1
|
Lutter L, Kuzina A, Andreson H. Genotypic Stability of Lactic Acid Bacteria in Industrial Rye Bread Sourdoughs Assessed by ITS-PCR Analysis. Microorganisms 2024; 12:1872. [PMID: 39338546 PMCID: PMC11434513 DOI: 10.3390/microorganisms12091872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
Sourdough bread production relies on metabolically active starters refreshed daily with flour and water. The stability of sourdough microbial strains is crucial for consistent bread quality. However, many bakeries lack information on the persistence of starter cultures in ongoing sourdough production. Consequently, there is growing interest in identifying microbial strains from regularly used sourdoughs that possess good functional properties and resist changes in the complex growth environment. This study aimed to evaluate the composition and stability of lactic acid bacteria (LAB) in industrial wheat (WS) and rye (RS) sourdoughs propagated over a long period. LAB isolates (n = 66) from both sourdoughs, sampled over four seasons, were identified using phenotypic methods and genotyped via ITS-PCR and ITS-PCR/TaqI restriction analysis. Eight LAB species were detected, with Lactiplantibacillus plantarum being the most dominant and stable. Nineteen distinct LAB genotypes were observed, highlighting significant diversity. The presence of identical LAB genotypes in both sourdoughs suggests microbial transfer through the environment and bakery workers. LAB in RS were found to be more stable than those in WS. These findings underscore the importance of monitoring microbial stability and diversity in industrial sourdough production to maintain consistent bread quality.
Collapse
Affiliation(s)
| | | | - Helena Andreson
- Chair of Food Science and Technology, Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Kreutzwaldi 56/5, 51006 Tartu, Estonia; (L.L.)
| |
Collapse
|
2
|
Hoffman LC, Schreuder J, Cozzolino D. Food authenticity and the interactions with human health and climate change. Crit Rev Food Sci Nutr 2024:1-14. [PMID: 39101830 DOI: 10.1080/10408398.2024.2387329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
Food authenticity and fraud, as well as the interest in food traceability have become a topic of increasing interest not only for consumers but also for the research community and the food manufacturing industry. Food authenticity and fraud are becoming prevalent in both the food supply and value chains since ancient times where different issues (e.g., food spoilage during shipment and storage, mixing decay foods with fresh products) has resulted in foods that influence consumers health. The effect of climate change on the quality of food ingredients and products could also have the potential to influence food authenticity. However, this issue has not been considered. This article focused on the interactions between consumer health and the potential effects of climate change on food authenticity and fraud. The role of technology and development of risk management tools to mitigate these issues are also discussed. Where applicable papers that underline the links between the interactions of climate change, human health and food fraud were referenced.
Collapse
Affiliation(s)
- Louwrens C Hoffman
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Brisbane, QLD, Australia
| | - Jana Schreuder
- Food Science Department, Stellenbosch University, Stellenbosch, South Africa
| | - Daniel Cozzolino
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
3
|
Olakanmi SJ, Bharathi VSK, Jayas DS, Paliwal J. Innovations in nondestructive assessment of baked products: Current trends and future prospects. Compr Rev Food Sci Food Saf 2024; 23:e13385. [PMID: 39031741 DOI: 10.1111/1541-4337.13385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/13/2024] [Accepted: 05/18/2024] [Indexed: 07/22/2024]
Abstract
Rising consumer awareness, coupled with advances in sensor technology, is propelling the food manufacturing industry to innovate and employ tools that ensure the production of safe, nutritious, and environmentally sustainable products. Amidst a plethora of nondestructive techniques available for evaluating the quality attributes of both raw and processed foods, the challenge lies in determining the most fitting solution for diverse products, given that each method possesses its unique strengths and limitations. This comprehensive review focuses on baked goods, wherein we delve into recently published literature on cutting-edge nondestructive methods to assess their feasibility for Industry 4.0 implementation. Emphasizing the need for quality control modalities that align with consumer expectations regarding sensory traits such as texture, flavor, appearance, and nutritional content, the review explores an array of advanced methodologies, including hyperspectral imaging, magnetic resonance imaging, terahertz, acoustics, ultrasound, X-ray systems, and infrared spectroscopy. By elucidating the principles, applications, and impacts of these techniques on the quality of baked goods, the review provides a thorough synthesis of the most current published studies and industry practices. It highlights how these methodologies enable defect detection, nutritional content prediction, texture evaluation, shelf-life forecasting, and real-time monitoring of baking processes. Additionally, the review addresses the inherent challenges these nondestructive techniques face, ranging from cost considerations to calibration, standardization, and the industry's overreliance on big data.
Collapse
Affiliation(s)
- Sunday J Olakanmi
- Department of Biosystems Engineering, 75 Chancellors Circle, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Vimala S K Bharathi
- Department of Biosystems Engineering, 75 Chancellors Circle, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Digvir S Jayas
- Department of Biosystems Engineering, 75 Chancellors Circle, University of Manitoba, Winnipeg, Manitoba, Canada
- President's Office, 4401 University Drive West, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Jitendra Paliwal
- Department of Biosystems Engineering, 75 Chancellors Circle, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
4
|
Agarwal D, MacNaughtan W, Liu C, King J, Foster TJ. Headspace volatiles profiles of different spring varieties and a wild relative of wheat flour. Food Funct 2024; 15:6673-6683. [PMID: 38817195 DOI: 10.1039/d4fo01022a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Volatile profiling was conducted on four wheat varieties Triticum aestivum cv. Chinese Spring (CS), Highbury (High), Paragon (Para), Pavon76 (Pav76), and one wild relative Triticum timopheevii (P95). Headspace solid-phase microextraction (SPME) combined with gas chromatography-mass spectrometry (GC-MS) was used to explore differences in flavor formation mechanisms in different flours before and after starch gelatinization. Solvent retention capacity (SRC) analysis revealed subtle differences in water absorption, gluten strength, and starch characteristics across wheat flour types. Rapid Visco Analysis (RVA) of whole wheat flour demonstrated significant variations in pasting properties among wheat varieties, with P95 exhibiting higher viscosities compared to CS and High potentially influenced by starch gelatinization, protein-starch interactions, and lipid content. Aroma contributions of P95 clustered positively in PCA plots, contrasting with the four main varieties, indicative of species-level differentiation. Furthermore, the study highlighted the roles of viscosity, protein structure, lipid content, and fatty acid composition in modulating the release and perception of volatile aroma compounds during heating. This study sheds light on how the distinct characteristics of wheat flour influence aroma profiles, revealing species-level differences and the pivotal role of physiochemical properties in shaping flavor development mechanisms.
