1
|
Elbouzidi A, Taibi M, Baraich A, Haddou M, Mothana RA, Alsufyani SA, Darwish HW, Molinié R, Fontaine JX, Fliniaux O, Mesnard F, Addi M. Elicitor-driven enhancement of phenolic compounds in geranium callus cultures: phytochemical profiling via LC-MS/MS and biological activities. Front Chem 2025; 13:1537877. [PMID: 40124709 PMCID: PMC11925866 DOI: 10.3389/fchem.2025.1537877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Accepted: 02/10/2025] [Indexed: 03/25/2025] Open
Abstract
This research explores the effects of chitosan (CHT) and salicylic acid (SA) as elicitors on the production of phenolic and flavonoid compounds in Pelargonium graveolens Hort. Callus cultures on solid media, aiming to enhance antioxidant, anti-tyrosinase, and anti-elastase properties. Calli were treated with various concentrations of CHT (25, 50, 75, and 100 mg/mL) and SA (25, 50, 75, and 100 µM), and their phytochemical profiles were examined through LC-MS/MS analysis. The findings indicated that salicylic acid (SA) and chitosan (CHT) notably enhanced the levels of total phenolic content (TPC) and total flavonoid content (TFC). The greatest increase in TPC was seen in cultures treated with 25 µM of salicylic acid (SA2), recording 336.80 ± 8.35 mg/100 g dry weight (DW), and in cultures treated with 100 mg/mL of chitosan (CHT5), which showed 325.74 ± 7.81 mg/100 g DW. Among individual phenolics, kaempferol showed a remarkable increase under SA2 (192.82 ± 17.99 mg/100 g DW) compared to the control (103.68 ± 5.00 mg/100 g DW), and CHT5 treatment (119.68 ± 12.01 mg/100 g DW). Additionally, rutin accumulation peaked at 30.64 ± 3.00 mg/100 g DW under SA2 treatment. Antioxidant activities, measured by DPPH and TAC assays, were also enhanced, with SA2 and CHT5 treatments showing significant improvement over the control. The SA2-elicited cultures exhibited superior anti-tyrosinase and anti-elastase activities, with IC50 values of 51.43 ± 1.31 μg/mL, 35.42 ± 4.42 μg/mL, and 31.84 ± 0.60 μg/mL, respectively. These findings suggest that elicitors effectively boost the bioactive compound production in P. graveolens calli, and subsequently the biological activity, highlighting their potential in developing natural skincare products with antioxidant and anti-aging benefits.
Collapse
Affiliation(s)
- Amine Elbouzidi
- Laboratoire d’Amélioration des Productions Agricoles, Biotechnologie et Environnement (LAPABE), Faculté des Sciences, Université Mohammed Premier, Oujda, Morocco
| | - Mohamed Taibi
- Laboratoire d’Amélioration des Productions Agricoles, Biotechnologie et Environnement (LAPABE), Faculté des Sciences, Université Mohammed Premier, Oujda, Morocco
| | - Abdellah Baraich
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, Mohammed First University, Oujda, Morocco
| | - Mounir Haddou
- Laboratoire d’Amélioration des Productions Agricoles, Biotechnologie et Environnement (LAPABE), Faculté des Sciences, Université Mohammed Premier, Oujda, Morocco
| | - Ramzi A. Mothana
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Sami A. Alsufyani
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Hany W. Darwish
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Roland Molinié
- BIOPI-BioEcoAgro UMRT 1158 INRAE Université de Picardie Jules Verne, Amiens, France
| | - Jean-Xavier Fontaine
- BIOPI-BioEcoAgro UMRT 1158 INRAE Université de Picardie Jules Verne, Amiens, France
| | - Ophélie Fliniaux
- BIOPI-BioEcoAgro UMRT 1158 INRAE Université de Picardie Jules Verne, Amiens, France
| | - François Mesnard
- BIOPI-BioEcoAgro UMRT 1158 INRAE Université de Picardie Jules Verne, Amiens, France
| | - Mohamed Addi
- Laboratoire d’Amélioration des Productions Agricoles, Biotechnologie et Environnement (LAPABE), Faculté des Sciences, Université Mohammed Premier, Oujda, Morocco
| |
Collapse
|
2
|
Sun Y, Wang X, Huang Z, Zhao X, Qiao L, Wu C, Xue Z, Kou X. Phenylpropanoids for the control of fungal diseases of postharvest fruit. PLANT MOLECULAR BIOLOGY 2025; 115:39. [PMID: 40021523 DOI: 10.1007/s11103-025-01568-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 02/13/2025] [Indexed: 03/03/2025]
Abstract
In recent years, there has been a growing interest in developing greener and safer substances for the control of postharvest fungal diseases of fruit. Secondary metabolic pathways play an important role in plant defense responses, and the phenylpropanoid metabolic pathway is one of the most important secondary metabolic pathways in plant defense. More and more studies have shown that exogenous phenylpropanoids treatments can inhibit postharvest fungal diseases. On the one hand, these biologically active phenylpropanoids are fungistatic and can act directly on the fungal cells infesting the postharvest fruit to inhibit spore germination and mycelial growth. On the other hand, phenylpropanoids treatment can improve plant resistance. In this review, we summarize recent achievements in the mechanisms and applications of phenylpropanoids, including cinnamic acid, p-coumaric acid and esters, caffeic acid, ferulic acid, and chlorogenic acid, in the inhibition of fungal pathogens and the reduction of postharvest losses. In addition, we propose further research hotspots and development directions based on combining nanomaterials and biotechnology.
