316 DOI: 10.1002/jsfa.9441] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 09/05/2018] [Accepted: 10/15/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Kimchi is a Korean, traditional fermented food made from Korean cabbage, radish, fermented jeotgal, ginger, garlic, and red pepper powder. It is a good source of natural antioxidants such as phenolic compounds, flavonoids, vitamins, and carotenoids. In this study, the antioxidant effects of various kimchi extracts on raw ground pork during refrigerated storage were investigated. Raw ground pork samples were treated with ascorbic acid, butylated hydroxyl toluene, baechu kimchi extract (BKE), gat kimchi extract (GKE), puchu kimchi extract (PKE), and white kimchi extract (WKE) and compared with raw ground pork without antioxidant treatment (NC). RESULTS Increased metmyoglobin (MetMb), thiobarbituric acid reacting substance (TBARS), and total bacterial counts (TBC) were observed in all meat samples after storage, whereas pH, lightness, and redness values tended to decrease with increased storage time. All treated samples had lower TBARS and MetMb values and TBC compared to the control samples. Various kimchi ethanol extracts protected raw ground pork from lipid oxidation. The most potent antioxidant was GKE, whereas WKE was the weakest. CONCLUSIONS This study suggests that the tested extracts, especially kimchi, have potential as natural preservatives to reduce colour degradation, lipid oxidation, and bacterial count in raw ground pork meat. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Mi-Ai Lee
- World Institute of Kimchi an Annex of Korea Food Research Institute, Gwanju, Republic of Korea
| | - Tae-Kyung Kim
- Food Processing Research Center, Korean Food Research Institute, Wanju, Republic of Korea
| | - Ko-Eun Hwang
- Department of Animal Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Yun-Jeong Choi
- World Institute of Kimchi an Annex of Korea Food Research Institute, Gwanju, Republic of Korea
| | - Sung-Hee Park
- World Institute of Kimchi an Annex of Korea Food Research Institute, Gwanju, Republic of Korea
| | - Cheon-Jei Kim
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, Republic of Korea
| | - Yun-Sang Choi
- Food Processing Research Center, Korean Food Research Institute, Wanju, Republic of Korea
| |
Collapse
|