Collapse
Affiliation(s)
- Deepa Agarwal
- Division of Food Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK.
- School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Victoria, Australia, 3086
| | - William MacNaughtan
- Division of Food Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK.
| | - Chujiao Liu
- Division of Food Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK.
| | - Julie King
- Division of Plant Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK
| | - Tim J Foster
- Division of Food Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK.
| |
Collapse
|
5
|
Arora R, Chandel AK. Unlocking the potential of low FODMAPs sourdough technology for management of irritable bowel syndrome. Food Res Int 2023; 173:113425. [PMID: 37803764 DOI: 10.1016/j.foodres.2023.113425] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/27/2023] [Accepted: 08/29/2023] [Indexed: 10/08/2023]
Abstract
Consumption of high FODMAP (Fermentable Oligo-, Di-, and Monosaccharides and Polyols) diet is the leading cause of alteration in the human gut microbiome, thereby, causing irritable bowel syndrome (IBS). Therefore, sourdough technology can be exploited for reduction of FODMAPs in various foods to alleviate the symptoms of IBS. Several microorganisms viz. Pichia fermentans, Lactobacillus fetmentum, Saccharomyces cerevisiae, Torulaspora delbrueckii, Kluyveromyces marxianus etc. have been identified for the production of low FODMAP type II sourdough fermented products. However, more research on regulation of end-product and volatilome profile is required for maximal exploitation of FODMAP-reducing microorganisms. Therefore, the present review is focused on utilisation of lactic acid bacteria and yeasts, alone and in synergy, for the production of low FODMAP sourdough foods. Moreover, the microbial bioprocessing of cereal and non-cereal based low FODMAP fermented sourdough products along with their nutritional and therapeutic benefits have been elaborated. The challenges and future prospects for the production of sourdough fermented low FODMAP foods, thereby, bringing out positive alterations in gut microbiome, have also been discussed.
Collapse
Affiliation(s)
- Richa Arora
- Department of Microbiology, Punjab Agricultural University, Ludhiana, Punjab 141004, India
| | - Anuj K Chandel
- Department of Biotechnology, Engineering School of Lorena (EEL), University of São Paulo, Lorena SP 12.602-810, Brazil.
| |
Collapse
|
6
|
Șerban LR, Păucean A, Chiș MS, Pop CR, Man SM, Pușcaș A, Ranga F, Socaci SA, Alexa E, Berbecea A, Semeniuc CA, Mureșan V. Metabolic Profile of Einkorn, Spelt, Emmer Ancient Wheat Species Sourdough Fermented with Strain of Lactiplantibacillus plantarum ATCC 8014. Foods 2023; 12:foods12051096. [PMID: 36900613 PMCID: PMC10001257 DOI: 10.3390/foods12051096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 02/27/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
The continuous development of bakery products as well as the increased demands from consumers transform ancient grains into alternatives with high nutritional potential for modern wheat species. The present study, therefore, follows the changes that occur in the sourdough obtained from these vegetable matrices fermented by Lactiplantibacillus plantarum ATCC 8014 during a 24 h. period. The samples were analyzed in terms of cell growth dynamics, carbohydrate content, crude cellulose, minerals, organic acids, volatile compounds, and rheological properties. The results revealed significant microbial growth in all samples, with an average value of 9 log cfu/g but also a high accumulation of organic acids with the increase in the fermentation period. Lactic acid content ranged from 2.89 to 6.65 mg/g, while acetic acid recorded values between 0.51 and 1.1 mg/g. Regarding the content of simple sugars, maltose was converted into glucose, and fructose was used as an electron acceptor or carbon source. Cellulose content decreased as a result of the solubilization of soluble fibers into insoluble fibers under enzymatic action, with percentages of 3.8 to 9.5%. All sourdough samples had a high content of minerals; the highest of which-Ca (246 mg/kg), Zn (36 mg/kg), Mn (46 mg/kg), and Fe (19 mg/kg)-were recorded in the einkorn sourdough.