Collapse
Affiliation(s)
- Yijie Sun
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Xiaohan Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Zhengyu Huang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Xiaoyang Zhao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Linxiang Qiao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Caie Wu
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Zhaohui Xue
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.
| | - Xiaohong Kou
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
3
|
Guarnieri A, Triunfo M, Ianniciello D, Tedesco F, Salvia R, Scieuzo C, Schmitt E, Capece A, Falabella P. Insect-derived chitosan, a biopolymer for the increased shelf life of white and red grapes. Int J Biol Macromol 2024; 275:133149. [PMID: 38945705 DOI: 10.1016/j.ijbiomac.2024.133149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/05/2024] [Accepted: 06/12/2024] [Indexed: 07/02/2024]
Abstract
Post-harvest water loss and microbial infections are the root cause of the rapid deterioration of fresh fruit after the picking process, with both environmental and economic implications. Therefore, it is crucial to find solutions that can increase the shelf life of fresh fruits. For this purpose, edible coatings, naturally derived and non-synthetic, are acknowledged as a safe strategy. Among polymeric coatings, chitosan is one of the most effective. In this work, this biopolymer, produced from chitin extracted from Hermetia illucens, an alternative and more sustainable source than crustaceans (the commercial one), was exploited to extend the shelf life of white and red grapes. Chitosan from H. illucens pupal exuviae, at 0.5 % and 1 % concentrations, was applied on both grapes, which were then stored at room temperature or 4 °C. The study of chemical-physical parameters such as weight loss, Total Soluble Solids and pH, demonstrated the effectiveness of the biopolymer, even better than crustacean chitosan. Moreover, the analysis of nutraceutical properties has demonstrated that this natural edible coating improves the quality of grapes, with beneficial effects for human health. The obtained results, therefore, confirmed the viability of using insect-chitosan as an alternative to crustaceans for the preservation of fresh food.
Collapse
Affiliation(s)
- Anna Guarnieri
- Department of Sciences, University of Basilicata, Via dell'Ateneo Lucano 10, 85100 Potenza, Italy
| | - Micaela Triunfo
- Department of Sciences, University of Basilicata, Via dell'Ateneo Lucano 10, 85100 Potenza, Italy
| | - Dolores Ianniciello
- Department of Sciences, University of Basilicata, Via dell'Ateneo Lucano 10, 85100 Potenza, Italy
| | - Francesco Tedesco
- School of Agricultural, Forestry, Food and Environmental Sciences, University of Basilicata, Via dell'Ateneo Lucano 10, 85100 Potenza, Italy
| | - Rosanna Salvia
- Department of Sciences, University of Basilicata, Via dell'Ateneo Lucano 10, 85100 Potenza, Italy; Spinoff XFlies s.r.l, University of Basilicata, Via dell'Ateneo Lucano 10, 85100 Potenza, Italy.
| | - Carmen Scieuzo
- Department of Sciences, University of Basilicata, Via dell'Ateneo Lucano 10, 85100 Potenza, Italy; Spinoff XFlies s.r.l, University of Basilicata, Via dell'Ateneo Lucano 10, 85100 Potenza, Italy
| | - Eric Schmitt
- Protix B.V., Industriestaat 3, NC 5107 Dongen, the Netherlands
| | - Angela Capece
- School of Agricultural, Forestry, Food and Environmental Sciences, University of Basilicata, Via dell'Ateneo Lucano 10, 85100 Potenza, Italy
| | - Patrizia Falabella
- Department of Sciences, University of Basilicata, Via dell'Ateneo Lucano 10, 85100 Potenza, Italy; Spinoff XFlies s.r.l, University of Basilicata, Via dell'Ateneo Lucano 10, 85100 Potenza, Italy.
| |
Collapse
|
4
|
Allam E, El-Darier S, Ghattass Z, Fakhry A, Elghobashy RM. Application of chitosan nanopriming on plant growth and secondary metabolites of Pancratium maritimum L. BMC PLANT BIOLOGY 2024; 24:466. [PMID: 38807068 PMCID: PMC11131174 DOI: 10.1186/s12870-024-05148-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 05/14/2024] [Indexed: 05/30/2024]
Abstract
BACKGROUND Nanotechnology has demonstrated its vital significance in all aspects of daily life. Our research was conducted to estimate the potential of primed seed with chitosan nanoparticles in seed growth and yield by inducing plant secondary metabolism of Pancratium maritimum L. one of the important medicinal plants. Petri dish and pot experiments were carried out. Seeds of Pancratium maritimum L. were soaked in Nano solution (0.1, 0.5, 1 mg/ ml) for 4, 8, 12 h. Germination parameters (germination percentage, germination velocity, speed of germination, germination energy, germination index, mean germination time, seedling shoot and root length, shoot root ratio, seedling vigor index, plant biomass and water content), alkaloids and antioxidant activity of Pancratium maritimum L. were recorded and compared between coated and uncoated seeds. RESULTS Our results exhibited that chitosan nanopriming had a positive effect on some growth parameters, while it fluctuated on others. However, the data showed that most germination parameters were significantly affected in coated seeds compared to uncoated seeds. GC-MS analysis of Pancratium maritimum L. with different nanopriming treatments showed that the quantity of alkaloids decreased, but the amount of pancratistatin, lycorine and antioxidant content increased compared with the control. CONCLUSIONS Applying chitosan nanoparticles in priming seeds might be a simple and effective way to improve the quantity of secondary metabolites of Pancratium maritimum L. valuable medicinal plant.
Collapse
Affiliation(s)
- Eman Allam
- Institute of Graduate Studies & Research, Alexandria University, Alexandria, Egypt
| | - Salama El-Darier
- Botany and Microbiology Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Zekry Ghattass
- Institute of Graduate Studies & Research, Alexandria University, Alexandria, Egypt
| | - Amal Fakhry
- Botany and Microbiology Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Roufaida M Elghobashy
- Biology and Geology Department, Faculty of Education, Alexandria University, Alexandria, Egypt.
| |
Collapse
|
5
|
Guo L, Liang K, Huang X, Mai W, Duan X, Wu F. Morin Treatment Delays the Ripening and Senescence of Postharvest Mango Fruits. Foods 2023; 12:4251. [PMID: 38231649 DOI: 10.3390/foods12234251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/18/2023] [Accepted: 11/22/2023] [Indexed: 01/19/2024] Open
Abstract
A 0.005% and 0.01% morin treatment was applied to treat mango fruits stored under ambient conditions (25 ± 1 °C) with 85-90% relative humidity, and the effects on quality indexes, enzyme activity related to antioxidation and cell wall degradation, and gene expressions involved in ripening and senescence were explored. The results indicate that a 0.01% morin application effectively delayed fruit softening and yellowing and sustained the nutritional quality. After 12 days of storage, the contents of soluble sugar and carotenoid in the treatment groups were 68.54 mg/g and 11.20 mg/100 g, respectively, lower than those in control, while the vitamin C content in the treatment groups was 0.58 mg/g, higher than that in control. Moreover, a morin application successively enhanced the activity of superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD), but reduced the activity of polygalacturonase (PG) and pectin lyase (PL). Finally, real-time PCR and correlation analysis suggested that morin downregulated the ethylene biosynthesis (ACS and, ACO) and signal transduction (ETR1, ERS1, EIN2, and ERF1) genes, which is positively associated with softening enzymes (LOX, EXP, βGal, and EG), carotenoid synthesis enzymes (PSY and, LCYB), sucrose phosphate synthase (SPS), and uncoupling protein (UCP) gene expressions. Therefore, a 0.01% morin treatment might efficiently retard mango fruit ripening and senescence to sustain external and nutritional quality through ethylene-related pathways, which indicates its preservation application.