Collapse
Affiliation(s)
- Larisa Rebeca Șerban
- Department of Food Engineering, Faculty of Food Sciences and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 3-5 Mănăștur Street, 400372 Cluj-Napoca, Romania
| | - Adriana Păucean
- Department of Food Engineering, Faculty of Food Sciences and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 3-5 Mănăștur Street, 400372 Cluj-Napoca, Romania
- Correspondence:
| | - Maria Simona Chiș
- Department of Food Engineering, Faculty of Food Sciences and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 3-5 Mănăștur Street, 400372 Cluj-Napoca, Romania
| | - Carmen Rodica Pop
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 3-5, Mănăștur Street, 400372 Cluj-Napoca, Romania
| | - Simona Maria Man
- Department of Food Engineering, Faculty of Food Sciences and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 3-5 Mănăștur Street, 400372 Cluj-Napoca, Romania
| | - Andreea Pușcaș
- Department of Food Engineering, Faculty of Food Sciences and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 3-5 Mănăștur Street, 400372 Cluj-Napoca, Romania
| | - Floricuța Ranga
- Faculty of Food Science and Technology, Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 3-5 Mănăștur Street, 400372 Cluj-Napoca, Romania
| | - Sonia Ancuța Socaci
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 3-5, Mănăștur Street, 400372 Cluj-Napoca, Romania
| | - Ersilia Alexa
- Department of Food Control, Faculty of Agro-Food Technologies, University of Life Sciences “King Michael I of Romania”, 119 Aradului Avenue, 300641 Timişoara, Romania
| | - Adina Berbecea
- Department of Soil Sciences, Faculty of Agriculture, University of Life Sciences “King Michael I of Romania”, 119 Aradului Avenue, 300641 Timişoara, Romania
| | - Cristina Anamaria Semeniuc
- Department of Food Engineering, Faculty of Food Sciences and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 3-5 Mănăștur Street, 400372 Cluj-Napoca, Romania
| | - Vlad Mureșan
- Department of Food Engineering, Faculty of Food Sciences and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 3-5 Mănăștur Street, 400372 Cluj-Napoca, Romania
| |
Collapse
|
7
|
Saied DB, Ramadan NS, El-Sayed MM, Farag MA. Effect of Maturity Stage on Cereal and Leguminous Seeds' Metabolome as Analyzed Using Gas Chromatography Mass-Spectrometry (GC-MS) and Chemometric Tools. Metabolites 2023; 13:metabo13020163. [PMID: 36837782 PMCID: PMC9960208 DOI: 10.3390/metabo13020163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/09/2023] [Accepted: 01/12/2023] [Indexed: 01/26/2023] Open
Abstract
Cereal and leguminous seeds are considered as major generic dietary source of energy, carbohydrates as well as proteins in the Mediterranean diet and are frequently consumed in their immature form in several regions including the Middle East. Hence, the current study aimed to assess metabolites' heterogeneity amongst five major cereal and leguminous seeds of different species, and cultivars, i.e., Triticum aestivum L. (two cultivars), Hordeum vulgare L., Vicia faba L. and Cicer arietinum L., at different maturity stages. Gas chromatography mass-spectrometry (GC-MS) analysis using multivariate data analyses was employed for nutrient profiling and sample segregation assessed using chemometric tools, respectively. A total of 70 peaks belonging to sugars, fatty acids/esters, steroids, amino acids and organic acids were identified including sucrose, melibiose, glucose and fructose as major sugars, with butyl caprylate, hydroxybutanoic acid and malic acid contributing to the discrimination between seed species at different maturity stages. The investigation of total protein content revealed comparable protein levels amongst all examined seeds with the highest level detected at 20.1% w/w in mature fava bean. Results of this study provide a novel insight on cereal and leguminous seeds' metabolomics in the context of their maturity stages for the first time in literature.
Collapse
Affiliation(s)
- Doaa B. Saied
- Chemistry Department, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt
| | - Nehal S. Ramadan
- Chemistry of Tanning Materials and Leather Technology Department, National Research Centre, Giza 12622, Egypt
| | - Magdy M. El-Sayed
- Dairy Science Department, National Research Centre, Giza 12622, Egypt
| | - Mohamed A. Farag
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
- Correspondence:
| |
Collapse
|
8
|
Lopez CM, Rocchetti G, Fontana A, Lucini L, Rebecchi A. Metabolomics and gene-metabolite networks reveal the potential of Leuconostoc and Weissella strains as starter cultures in the manufacturing of bread without baker’s yeast. Food Res Int 2022; 162:112023. [DOI: 10.1016/j.foodres.2022.112023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/28/2022] [Accepted: 10/01/2022] [Indexed: 11/04/2022]
|
9
|
López-Salas D, Oney-Montalvo JE, Ramírez-Rivera E, Ramírez-Sucre MO, Rodríguez-Buenfil IM. Evaluation of the Volatile Composition and Sensory Behavior of Habanero Pepper during Lactic Acid Fermentation by L. plantarum. Foods 2022; 11:foods11223618. [PMID: 36429209 PMCID: PMC9689949 DOI: 10.3390/foods11223618] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/07/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
Habanero pepper is recognized for its appealing aroma and flavor. Lactic acid fermentation can improve these sensory properties, especially aroma, by the synthesis of volatile compounds, which might also increase the consumer preference. Thus, the aim of this research was to compare the volatile composition as well as different sensory parameters such as preference and emotions related to the lactic acid fermentation of Habanero pepper by two strains (wild and commercial) of Lactiplantibacillus plantarum. A multiple factor ANOVA was used to compare the volatile composition with different fermentation times and strains. The results demonstrated that the interaction between the strain and fermentation time had significant effects on the volatile compound production that includes 1-hexanol, cis-3-hexenyl hexanoate, linalool, and 3,3 dimethyl-1-hexanol while only time influenced the production of trans-2-hexen-1-al. The wild strain (WIL) at 48 h of fermentation produced the highest concentration of 3,3 dimethyl-1-hexanol and trans-2-hexen-1-al. On the other hand, the commercial strain (COM) presented the highest concentration of 1-hexanol and cis-3-hexenyl hexanoate with a 72 h fermentation. The most preferred sample was that fermented by WIL for 48 h for the attribute of odor, while for taste, the most preferred sample was that fermented for 72 h with COM.
Collapse
Affiliation(s)
- Diego López-Salas
- Sede Sureste CIATEJ, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C., Tablaje Catastral 31264, Carretera Sierra Papacal-Chuburna Puerto km. 5.5, Parque Científico Tecnológico de Yucatán, Mérida 97302, Mexico
| | - Julio Enrique Oney-Montalvo
- Sede Sureste CIATEJ, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C., Tablaje Catastral 31264, Carretera Sierra Papacal-Chuburna Puerto km. 5.5, Parque Científico Tecnológico de Yucatán, Mérida 97302, Mexico
| | - Emmanuel Ramírez-Rivera
- Departamento de Innovación Agrícola Sustentable, Tecnológico Nacional de México/Tecnológico Superior de Zongolica, Carretera S/N km. 4, Tepetlitlanapa, Zongolica 95005, Mexico
| | - Manuel Octavio Ramírez-Sucre
- Sede Sureste CIATEJ, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C., Tablaje Catastral 31264, Carretera Sierra Papacal-Chuburna Puerto km. 5.5, Parque Científico Tecnológico de Yucatán, Mérida 97302, Mexico
| | - Ingrid Mayanin Rodríguez-Buenfil
- Sede Sureste CIATEJ, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C., Tablaje Catastral 31264, Carretera Sierra Papacal-Chuburna Puerto km. 5.5, Parque Científico Tecnológico de Yucatán, Mérida 97302, Mexico
- Correspondence:
| |
Collapse
|
10
|
Abstract
Fermented foods and beverages have become a part of daily diets in several societies around the world. Emitted volatile organic compounds play an important role in the determination of the chemical composition and other information of fermented foods and beverages. Electronic nose (E-nose) technologies enable non-destructive measurement and fast analysis, have low operating costs and simplicity, and have been employed for this purpose over the past decades. In this work, a comprehensive review of the recent progress in E-noses is presented according to the end products of the main fermentation types, including alcohol fermentation, lactic acid fermentation, acetic acid fermentation and alkaline fermentation. The benefits, research directions, limitations and challenges of current E-nose systems are investigated and highlighted for fermented foods and beverage applications.
Collapse
|
11
|
|
12
|
Ghnimi H, Ennouri M, Chèné C, Karoui R. A review combining emerging techniques with classical ones for the determination of biscuit quality: advantages and drawbacks. Crit Rev Food Sci Nutr 2021:1-24. [PMID: 34875937 DOI: 10.1080/10408398.2021.2012124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The production of biscuit and biscuit-like products has faced many challenges due to changes in consumer behavior and eating habits. Today's consumer is looking for safe products not only with fresh-like and pleasant taste, but also with long shelf life and health benefits. Therefore, the potentiality of the use of healthier fat and the incorporation of natural antioxidant in the formulation of biscuit has interested, recently, the attention of researchers. The determination of the biscuit quality could be performed by several techniques (e.g., physical, chemical, sensory, calorimetry and chromatography). These classical analyses are unfortunately destructive, expensive, polluting and above all very heavy, to implement when many samples must be prepared to be analyzed. Therefore, there is a need to find fast analytical techniques for the determination of the quality of cereal products like biscuits. Emerging techniques such as near infrared (NIR), mid infrared (MIR) and front face fluorescence spectroscopy (FFFS), coupled with chemometric tools have many potential advantages and are introduced, recently, as promising techniques for the assessment of the biscuit quality.
Collapse
Affiliation(s)
- Hayet Ghnimi
- INRAE, Junia, Université d'Artois, University of Lille, Université du Littoral Côte d'Opale, Université de Picardie Jules Verne, Université de Liège, Lens, France.,Higher Institute of Biotechnology of Monastir, University of Monastir, Monastir, Tunisia.,National Engineering School of Sfax, University of Sfax, LR11ES45, Sfax, Tunisia
| | - Monia Ennouri
- Olive Tree Institute, University of Sfax, LR16IO01, Sfax, Tunisia
| | - Christine Chèné
- Tilloy Les Mofflaines, Adrianor, Tilloy-lès-Mofflaines, France
| | - Romdhane Karoui
- INRAE, Junia, Université d'Artois, University of Lille, Université du Littoral Côte d'Opale, Université de Picardie Jules Verne, Université de Liège, Lens, France
| |
Collapse
|
13
|
Ancient Wheat Species: Biochemical Profile and Impact on Sourdough Bread Characteristics—A Review. Processes (Basel) 2021. [DOI: 10.3390/pr9112008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
In recent years, the attention of farmers, bakers and consumers towards ancient wheat species has been increasing. Low demands of pedo-climatic growth factors, the suitability for organic cultivation along with their high nutritional quality and their content in pro-health compounds make them extremely attractive for bakers and modern consumers, equally. On the other hand, in recent years, sourdough has gained attention due to its ability to produce new functionally active molecules with higher bioaccessibility and thus to produce bread with enhanced nutritional quality. This paper highlights the relevant nutritional profile of einkorn, spelt, emmer and Khorasan which could lead to bread with improved textural, sensorial, microbial and nutritional characteristics through sourdough fermentation. The ancient wheat species could be used as promising substitutes for common wheat flour for the design of innovative types of bread, even for special needs.
Collapse
|
14
|
Păucean A, Mureșan V, Maria-Man S, Chiș MS, Mureșan AE, Șerban LR, Pop A, Muste S. Metabolomics as a Tool to Elucidate the Sensory, Nutritional and Safety Quality of Wheat Bread-A Review. Int J Mol Sci 2021; 22:ijms22168945. [PMID: 34445648 PMCID: PMC8396194 DOI: 10.3390/ijms22168945] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/13/2021] [Accepted: 08/17/2021] [Indexed: 01/20/2023] Open
Abstract
Wheat (Triticum aestivum) is one of the most extensively cultivated and used staple crops in human nutrition, while wheat bread is annually consumed in more than nine billion kilograms over the world. Consumers’ purchase decisions on wheat bread are largely influenced by its nutritional and sensorial characteristics. In the last decades, metabolomics is considered an effective tool for elucidating the information on metabolites; however, the deep investigations on metabolites still remain a difficult and longtime action. This review gives emphasis on the achievements in wheat bread metabolomics by highlighting targeted and untargeted analyses used in this field. The metabolomics approaches are discussed in terms of quality, processing and safety of wheat and bread, while the molecular mechanisms involved in the sensorial and nutritional characteristics of wheat bread are pointed out. These aspects are of crucial importance in the context of new consumers’ demands on healthy bakery products rich in bioactive compounds but, equally, with good sensorial acceptance. Moreover, metabolomics is a potential tool for assessing the changes in nutrient composition from breeding to processing, while monitoring and understanding the transformations of metabolites with bioactive properties, as well as the formation of compounds like toxins during wheat storage.
Collapse
|
15
|
Canesin MR, Cazarin CBB. Nutritional quality and nutrient bioaccessibility in sourdough bread. Curr Opin Food Sci 2021. [DOI: 10.1016/j.cofs.2021.02.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
16
|
Effect of Supplementation of Flour with Fruit Fiber on the Volatile Compound Profile in Bread. SENSORS 2021; 21:s21082812. [PMID: 33923662 PMCID: PMC8073101 DOI: 10.3390/s21082812] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/15/2021] [Accepted: 04/15/2021] [Indexed: 12/19/2022]
Abstract
This paper presents the analyses of the effect of fiber additives on volatile organic compounds in bread. The bread was baked from wheat flour with the addition of 3% of fruit fiber, following common procedures. After baking, volatile organic compounds contained in the control bread and breads supplemented with cranberry, apple, and chokeberry fiber were determined. The SPME/GC-MS technique was used for the identification of the odor profile, and the electronic nose Agrinose (e-nose) was used to assess the intensity of the aroma. The results of the analyses revealed the profile of volatile organic compounds in each experimental variant, which was correlated with responses of the electronic nose. The results indicate that the volatile compound profile depends on the bread additives used and influences the intensity of bread aroma. Moreover, the profile of volatile organic compounds in terms of their amount and type, as well as the intensity of their interaction with the active surface of the electrochemical sensors, was specific exclusively for the additive in each case.