Collapse
Affiliation(s)
- Lihong Guo
- School of Food Science and Engineering, Foshan University, Foshan 528200, China
| | - Kaiqi Liang
- School of Food Science and Engineering, Foshan University, Foshan 528200, China
| | - Xiaochun Huang
- School of Food Science and Engineering, Foshan University, Foshan 528200, China
| | - Weiqian Mai
- Guangdong Provincial Key Laboratory of Food Intelligent Manufacturing, Foshan 528200, China
| | - Xuewu Duan
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Fuwang Wu
- School of Food Science and Engineering, Foshan University, Foshan 528200, China
- Guangdong Provincial Key Laboratory of Food Intelligent Manufacturing, Foshan 528200, China
| |
Collapse
|
6
|
Tafi E, Triunfo M, Guarnieri A, Ianniciello D, Salvia R, Scieuzo C, Ranieri A, Castagna A, Lepuri S, Hahn T, Zibek S, De Bonis A, Falabella P. Preliminary investigation on the effect of insect-based chitosan on preservation of coated fresh cherry tomatoes. Sci Rep 2023; 13:7030. [PMID: 37120448 PMCID: PMC10148861 DOI: 10.1038/s41598-023-33587-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 04/15/2023] [Indexed: 05/01/2023] Open
Abstract
Chitosan was produced from Hermetia illucens pupal exuviae by heterogeneous and homogeneous deacetylation. Tomato fruits (Solanum lycopersicum), that are one of the most grown and consumed food throughout the world, were coated with 0.5 and 1% chitosan, applied by dipping or spraying, and stored at room temperature or 4 °C, for a storage period of 30 days. Statistical analysis give different results depending on the analysed parameters: heterogeneous chitosan, indeed, had a better effect than the homogenous one in maintaining more stable physico-chemical parameters, while the homogenous chitosan improved the total phenols, flavonoids and antioxidant activity. Chitosan coatings applied by spraying were more effective in all the analyses. Chitosan derived from H. illucens always performed similarly to the commercial chitosan. However, a general better performance of insect-derived chitosan on the concentration of phenolics and flavonoids, and the antioxidant activity was observed as compared to the commercial one. Chitosan coating has already been successfully used for preservation of fresh fruits, as alternative to synthetic polymers, but this is the first investigation of chitosan produced from an insect for this application. These preliminary results are encouraging regarding the validation of the insect H. illucens as a source of chitosan.
Collapse
Affiliation(s)
- Elena Tafi
- Department of Sciences, University of Basilicata, Potenza, Italy
| | - Micaela Triunfo
- Department of Sciences, University of Basilicata, Potenza, Italy
| | - Anna Guarnieri
- Department of Sciences, University of Basilicata, Potenza, Italy
| | | | - Rosanna Salvia
- Department of Sciences, University of Basilicata, Potenza, Italy.
- Spinoff XFLIES s.r.l, University of Basilicata, Potenza, Italy.
| | - Carmen Scieuzo
- Department of Sciences, University of Basilicata, Potenza, Italy
- Spinoff XFLIES s.r.l, University of Basilicata, Potenza, Italy
| | - Annamaria Ranieri
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
- Interdepartmental Research Center Nutrafood "Nutraceuticals and Food for Health", University of Pisa, Pisa, Italy
| | - Antonella Castagna
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy.
- Interdepartmental Research Center Nutrafood "Nutraceuticals and Food for Health", University of Pisa, Pisa, Italy.
| | - Samuel Lepuri
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Thomas Hahn
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Stuttgart, Germany
| | - Susanne Zibek
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Stuttgart, Germany
| | - Angela De Bonis
- Department of Sciences, University of Basilicata, Potenza, Italy
| | - Patrizia Falabella
- Department of Sciences, University of Basilicata, Potenza, Italy.
- Spinoff XFLIES s.r.l, University of Basilicata, Potenza, Italy.
| |
Collapse
|
7
|
Deep Chemical and Physico-Chemical Characterization of Antifungal Industrial Chitosans-Biocontrol Applications. Molecules 2023; 28:molecules28030966. [PMID: 36770629 PMCID: PMC9919833 DOI: 10.3390/molecules28030966] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 01/21/2023] Open
Abstract
Five different chitosan samples (CHI-1 to CHI-5) from crustacean shells with high deacetylation degrees (>93%) have been deeply characterized from a chemical and physicochemical point of view in order to better understand the impact of some parameters on the bioactivity against two pathogens frequently encountered in vineyards, Plasmopara viticola and Botrytis cinerea. All the samples were analyzed by SEC-MALS, 1H-NMR, elemental analysis, XPS, FTIR, mass spectrometry, pyrolysis, and TGA and their antioxidant activities were measured (DPPH method). Molecular weights were in the order: CHI-4 and CHI-5 (MW >50 kDa) > CHI-3 > CHI-2 and CHI-1 (MW < 20 kDa). CHI-1, CHI-2 and CHI-3 are under their hydrochloride form, CHI-4 and CHI-5 are under their NH2 form, and CHI-3 contains a high amount of a chitosan calcium complex. CHI-2 and CHI-3 showed higher scavenging activity than others. The bioactivity against B. cinerea was molecular weight dependent with an IC50 for CHI-1 = CHI-2 (13 mg/L) ≤ CHI-3 (17 mg/L) < CHI-4 (75 mg/L) < CHI-5 (152 mg/L). The bioactivity on P. viticola zoospores was important, even at a very low concentration for all chitosans (no moving spores between 1 and 0.01 g/L). These results show that even at low concentrations and under hydrochloride form, chitosan could be a good alternative to pesticides.