Collapse
|
17
|
Nissen L, Casciano F, Gianotti A. Volatilome changes during probiotic fermentation of combined soy and rice drinks. Food Funct 2021; 12:3159-3169. [PMID: 33729245 DOI: 10.1039/d0fo03337e] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Plant-based drinks as a substitute for animal milk consumption are crucial products in the food industry. Soy and rice drinks are the most successful milk substitutes but are low in fiber and protein contents, respectively, whilst being rich in sugars. Generally, an improvement is foreseen; thus, apart from supplement addition, a natural occurring strategy is functionalizing the drinks by beneficial bacteria fermentation. The aim of this work is to develop novel plant-based drinks assessing different mixtures of soy and rice milks fermented with single or multi-strain probiotics (Lactobacillus fermentum, L. plantarum, L. helveticus, Bifidobacterium bifidum, and B. longum). The drinks were characterized to study bacterial performances, by means of culture-dependent and -independent techniques, and their volatilome, by means of solid-phase microextraction-gas chromatography-mass spectrometry (SPME-GC-MS) analysis. Through multivariate analysis, these features were investigated and correlated to define accurate descriptors of the produced functional drinks. The results showed that combined drinks and multi-strain fermentation generated higher-value products. For example, combined drinks in comparison with single ones had a lower amount of toxic 2-acetyl-3,5-dimethylfuran and higher abundances of desirable compounds such as 2-butanone, 3-hydroxy and butanoic acid. Multivariate analysis of volatile metabolites and physiological parameters could offer a novel approach to assess the quality of functional plant-based drinks and result in a decisional tool for industrial applications.
Collapse
Affiliation(s)
- Lorenzo Nissen
- CIRI-CIRI-Interdepartmental Centre of Agri-Food Industrial Research, Alma Mater Studiorum - University of Bologna, P.za G. Goidanich 60, 47521 Cesena, Italy.
| | | | | |
Collapse
|
18
|
Martín-Garcia A, Riu-Aumatell M, López-Tamames E. Influence of Process Parameters on Sourdough Microbiota, Physical Properties and Sensory Profile. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1906698] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Alba Martín-Garcia
- Departament of Nutrition, Food Sciences and Gastronomy, Campus Torribera, Universitat de Barcelona (UB), Institut de Recerca En Nutrició I Seguretat Alimentària (INSA-UB), XaRTA, Santa Coloma De Gramenet, España
| | - Montserrat Riu-Aumatell
- Departament of Nutrition, Food Sciences and Gastronomy, Campus Torribera, Universitat de Barcelona (UB), Institut de Recerca En Nutrició I Seguretat Alimentària (INSA-UB), XaRTA, Santa Coloma De Gramenet, España
| | - Elvira López-Tamames
- Departament of Nutrition, Food Sciences and Gastronomy, Campus Torribera, Universitat de Barcelona (UB), Institut de Recerca En Nutrició I Seguretat Alimentària (INSA-UB), XaRTA, Santa Coloma De Gramenet, España
| |
Collapse
|
19
|
Galvan D, Aquino A, Effting L, Mantovani ACG, Bona E, Conte-Junior CA. E-sensing and nanoscale-sensing devices associated with data processing algorithms applied to food quality control: a systematic review. Crit Rev Food Sci Nutr 2021; 62:6605-6645. [PMID: 33779434 DOI: 10.1080/10408398.2021.1903384] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Devices of human-based senses such as e-noses, e-tongues and e-eyes can be used to analyze different compounds in several food matrices. These sensors allow the detection of one or more compounds present in complex food samples, and the responses obtained can be used for several goals when different chemometric tools are applied. In this systematic review, we used Preferred Reporting Items for Systematic Reviews and Meta-Analysis guidelines, to address issues such as e-sensing with chemometric methods for food quality control (FQC). A total of 109 eligible articles were selected from PubMed, Scopus and Web of Science. Thus, we predicted that the association between e-sensing and chemometric tools is essential for FQC. Most studies have applied preliminary approaches like exploratory analysis, while the classification/regression methods have been less investigated. It is worth mentioning that non-linear methods based on artificial intelligence/machine learning, in most cases, had classification/regression performances superior to non-liner, although their applications were seen less often. Another approach that has generated promising results is the data fusion between e-sensing devices or in conjunction with other analytical techniques. Furthermore, some future trends in the application of miniaturized devices and nanoscale sensors are also discussed.
Collapse
Affiliation(s)
- Diego Galvan
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, Brazil.,Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, Brazil.,Nanotechnology Network, Carlos Chagas Filho Research Support Foundation of the State of Rio de Janeiro (FAPERJ), Rio de Janeiro, RJ, Brazil
| | - Adriano Aquino
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, Brazil.,Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, Brazil.,Nanotechnology Network, Carlos Chagas Filho Research Support Foundation of the State of Rio de Janeiro (FAPERJ), Rio de Janeiro, RJ, Brazil
| | - Luciane Effting
- Chemistry Department, State University of Londrina (UEL), Londrina, PR, Brazil
| | | | - Evandro Bona
- Post-Graduation Program of Food Technology (PPGTA), Federal University of Technology Paraná (UTFPR), Campo Mourão, PR, Brazil
| | - Carlos Adam Conte-Junior
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, Brazil.,Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, Brazil.,Nanotechnology Network, Carlos Chagas Filho Research Support Foundation of the State of Rio de Janeiro (FAPERJ), Rio de Janeiro, RJ, Brazil
| |
Collapse
|
20
|
Characteristics of the Proteolytic Enzymes Produced by Lactic Acid Bacteria. Molecules 2021; 26:molecules26071858. [PMID: 33806095 PMCID: PMC8037685 DOI: 10.3390/molecules26071858] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/17/2021] [Accepted: 03/23/2021] [Indexed: 12/20/2022] Open
Abstract
Over the past several decades, we have observed a very rapid development in the biotechnological use of lactic acid bacteria (LAB) in various branches of the food industry. All such areas of activity of these bacteria are very important and promise enormous economic and industrial successes. LAB are a numerous group of microorganisms that have the ability to ferment sugars into lactic acid and to produce proteolytic enzymes. LAB proteolytic enzymes play an important role in supplying cells with the nitrogen compounds necessary for their growth. Their nutritional requirements in this regard are very high. Lactic acid bacteria require many free amino acids to grow. The available amount of such compounds in the natural environment is usually small, hence the main function of these enzymes is the hydrolysis of proteins to components absorbed by bacterial cells. Enzymes are synthesized inside bacterial cells and are mostly secreted outside the cell. This type of proteinase remains linked to the cell wall structure by covalent bonds. Thanks to advances in enzymology, it is possible to obtain and design new enzymes and their preparations that can be widely used in various biotechnological processes. This article characterizes the proteolytic activity, describes LAB nitrogen metabolism and details the characteristics of the peptide transport system. Potential applications of proteolytic enzymes in many industries are also presented, including the food industry.
Collapse
|
21
|
Setti L, Samaei SP, Maggiore I, Nissen L, Gianotti A, Babini E. Comparing the Effectiveness of Three Different Biorefinery Processes at Recovering Bioactive Products from Hemp (Cannabis sativa L.) Byproduct. FOOD BIOPROCESS TECH 2020. [DOI: 10.1007/s11947-020-02550-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
AbstractHemp (Cannabis sativa L.) seeds are considered a nutritional powerhouse, rich in proteins and unsaturated fatty acids. The market for hemp seed food products is growing, due to the loosening of constraints in industrial cultivation. During the food processing chain, the external part of the seed is discarded, although it contains a significant amount of proteins. Converting this material into value-added products with a biorefinery approach could meet the ever-increasing need for sustainable protein sources while reducing food waste. In this study, creating value from hemp byproducts was pursued with three different approaches: (i) chemical extraction followed by enzymatic digestion, (ii) liquid fermentation by strains of Lactobacillus spp., and (iii) solid-state fermentation by Pleurotus ostreatus. The resulting products exhibited a range of in vitro antioxidant and antihypertensive activity, depending on the proteases used for enzymatic digestion, the bacterial strain, and the length of time of the two fermentation processes. These byproducts could be exploited as functional ingredients in the food, pharmaceutical, and cosmetic industries; the suggested biorefinery processes thus represent potential solutions for the development of other protein-containing byproducts or wastes.
Collapse
|
22
|
Adebo OA, Oyeyinka SA, Adebiyi JA, Feng X, Wilkin JD, Kewuyemi YO, Abrahams AM, Tugizimana F. Application of gas chromatography–mass spectrometry (GC‐MS)‐based metabolomics for the study of fermented cereal and legume foods: A review. Int J Food Sci Technol 2020. [DOI: 10.1111/ijfs.14794] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Oluwafemi Ayodeji Adebo
- Department of Biotechnology and Food Technology Faculty of Science University of Johannesburg Doornfontein Campus GautengP.O. Box 17011South Africa
| | - Samson Adeoye Oyeyinka
- School of Agriculture and Food Technology Alafua Campus University of the South Pacific Suva Fiji
| | - Janet Adeyinka Adebiyi
- Department of Biotechnology and Food Technology Faculty of Science University of Johannesburg Doornfontein Campus GautengP.O. Box 17011South Africa
| | - Xi Feng
- Department of Nutrition Food Science and Packaging San Jose State University One Washington Square San Jose CA95192USA
| | - Jonathan D. Wilkin
- Division of Engineering and Food Science School of Applied Sciences Abertay University Dundee United Kingdom
| | - Yusuf Olamide Kewuyemi
- School of Tourism and Hospitality College of Business and Economics University of Johannesburg P. O. Box 524Bunting Road Campus Johannesburg South Africa
| | - Adrian Mark Abrahams
- Department of Biotechnology and Food Technology Faculty of Science University of Johannesburg Doornfontein Campus GautengP.O. Box 17011South Africa
| | - Fidele Tugizimana
- International R&D Omnia Group, Ltd P.O. Box 69888 Gauteng South Africa
| |
Collapse
|
23
|
Nissen L, Samaei SP, Babini E, Gianotti A. Gluten free sourdough bread enriched with cricket flour for protein fortification: Antioxidant improvement and Volatilome characterization. Food Chem 2020; 333:127410. [PMID: 32682227 DOI: 10.1016/j.foodchem.2020.127410] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 05/04/2020] [Accepted: 06/21/2020] [Indexed: 12/29/2022]
Abstract
Insects represent a novel source of edible high nutritional value proteins which are gaining increasing interest as an alternative to traditional animal foods. In this work, cricket flour was used to produce gluten-free sourdough breads, suitable for celiac people and "source of proteins". The doughs were fermented by different methods and pH and microbial growth, volatile compounds, protein profile, and antioxidant activity, before and after baking, were analyzed and compared to standard gluten-free doughs. The results showed that cricket-enriched doughs and the standard had similar fermentation processes. Cricket enrichment conferred to the breads a typical flavoring profile, characterized by a unique bouquet of volatile compounds, made by nonanoic acid, 2,4-nonadienal (E,E), 1-hexanol, 1-heptanol, and 3-octen-2-one, expressed in different amounts depending on the type of inoculum. Finally, antioxidant activities were significantly enhanced in cricket breads, indicating that cricket powder provides to bakery gluten-free goods high nutritional value proteins and antioxidant properties.