Collapse
|
8
|
Lopez-Nuñez R, Suarez-Fernandez M, Lopez-Moya F, Lopez-Llorca LV. Chitosan and nematophagous fungi for sustainable management of nematode pests. FRONTIERS IN FUNGAL BIOLOGY 2022; 3:980341. [PMID: 37746197 PMCID: PMC10512356 DOI: 10.3389/ffunb.2022.980341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 09/30/2022] [Indexed: 09/26/2023]
Abstract
Plants are exposed to large number of threats caused by herbivores and pathogens which cause important losses on crops. Plant pathogens such as nematodes can cause severe damage and losses in food security crops worldwide. Chemical pesticides were extendedly used for nematode management. However, due to their adverse effects on human health and the environment, they are now facing strong limitations by regulatory organisations such as EFSA (European Food Safety Authority). Therefore, there is an urgent need for alternative and efficient control measures, such as biological control agents or bio-based plant protection compounds. In this scenario, chitosan, a non-toxic polymer obtained from seafood waste mainly, is becoming increasingly important. Chitosan is the N-deacetylated form of chitin. Chitosan is effective in the control of plant pests and diseases. It also induces plants defence mechanisms. Chitosan is also compatible with some biocontrol microorganisms mainly entomopathogenic and nematophagous fungi. Some of them are antagonists of nematode pests of plants and animals. The nematophagous biocontrol fungus Pochonia chlamydosporia has been widely studied for sustainable management of nematodes affecting economically important crops and for its capability to grow with chitosan as only nutrient source. This fungus infects nematode eggs using hyphal tips and appressoria. Pochonia chlamydosporia also colonizes plant roots endophytically, stimulating plant defences by induction of salicylic and jasmonic acid biosynthesis and favours plant growth and development. Therefore, the combined use of chitosan and nematophagous fungi could be a novel strategy for the biological control of nematodes and other root pathogens of food security crops.
Collapse
Affiliation(s)
- Raquel Lopez-Nuñez
- Department of Marine Sciences and Applied Biology, Laboratory of Plant Pathology, University of Alicante, Alicante, Spain
| | - Marta Suarez-Fernandez
- Department of Marine Sciences and Applied Biology, Laboratory of Plant Pathology, University of Alicante, Alicante, Spain
- Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA), Universidad Politécnica de Madrid (UPM)—Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| | - Federico Lopez-Moya
- Department of Marine Sciences and Applied Biology, Laboratory of Plant Pathology, University of Alicante, Alicante, Spain
| | - Luis Vicente Lopez-Llorca
- Department of Marine Sciences and Applied Biology, Laboratory of Plant Pathology, University of Alicante, Alicante, Spain
| |
Collapse
|
9
|
Colin-Oviedo Á, Garza-Aguilar SM, Marín-Obispo LM, Rodríguez-Sánchez DG, Trevino V, Hernández-Brenes C, Díaz de la Garza RI. The Enigmatic Aliphatic Acetogenins and Their Correlations With Lipids During Seed Germination and Leaf Development of Avocado ( Persea americana Mill.). FRONTIERS IN PLANT SCIENCE 2022; 13:839326. [PMID: 35592561 PMCID: PMC9111537 DOI: 10.3389/fpls.2022.839326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 03/16/2022] [Indexed: 06/15/2023]
Abstract
Lipids in avocados have been widely studied due to their nutritional value and several reported bioactivities. Aliphatic acetogenins are a relevant component of the avocado lipidome and have been tested for several potential food and pharma industries applications. This work followed the evolution of avocado fatty acids (FAs) and aliphatic acetogenins during seed germination and leaf growth. Oil extracts of embryonic axes, cotyledons, and leaves from seedlings and trees were divided to analyze free acetylated acetogenins (AcO-acetogenins), and free FAs. Embryonic axes from germinating seeds contained the highest amount of AcO-acetogenins and FAs; this tissue also accumulated the most diverse FA profile with up to 22 detected moieties. Leaves presented the highest variations in AcO-acetogenin profiles during development, although leaves from seedlings accumulated the simplest FA profile with only 10 different FAs. Remarkably, AcO-acetogenins represented half of the carbons allocated to lipids in grown leaves, while embryonic axes and cotyledons always contained more carbons within FAs during germination. Thus, we hypothesized the use of the AcO-acetogenin acyl chain for energy production toward β-oxidation. Also, α-linolenic and docosahexaenoic acids (DHAs) were proposed as close AcO-acetogenin intermediaries based on a correlation network generated using all these data. Another part of the oil extract was fractionated into different lipid classes before transesterification to profile FAs and acetogenins bound to lipids. Acetogenin backbones were identified for the first time in triglycerides from cotyledons and mainly in polar lipids (which include phospholipids) in all developing avocado tissues analyzed. Seed tissues accumulated preferentially polar lipids during germination, while triglycerides were consumed in cotyledons. Seedling leaves contained minute amounts of triglycerides, and polar lipids increased as they developed. Results from this work suggest acetogenins might be part of the energy and signaling metabolisms, and possibly of membrane structures, underlining the yet to establish role(s) of these unusual lipids in the avocado plant physiology.
Collapse
Affiliation(s)
- Álvaro Colin-Oviedo
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Monterrey, Mexico
| | | | | | | | - Víctor Trevino
- Tecnologico de Monterrey, The Institute for Obesity Research, Integrative Biology Unit, Monterrey, Mexico
- Tecnologico de Monterrey, Escuela de Medicina, Monterrey, Mexico
| | - Carmen Hernández-Brenes
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Monterrey, Mexico
- Tecnologico de Monterrey, The Institute for Obesity Research, Integrative Biology Unit, Monterrey, Mexico
| | - Rocío I. Díaz de la Garza
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Monterrey, Mexico
- Tecnologico de Monterrey, The Institute for Obesity Research, Integrative Biology Unit, Monterrey, Mexico
| |
Collapse
|
10
|
Preliminary Studies on Suppression of Important Plant Pathogens by Using Pomegranate and Avocado Residual Peel and Seed Extracts. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8040283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Potential synergistic action of aqueous extracts of pomegranate peel (PP), avocado peel (AP), and avocado seed (AS) wastes isolated by microwave-assisted extraction were assessed in in vitro and in vivo assays as biocontrol agents against several plant pathogenic fungi. The study findings contribute to the utilization of a value-added industrial byproduct and provide significant value in advancing the development of new plant protecting compositions that benefit from the synergistic effects between two important plant species that contain several natural bioactive compounds. More specifically, the in vitro results proved that the use of 100%-pure (PP) extracted waste affected the mycelium growth of Penicillium expansum. Furthermore, mycelium growth of Aspergillus niger was decreased by 10.21% compared to control after 7 days of growth in medium agar containing 100% AP and extracted waste. Moreover, mycelium growth of Botrytis cinerea was affected by equal volume of avocado extraction wastes (50% peel and 50% seed) only at the first 3 days of the inoculation, while at the seventh day of the inoculation there was no effect on the mycelium growth. Equal volumes of the examined wastes showed decreased mycelium growth of Fusarium oxysporum f.sp. lycopersici by 6%, while Rhizoctonia solani mycelium growth was found to be the most sensitive in PP application. In addition, the in vivo assay shown that PP extract suppresses damage of tomato plants caused by R. solani followed by extracted wastes from AP. Based on the research findings, it can be argued that PP and AP extracts can be used as natural antifungals instead of dangerous synthetic antifungals to effectively treat phytopathogens that cause fruit and vegetable losses during cultivation.