Collapse
Affiliation(s)
- Lorenzo Nissen
- Interdepartmental Centre of Agri-Food Industrial Research (CIRI), Alma Mater Studiorum - University of Bologna, P.za G. Goidanich 60, 47521 Cesena (FC), Italy.
| | - Seyedeh Parya Samaei
- Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum - University of Bologna, Piazza Goidanich 60, 47521 Cesena (FC), Italy.
| | - Elena Babini
- Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum - University of Bologna, Piazza Goidanich 60, 47521 Cesena (FC), Italy.
| | - Andrea Gianotti
- Interdepartmental Centre of Agri-Food Industrial Research (CIRI), Alma Mater Studiorum - University of Bologna, P.za G. Goidanich 60, 47521 Cesena (FC), Italy; Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum - University of Bologna, Piazza Goidanich 60, 47521 Cesena (FC), Italy.
| |
Collapse
|
24
|
Yeast-Free Doughs by Zymomonas mobilis: Evaluation of Technological and Fermentation Performances by Using a Metabolomic Approach. Microorganisms 2020; 8:microorganisms8060792. [PMID: 32466402 PMCID: PMC7357046 DOI: 10.3390/microorganisms8060792] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/22/2020] [Accepted: 05/22/2020] [Indexed: 12/15/2022] Open
Abstract
This research focuses on the leavening performances and development of volatile compounds of three strains of Zymomonas mobilis in the production of yeast-free doughs. Z. mobilis DSM 3580, 424, and 473 were used in doughs supplemented with glucose and with or without NaCl. Z. mobilis produced about 10 mg ethanol/g dough, with maximum dough volumes (640–680 mL) being reached after 2 h leavening. NaCl addition postponed this parameter up to 6 h. Among organic acids, hexanoic acid resulted the highest produced compound; DSM 424 and 473 formed more propanoic, butanoic and pentanoic acid, being both negatively affected by NaCl. Esters were mainly discriminated on NaCl addition, with octanoic acid (DSM 3580), butanoic acid (DSM 424), and propanoic acid (DSM 473) ethyl esters as main components. DSM 3580 specifically produced 2-heptanal, DSM 424 2-hexadecenal, (E) and DSM 473 octanal, while DSM 424 and DSM 473 produced 2-butanone-4-hydroxy better than DSM 3580. Z. mobilis unique signatures were the production of nonanoic and undecanoic acids, 2-hexadecenal, (E), L(+)-tartaric acid diethyl ester and 3-decen-5-one, 4-methyl, (E). This outcome can pave the way for using Z. mobilis in baking goods, providing innovation possibilities in the area of yeast-free leavened products.
Collapse
|
25
|
Nissen L, Bordoni A, Gianotti A. Shift of Volatile Organic Compounds (VOCs) in Gluten-Free Hemp-Enriched Sourdough Bread: A Metabolomic Approach. Nutrients 2020; 12:nu12041050. [PMID: 32290149 PMCID: PMC7230689 DOI: 10.3390/nu12041050] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/01/2020] [Accepted: 04/07/2020] [Indexed: 02/08/2023] Open
Abstract
Hemp seed flour represents a potential ingredient for protein enrichment of gluten-free bakery products, the nutritional value of which could be further increased by fermentation with sourdough or with beneficial lactic acid bacteria strains. In this study, a metabolomic approach was used to evaluate the effect of hemp seed flour addition and sourdough fermentation on the production of flavoring and health-related volatile organic compounds (VOCs) in a gluten-free bread. Multivariate analysis of VOCs provided an in-depth description of the effects of hemp seed flour addition and sourdough fermentation on flavoring and bioactive compounds. In particular, an increased concentration of antimicrobial compounds, a larger spectrum of bioactive VOCs and a typical flavoring profile was evidenced in comparison to standard products. Furthermore, an increase of fermentation metabolites was observed in comparison to a standard dough, relating to abundances of 2-butanone-3-hydroxy, acetic acid, ethanol, and 1,4-butanediol. This study provides new insights on the evolution of flavoring and bioactive hemp seed flour constituents during sourdough fermentation, evidencing their retention in baked goods, and describes a new approach that could guide the formulation of innovative, fermented food with enhanced nutritional value.
Collapse
Affiliation(s)
- Lorenzo Nissen
- CIRI - Interdepartamental Centre of Agri-Food Industrial Research, Alma Mater Studiorum University of Bologna, P.za G. Goidanich 60, 47521 Cesena, FC, Italy; (L.N.); (A.G.)
| | - Alessandra Bordoni
- CIRI - Interdepartamental Centre of Agri-Food Industrial Research, Alma Mater Studiorum University of Bologna, P.za G. Goidanich 60, 47521 Cesena, FC, Italy; (L.N.); (A.G.)
- DiSTAL-Department of Agricultural and Food Sciences, Alma Mater Studiorum University of Bologna, Piazza Goidanich, 60–47521 Cesena (FC), Italy
- Correspondence:
| | - Andrea Gianotti
- CIRI - Interdepartamental Centre of Agri-Food Industrial Research, Alma Mater Studiorum University of Bologna, P.za G. Goidanich 60, 47521 Cesena, FC, Italy; (L.N.); (A.G.)
- DiSTAL-Department of Agricultural and Food Sciences, Alma Mater Studiorum University of Bologna, Piazza Goidanich, 60–47521 Cesena (FC), Italy
| |
Collapse
|
26
|
Nissen L, di Carlo E, Gianotti A. Prebiotic potential of hemp blended drinks fermented by probiotics. Food Res Int 2020; 131:109029. [PMID: 32247454 DOI: 10.1016/j.foodres.2020.109029] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 01/17/2020] [Accepted: 01/21/2020] [Indexed: 01/01/2023]
Abstract
Plant-based drinks as substitute for milk consumption are raising striking interest in the food industry. Soy and rice drinks are the most studied and successful milk substitutes. An untapped source is hemp seed, which is a powerhouse of nutrients bearing bioactive compounds, but the production of derived drink is limited. The present work is about introducing new formulations of commercial hemp seed-derived drink to be fermented with probiotics (Lactobacillus fermentum, Lb. plantarum and Bifidobacterium bifidum). In this work for the first time the prebiotic activity of different hemp seed drinks was assessed by cultural and quantitative PCR methods. In addition, to better describe the prebiotic potential, VOCs alkenes and volatile organic acids were characterized by a metabolomic approach via GC-MS SPME. Obtained results showed that the hemp seed drinks had strong prebiotic activity, ability to support probiotics growth and to increase the content of some bioactive compounds. These outputs are in part due to the presence of different terpenes that inhibit the growth of enteropathogens and to high levels of acetate, propionate and butyrate produced during fermentation that support the growth of probiotics. Although the health potential of hemp seed is well known, derived drinks are hitherto scarcely transformed and distributed, thus this work could provide some basics to produce prebiotic and probiotic fermented hemp seed drinks.
Collapse
Affiliation(s)
- Lorenzo Nissen
- Alma Mater Studiorum - University of Bologna, DISTAL (Dept. of Agricultural and Food Sciences), V.le Fanin 44, 40127 Bologna, Italy.
| | - Emanuele di Carlo
- Alma Mater Studiorum - University of Bologna, DISTAL (Dept. of Agricultural and Food Sciences), V.le Fanin 44, 40127 Bologna, Italy.
| | - Andrea Gianotti
- Alma Mater Studiorum - University of Bologna, DISTAL (Dept. of Agricultural and Food Sciences), V.le Fanin 44, 40127 Bologna, Italy.
| |
Collapse
|
27
|
Shift of Aromatic Profile in Probiotic Hemp Drink Formulations: A Metabolomic Approach. Microorganisms 2019; 7:microorganisms7110509. [PMID: 31671881 PMCID: PMC6920803 DOI: 10.3390/microorganisms7110509] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 10/24/2019] [Accepted: 10/26/2019] [Indexed: 12/18/2022] Open
Abstract
Vegetal drinks as a substitute for milk consumption are raising striking interest in the food industry. Soy and rice drinks are the most successful milk substitutes but are low in protein and fiber contents, are rich in sugars, and their cultivation systems are unsustainable; thus, alternative vegetal sources to resolve these limits must be found. A winning candidate could be hemp seed, which is a powerhouse of nutrients, is sugarless, rich in fiber and proteins, and little land and nutrients demanding. The aim is to develop novel drinks obtained from hemp seeds mixed or not with soy and rice and fermented with probiotics (Lactobacillus fermentum, Lb. plantarum, and Bifidobacterium bifidum). The drinks were characterized for their microbial growth, by means of culture-dependent and -independent techniques, and for their volatilome, by means of solid-phase microextraction-gas chromatography-mass spectrometry (SPME-GC-MS) analysis. The results showed that hemp seed drinks have a specific aroma and its compounds are dependent on the type of formulation and to the probiotic used. For example, in hemp seed drinks, 2-heptanol, 2-methyl, 2,4-decadienal, 2-butanone, 3-hydroxy, 2,3-butanedione, and propanoic acid were fine descriptors of probiotics fermentations. Multivariate analysis of volatile metabolites and their correlation to some physiological parameters and nutritional values offered a novel approach to assess the quality of functional hemp drinks which could result in a decisional tool for industrial applications.
Collapse
|
28
|
Yang Q, Zhang AH, Miao JH, Sun H, Han Y, Yan GL, Wu FF, Wang XJ. Metabolomics biotechnology, applications, and future trends: a systematic review. RSC Adv 2019; 9:37245-37257. [PMID: 35542267 PMCID: PMC9075731 DOI: 10.1039/c9ra06697g] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Accepted: 11/03/2019] [Indexed: 12/12/2022] Open
Abstract
Given the highly increased incidence of human diseases, a better understanding of the related mechanisms regarding endogenous metabolism is urgently needed. Mass spectrometry-based metabolomics has been used in a variety of disease research areas. However, the deep research of metabolites remains a difficult and lengthy process. Fortunately, mass spectrometry is considered to be a universal tool with high specificity and sensitivity and is widely used around the world. Mass spectrometry technology has been applied to various basic disciplines, providing technical support for the discovery and identification of endogenous substances in living organisms. The combination of metabolomics and mass spectrometry is of great significance for the discovery and identification of metabolite biomarkers. The mass spectrometry tool could further improve and develop the exploratory research of the life sciences. This mini review discusses metabolomics biotechnology with a focus on recent applications of metabolomics as a powerful tool to elucidate metabolic disturbances and the related mechanisms of diseases. Given the highly increased incidence of human diseases, a better understanding of the related mechanisms regarding endogenous metabolism is urgently needed.![]()
Collapse
Affiliation(s)
- Qiang Yang
- Department of Pharmaceutical Analysis
- National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials
- Guangxi Botanical Garden of Medicinal Plant
- National Chinmedomics Research Center
- Sino-America Chinmedomics Technology Collaboration Center
| | - Ai-hua Zhang
- Department of Pharmaceutical Analysis
- National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials
- Guangxi Botanical Garden of Medicinal Plant
- National Chinmedomics Research Center
- Sino-America Chinmedomics Technology Collaboration Center
| | - Jian-hua Miao
- Department of Pharmaceutical Analysis
- National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials
- Guangxi Botanical Garden of Medicinal Plant
- National Chinmedomics Research Center
- Sino-America Chinmedomics Technology Collaboration Center
| | - Hui Sun
- Department of Pharmaceutical Analysis
- National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials
- Guangxi Botanical Garden of Medicinal Plant
- National Chinmedomics Research Center
- Sino-America Chinmedomics Technology Collaboration Center
| | - Ying Han
- Department of Pharmaceutical Analysis
- National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials
- Guangxi Botanical Garden of Medicinal Plant
- National Chinmedomics Research Center
- Sino-America Chinmedomics Technology Collaboration Center
| | - Guang-li Yan
- Department of Pharmaceutical Analysis
- National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials
- Guangxi Botanical Garden of Medicinal Plant
- National Chinmedomics Research Center
- Sino-America Chinmedomics Technology Collaboration Center
| | - Fang-fang Wu
- Department of Pharmaceutical Analysis
- National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials
- Guangxi Botanical Garden of Medicinal Plant
- National Chinmedomics Research Center
- Sino-America Chinmedomics Technology Collaboration Center
| | - Xi-jun Wang
- Department of Pharmaceutical Analysis
- National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials
- Guangxi Botanical Garden of Medicinal Plant
- National Chinmedomics Research Center
- Sino-America Chinmedomics Technology Collaboration Center
| |
Collapse
|