Collapse
|
11
|
Jiang Z, Li R, Tang Y, Cheng Z, Qian M, Li W, Shao Y. Transcriptome Analysis Reveals the Inducing Effect of Bacillus siamensis on Disease Resistance in Postharvest Mango Fruit. Foods 2022; 11:107. [PMID: 35010233 PMCID: PMC8750277 DOI: 10.3390/foods11010107] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/29/2021] [Accepted: 12/29/2021] [Indexed: 12/17/2022] Open
Abstract
Postharvest anthracnose, caused by the fungus Colletotrichum gloeosporioides, is one of the most important postharvest diseases of mangoes worldwide. Bacillus siamensis (B. siamensis), as a biocontrol bacteria, has significant effects on inhibiting disease and improving the quality of fruits and vegetables. In this study, pre-storage application of B. siamensis significantly induced disease resistance and decreased disease index (DI) of stored mango fruit. To investigate the induction mechanisms of B. siamensis, comparative transcriptome analysis of mango fruit samples during the storage were established. In total, 234,808 unique transcripts were assembled and 56,704 differentially expressed genes (DEGs) were identified by comparative transcriptome analysis. Gene ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of DEGs showed that most of the DEGs involved in plant-pathogen interaction, plant hormone signal transduction, and biosynthesis of resistant substances were enriched. Fourteen DEGs related to disease-resistance were validated by qRT-PCR, which well corresponded to the FPKM value obtained from the transcriptome data. These results indicate that B. siamensis treatment may act to induce disease resistance of mango fruit by affecting multiple pathways. These findings not only reveal the transcriptional regulatory mechanisms that govern postharvest disease, but also develop a biological strategy to maintain quality of post-harvest mango fruit.
Collapse
Affiliation(s)
- Zecheng Jiang
- College of Food Science and Engineering, Hainan University, Haikou 570228, China; (Z.J.); (Y.T.); (Z.C.)
| | - Rui Li
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, College of Horticulture, Hainan University, Haikou 570228, China; (R.L.); (M.Q.)
| | - Yue Tang
- College of Food Science and Engineering, Hainan University, Haikou 570228, China; (Z.J.); (Y.T.); (Z.C.)
| | - Ziyu Cheng
- College of Food Science and Engineering, Hainan University, Haikou 570228, China; (Z.J.); (Y.T.); (Z.C.)
| | - Minjie Qian
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, College of Horticulture, Hainan University, Haikou 570228, China; (R.L.); (M.Q.)
| | - Wen Li
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, College of Horticulture, Hainan University, Haikou 570228, China; (R.L.); (M.Q.)
| | - Yuanzhi Shao
- School of Life Sciences, Hainan University, Haikou 570228, China
| |
Collapse
|
12
|
Landi L, Peralta-Ruiz Y, Chaves-López C, Romanazzi G. Chitosan Coating Enriched With Ruta graveolens L. Essential Oil Reduces Postharvest Anthracnose of Papaya ( Carica papaya L.) and Modulates Defense-Related Gene Expression. FRONTIERS IN PLANT SCIENCE 2021; 12:765806. [PMID: 34858463 PMCID: PMC8632526 DOI: 10.3389/fpls.2021.765806] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 10/05/2021] [Indexed: 06/13/2023]
Abstract
Anthracnose of papaya (Carica papaya L.) caused by the fungus Colletotrichum spp. is one of the most economically important postharvest diseases. Coating with chitosan (CS) and Ruta graveolens essential oil (REO) might represent a novel eco-friendly method to prevent postharvest anthracnose infection. These compounds show both antimicrobial and eliciting activities, although the molecular mechanisms in papaya have not been investigated to date. In this study, the effectiveness of CS and REO alone and combined (CS-REO) on postharvest anthracnose of papaya fruit during storage were investigated, along with the expression of selected genes involved in plant defense mechanisms. Anthracnose incidence was reduced with CS, REO, and CS-REO emulsions after 9 days storage at 25°C, by 8, 21, and 37%, respectively, with disease severity reduced by 22, 29, and 44%, respectively. Thus, McKinney's decay index was reduced by 22, 30, and 44%, respectively. A protocol based on reverse transcription quantitative real-time PCR (RT-qPCR) was validated for 17 papaya target genes linked to signaling pathways that regulate plant defense, pathogenesis-related protein, cell wall-degrading enzymes, oxidative stress, abiotic stress, and the phenylpropanoid pathway. CS induced gene upregulation mainly at 6 h posttreatment (hpt) and 48 hpt, while REO induced the highest upregulation at 0.5 hpt, which then decreased over time. Furthermore, CS-REO treatment delayed gene upregulation by REO alone, from 0.5 to 6 hpt, and kept that longer over time. This study suggests that CS stabilizes the volatile and/or hydrophobic substances of highly reactive essential oils. The additive effects of CS and REO were able to reduce postharvest decay and affect gene expression in papaya fruit.
Collapse
Affiliation(s)
- Lucia Landi
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| | - Yeimmy Peralta-Ruiz
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
- Facultad de Ingeniería, Programa de Ingeniería Agroindustrial, Universidad del Atlántico, Puerto Colombia, Colombia
| | - Clemencia Chaves-López
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Gianfranco Romanazzi
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| |
Collapse
|
13
|
Bauters L, Stojilković B, Gheysen G. Pathogens pulling the strings: Effectors manipulating salicylic acid and phenylpropanoid biosynthesis in plants. MOLECULAR PLANT PATHOLOGY 2021; 22:1436-1448. [PMID: 34414650 PMCID: PMC8518561 DOI: 10.1111/mpp.13123] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/15/2021] [Accepted: 08/01/2021] [Indexed: 06/01/2023]
Abstract
During evolution, plants have developed sophisticated ways to cope with different biotic and abiotic stresses. Phytohormones and secondary metabolites are known to play pivotal roles in defence responses against invading pathogens. One of the key hormones involved in plant immunity is salicylic acid (SA), of which the role in plant defence is well established and documented. Plants produce an array of secondary metabolites categorized in different classes, with the phenylpropanoids as major players in plant immunity. Both SA and phenylpropanoids are needed for an effective immune response by the plant. To successfully infect the host, pathogens secrete proteins, called effectors, into the plant tissue to lower defence. Secreted effectors can interfere with several metabolic or signalling pathways in the host to facilitate infection. In this review, we will focus on the different strategies pathogens have developed to affect the levels of SA and phenylpropanoids to increase plant susceptibility.
Collapse
Affiliation(s)
- Lander Bauters
- Department of BiotechnologyFaculty of Bioscience EngineeringGhent UniversityGhentBelgium
| | - Boris Stojilković
- Department of BiotechnologyFaculty of Bioscience EngineeringGhent UniversityGhentBelgium
| | - Godelieve Gheysen
- Department of BiotechnologyFaculty of Bioscience EngineeringGhent UniversityGhentBelgium
| |
Collapse
|
14
|
Ochoa-Meza LC, Quintana-Obregón EA, Vargas-Arispuro I, Falcón-Rodríguez AB, Aispuro-Hernández E, Virgen-Ortiz JJ, Martínez-Téllez MÁ. Oligosaccharins as Elicitors of Defense Responses in Wheat. Polymers (Basel) 2021; 13:3105. [PMID: 34578006 PMCID: PMC8470072 DOI: 10.3390/polym13183105] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/11/2021] [Accepted: 09/12/2021] [Indexed: 11/16/2022] Open
Abstract
Wheat is a highly relevant crop worldwide, and like other massive crops, it is susceptible to foliar diseases, which can cause devastating losses. The current strategies to counteract wheat diseases include global monitoring of pathogens, developing resistant genetic varieties, and agrochemical applications upon diseases' appearance. However, the suitability of these strategies is far from permanent, so other alternatives based on the stimulation of the plants' systemic responses are being explored. Plants' defense mechanisms can be elicited in response to the perception of molecules mimicking the signals triggered upon the attack of phytopathogens, such as the release of plant and fungal cell wall-derived oligomers, including pectin and chitin derivatives, respectively. Among the most studied cell wall-derived bioelicitors, oligogalacturonides and oligochitosans have received considerable attention in recent years due to their ability to trigger defense responses and enhance the synthesis of antipathogenic compounds in plants. Particularly, in wheat, the application of bioelicitors induces lignification and accumulation of polyphenolic compounds and increases the gene expression of pathogenesis-related proteins, which together reduce the severity of fungal infections. Therefore, exploring the use of cell wall-derived elicitors, known as oligosaccharins, stands as an attractive option for the management of crop diseases by improving plant readiness for responding promptly to potential infections. This review explores the potential of plant- and fungal-derived oligosaccharins as a practical means to be implemented in wheat crops.
Collapse
Affiliation(s)
- Laura Celina Ochoa-Meza
- Coordination of Food Technology of Vegetal Origin, Research Center for Food and Development (CIAD), Ave. Gustavo E. Astiazarán #46, Hermosillo 83304, Sonora, Mexico; (L.C.O.-M.); (E.A.-H.)
| | - Eber Addí Quintana-Obregón
- CONACYT—Research Center for Food and Development (CIAD), Hermosillo 83304, Sonora, Mexico; (E.A.Q.-O.); (J.J.V.-O.)
| | - Irasema Vargas-Arispuro
- Coordination of Food Sciences, Research Center for Food and Development (CIAD), Hermosillo 83304, Sonora, Mexico;
| | | | - Emmanuel Aispuro-Hernández
- Coordination of Food Technology of Vegetal Origin, Research Center for Food and Development (CIAD), Ave. Gustavo E. Astiazarán #46, Hermosillo 83304, Sonora, Mexico; (L.C.O.-M.); (E.A.-H.)
| | - José J. Virgen-Ortiz
- CONACYT—Research Center for Food and Development (CIAD), Hermosillo 83304, Sonora, Mexico; (E.A.Q.-O.); (J.J.V.-O.)
- Center of Innovation and Agroalimentary Development of Michoacán (CIDAM), Morelia 58341, Michoacán, Mexico
| | - Miguel Ángel Martínez-Téllez
- Coordination of Food Technology of Vegetal Origin, Research Center for Food and Development (CIAD), Ave. Gustavo E. Astiazarán #46, Hermosillo 83304, Sonora, Mexico; (L.C.O.-M.); (E.A.-H.)
| |
Collapse
|
15
|
López-Velázquez JC, Haro-González JN, García-Morales S, Espinosa-Andrews H, Navarro-López DE, Montero-Cortés MI, Qui-Zapata JA. Evaluation of the Physicochemical Properties of Chitosans in Inducing the Defense Response of Coffea arabica against the Fungus Hemileia vastatrix. Polymers (Basel) 2021; 13:polym13121940. [PMID: 34207947 PMCID: PMC8230575 DOI: 10.3390/polym13121940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/28/2021] [Accepted: 06/04/2021] [Indexed: 12/05/2022] Open
Abstract
Chitosan is a natural polymer, and its biological properties depend on factors such as the degree of deacetylation and polymerization, viscosity, molecular mass, and dissociation constant. Chitosan has multiple advantages: it is biodegradable, biocompatible, safe, inexpensive, and non-toxic. Due to these characteristics, it has a wide range of applications. In agriculture, one of the most promising properties of chitosan is as an elicitor in plant defense against pathogenic microorganisms. In this work, four kinds of chitosan (practical grade, low molecular weight, medium molecular weight, and high-density commercial food grade) were used in concentrations of 0.01 and 0.05% to evaluate its protective effect against coffee rust. The best treatment was chosen to evaluate the defense response in coffee plants. The results showed a protective effect using practical-grade and commercial food-grade chitosan. In addition, the activity of enzymes with β-1,3 glucanase and peroxidase was induced, and an increase in the amount of phenolic compounds was observed in plants treated with high-molecular-weight chitosan at 0.05%; therefore, chitosan can be considered an effective molecule for controlling coffee rust.
Collapse
Affiliation(s)
- Julio César López-Velázquez
- Biotecnología Vegetal, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco AC., Camino Arenero 1227, El Bajío, Zapopan 45019, Mexico;
| | - José Nabor Haro-González
- Tecnología Alimentaria, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco AC., Camino Arenero 1227, El Bajío, Zapopan 45019, Mexico; (J.N.H.-G.); (H.E.-A.)
| | - Soledad García-Morales
- Biotecnología Vegetal, CONACYT-Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco AC., Zapopan 45019, Mexico;
| | - Hugo Espinosa-Andrews
- Tecnología Alimentaria, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco AC., Camino Arenero 1227, El Bajío, Zapopan 45019, Mexico; (J.N.H.-G.); (H.E.-A.)
| | - Diego Eloyr Navarro-López
- Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, General Ramón Corona 2514, Nuevo México, Zapopan 45201, Mexico;
| | | | - Joaquín Alejandro Qui-Zapata
- Biotecnología Vegetal, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco AC., Camino Arenero 1227, El Bajío, Zapopan 45019, Mexico;
- Correspondence: ; Tel.: +52-33-33-45-52-00 (ext. 1707)
| |
Collapse
|
16
|
BTH Treatment Delays the Senescence of Postharvest Pitaya Fruit in Relation to Enhancing Antioxidant System and Phenylpropanoid Pathway. Foods 2021; 10:foods10040846. [PMID: 33924541 PMCID: PMC8069018 DOI: 10.3390/foods10040846] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/07/2021] [Accepted: 04/08/2021] [Indexed: 01/03/2023] Open
Abstract
The plant resistance elicitor Benzo (1,2,3)-thiadiazole-7-carbothioic acid S-methyl ester (BTH) can enhance disease resistance of harvested fruit. Nonetheless, it is still unknown whether BTH plays a role in regulating fruit senescence. In this study, exogenous BTH treatment efficiently delayed the senescence of postharvest pitaya fruit with lower lipid peroxidation level. Furthermore, BTH-treated fruit exhibited lower hydrogen peroxide (H2O2) content, higher contents of reduced ascorbic acid (AsA) and reduced glutathione (GSH) levels and higher ratios of reduced to oxidized glutathione (GSH/GSSG) and ascorbic acid (AsA/DHA), as well as higher activities of ROS scavenging enzymes, including superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), peroxidase (POD) and glutathione reductase (GR) in comparison with control fruit. Moreover, BTH treatment enhanced the activities of phenylpropanoid pathway-related enzymes, including cinnamate-4-hydroxylase (C4H), phenylalanine ammonia-lyase (PAL) and 4-coumarate/coenzyme A ligase (4CL) and the levels of phenolics, flavonoids and lignin. In addition, BTH treatment upregulated the expression of HuSOD1/3/4, HuCAT2, HuAPX1/2 and HuPOD1/2/4 genes. These results suggested that application of BTH delayed the senescence of harvested pitaya fruit in relation to enhanced antioxidant system and phenylpropanoid pathway.
Collapse
|
17
|
Rajestary R, Landi L, Romanazzi G. Chitosan and postharvest decay of fresh fruit: Meta‐analysis of disease control and antimicrobial and eliciting activities. Compr Rev Food Sci Food Saf 2020; 20:563-582. [DOI: 10.1111/1541-4337.12672] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 10/09/2020] [Accepted: 10/12/2020] [Indexed: 11/29/2022]
Affiliation(s)
- Razieh Rajestary
- Department of Agricultural, Food and Environmental Sciences Marche Polytechnic University Via Brecce Bianche 10 Ancona Italy
| | - Lucia Landi
- Department of Agricultural, Food and Environmental Sciences Marche Polytechnic University Via Brecce Bianche 10 Ancona Italy
| | - Gianfranco Romanazzi
- Department of Agricultural, Food and Environmental Sciences Marche Polytechnic University Via Brecce Bianche 10 Ancona Italy
| |
Collapse
|
18
|
Liu X, Cui X, Ji D, Zhang Z, Li B, Xu Y, Chen T, Tian S. Luteolin-induced activation of the phenylpropanoid metabolic pathway contributes to quality maintenance and disease resistance of sweet cherry. Food Chem 2020; 342:128309. [PMID: 33051099 DOI: 10.1016/j.foodchem.2020.128309] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 10/01/2020] [Accepted: 10/02/2020] [Indexed: 01/05/2023]
Abstract
Redox imbalance and fungal infection are major causes for quality deterioration and postharvest decay of fruit. Therefore, it is crucial to activate intrinsic antioxidative capacity and disease responses for fruit quality maintenance. Although plant-derived flavonoids have been reported for health-promoting benefits, their roles in the maintenance of fruit quality remains largely unexplored. Here, we exogenously applied luteolin, a flavonoid substance, and further examined its efficacy in maintaining fruit quality and inhibiting fungal diseases in sweet cherry. The results showed that 100 or 200 mg/L luteolin maintained better organoleptic quality and decreased disease incidence during storage. Biochemical assays revealed that luteolin activated the phenylpropanoid metabolic pathway and improved antioxidative capacity, thereby elevating total anthocyanin and flavonoid contents. Notably, luteolin inhibited mycelial growth of fungal pathogens and reduced patulin yield by Penicillium expansum. Collectively, these results suggest that luteolin is a promising alternative for maintaining better fruit quality and ameliorating disease resistance.
Collapse
Affiliation(s)
- Xiaoyun Liu
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaomin Cui
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dongchao Ji
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhanquan Zhang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Boqiang Li
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Yong Xu
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Tong Chen
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.
| | - Shiping Tian
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture, Beijing 100093, China
| |
Collapse
|
19
|
Liu H, Wang Z, Xu W, Zeng J, Li L, Li S, Gao Z. Bacillus pumilus LZP02 Promotes Rice Root Growth by Improving Carbohydrate Metabolism and Phenylpropanoid Biosynthesis. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2020; 33:1222-1231. [PMID: 32597697 DOI: 10.1094/mpmi-04-20-0106-r] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Elucidation of the underlying mechanisms of plant growth promotion of rhizobacteria is very important. This study explored the mechanism by which Bacillus pumilus LZP02 promotes growth in rice roots through proteomic, transcriptomic, and metabolomic techniques. The results showed that B. pumilus LZP02 promoted the absorption of phosphorous, calcium, and magnesium ions by colonization of rice roots and enhanced peroxidase, catalase, superoxide dismutase, and Ca2+Mg2+ adenosine triphosphatase activities and chlorophyll contents in rice. The proteomic results showed that most of the differentially expressed proteins were involved in carbohydrate metabolism and that the biosynthesis of other secondary metabolites was also increased. According to RNA-seq and reverse transcription-quantitative PCR analyses, expression of some genes involved in carbohydrate metabolism and phenylpropanoid biosynthesis was upregulated in rice roots. Regarding metabolomics, phenylpropanoid biosynthesis, starch and sucrose metabolism, the pentose phosphate pathway, and glyoxylate and dicarboxylate metabolism were increased. The results indicated that B. pumilus LZP02 promoted the growth of rice roots by enhancing carbohydrate metabolism and phenylpropanoid biosynthesis.
Collapse
Affiliation(s)
- Hong Liu
- College of Life Science and Agroforestry, Qiqihar University, Qiqihar 161006, China
- Heilongjiang Provincial Technology Innovation center of Agromicrobial Preparation Industrialization, Qiqihar 161006, China
| | - Zhigang Wang
- College of Life Science and Agroforestry, Qiqihar University, Qiqihar 161006, China
- Heilongjiang Provincial Technology Innovation center of Agromicrobial Preparation Industrialization, Qiqihar 161006, China
| | - Weihui Xu
- College of Life Science and Agroforestry, Qiqihar University, Qiqihar 161006, China
- Heilongjiang Provincial Technology Innovation center of Agromicrobial Preparation Industrialization, Qiqihar 161006, China
| | - Jin Zeng
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210000, China
| | - Lixin Li
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Shenglin Li
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Zheng Gao
- College of Life Sciences, Shandong Agricultural University, Ta'an 271000, China
| |
Collapse
|
20
|
Phenylalanine: A Promising Inducer of Fruit Resistance to Postharvest Pathogens. Foods 2020; 9:foods9050646. [PMID: 32443417 PMCID: PMC7278716 DOI: 10.3390/foods9050646] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/07/2020] [Accepted: 05/14/2020] [Indexed: 12/29/2022] Open
Abstract
More than 40% of harvested fruit is lost, largely due to decay. In parallel, restrictions on postharvest fungicides call for eco-friendly alternatives. Fruit's natural resistance depends mainly on flavonoids and anthocyanins-which have antioxidant and antifungal activity-synthesized from the phenylpropanoid pathway with phenylalanine as a precursor. We hypothesized that phenylalanine could induce fruit's natural defense response and tolerance to fungal pathogens. The postharvest application of phenylalanine to mango and avocado fruit reduced anthracnose and stem-end rot caused by Colletotrichum gloeosporioides and Lasiodiplodia theobromae, respectively. The postharvest application of phenylalanine to citrus fruit reduced green mold caused by Penicillium digitatum. The optimal phenylalanine concentrations for postharvest application were 6 mM for citrus fruits and 8 mM for mangoes and avocadoes. The preharvest application of phenylalanine to strawberries, mangoes, and citrus fruits also reduced postharvest decay. Interestingly, citrus fruit resistance to P. digitatum inoculated immediately after phenylalanine application was not improved, whereas inoculation performed 2 days after phenylalanine treatment induced the defense response. Five hours after the treatment, no phenylalanine residue was detected on/in the fruit, probably due to rapid phenylalanine metabolism. Additionally, in vitro testing showed no inhibitory effect of phenylalanine on conidial germination. Altogether, we characterized a new inducer of the fruit defense response-phenylalanine. Preharvest or postharvest application to fruit led to the inhibition of fungal pathogen-induced postharvest decay, suggesting that the application of phenylalanine could become an eco-friendly and healthy alternative to fungicides.
Collapse
|
21
|
Lu Y, Che J, Xu X, Pang B, Zhao X, Liu Y, Shi J. Metabolomics Reveals the Response of the Phenylpropanoid Biosynthesis Pathway to Starvation Treatment in the Grape Endophyte Alternaria sp. MG1. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:1126-1135. [PMID: 31891261 DOI: 10.1021/acs.jafc.9b05302] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Phenylpropanoid (PPPN) compounds are widely used in agriculture, medical, food, and cosmetic industries because of their multiple bioactivities. Alternaria sp. MG1, an endophytic fungus isolated from grape, is a new natural source of PPPNs. However, the PPPN biosynthesis pathway in MG1 tends to be suppressed under normal growth conditions. Starvation has been reported to stimulate the PPPN pathway in plants, but this phenomenon has not been well studied in endophytic fungi. Here, metabolomics analysis was used to examine the profile of PPPN compounds, and quantitative reverse transcription-polymerase chain reaction was used to detect the expression of key genes in the PPPN biosynthesis pathway under starvation conditions. Starvation treatment significantly increased the accumulation of shikimate and PPPN compounds and upregulated the expression of key genes in their biosynthesis pathways. In addition to previously reported PPPNs, sinapate, 4-hydroxystyrene, piceatannol, and taxifolin were also detected under starvation treatment. These findings suggest that starvation treatment provides an effective way to optimize the production of PPPN compounds and may permit the investigation of compounds that are undetectable under normal conditions. Moreover, the diversity of its PPPNs makes strain MG1 a rich repository of valuable compounds and an extensive genetic resource for future studies.
Collapse
Affiliation(s)
- Yao Lu
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences , Northwestern Polytechnical University , 127 Youyi West Road , Xi'an , Shaanxi Province 710072 , China
| | - Jinxin Che
- Department of Biological and Food Engineering, College of Chemical Engineering , Xiangtan University , Xiangtan , Hunan 411105 , China
| | - Xiaoguang Xu
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences , Northwestern Polytechnical University , 127 Youyi West Road , Xi'an , Shaanxi Province 710072 , China
| | - Bing Pang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences , Northwestern Polytechnical University , 127 Youyi West Road , Xi'an , Shaanxi Province 710072 , China
| | - Xixi Zhao
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences , Northwestern Polytechnical University , 127 Youyi West Road , Xi'an , Shaanxi Province 710072 , China
| | - Yanlin Liu
- College of Enology , Northwest A&F University , 22 Xinong Road , Yangling , Shaanxi Province 712100 , China
| | - Junling Shi
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences , Northwestern Polytechnical University , 127 Youyi West Road , Xi'an , Shaanxi Province 710072 , China
| |
Collapse
|