1
|
Koteska D, Marter P, Huang S, Pradella S, Petersen J, Schulz S. Volatiles of the Apicomplexan Alga Chromera velia and Associated Bacteria. Chembiochem 2023; 24:e202200530. [PMID: 36416092 PMCID: PMC10107727 DOI: 10.1002/cbic.202200530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 11/24/2022]
Abstract
Volatiles released by the apicomplexan alga Chromera velia CCAP1602/1 and their associated bacteria have been investigated. A metagenome analysis allowed the identification of the most abundant heterotrophic bacteria of the phycosphere, but the isolation of additional strains showed that metagenomics underestimated the complexity of the algal microbiome, However, a culture-independent approach revealed the presence of a planctomycete that likely represents a novel bacterial family. We analysed algal and bacterial volatiles by open-system-stripping analysis (OSSA) on Tenax TA desorption tubes, followed by thermodesorption, cryofocusing and GC-MS-analysis. The analyses of the alga and the abundant bacterial strains Sphingopyxis litoris A01A-101, Algihabitans albus A01A-324, "Coraliitalea coralii" A01A-333 and Litoreibacter sp. A01A-347 revealed sulfur- and nitrogen-containing compounds, ketones, alcohols, aldehydes, aromatic compounds, amides and one lactone, as well as the typical algal products, apocarotenoids. The compounds were identified by gas chromatographic retention indices, comparison of mass spectra and syntheses of reference compounds. A major algal metabolite was 3,4,4-trimethylcyclopent-2-en-1-one, an apocarotenoid indicating the presence of carotenoids related to capsanthin, not reported from algae so far. A low overlap in volatiles bouquets between C. velia and the bacteria was found, and the xenic algal culture almost exclusively released algal components.
Collapse
Affiliation(s)
- Diana Koteska
- Institut für Organische ChemieTechnische Universität BraunschweigHagenring 3038106BraunschweigGermany
| | - Pia Marter
- Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbHInhoffenstraße 7B38124BraunschweigGermany
| | - Sixing Huang
- Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbHInhoffenstraße 7B38124BraunschweigGermany
| | - Silke Pradella
- Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbHInhoffenstraße 7B38124BraunschweigGermany
| | - Jörn Petersen
- Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbHInhoffenstraße 7B38124BraunschweigGermany
| | - Stefan Schulz
- Institut für Organische ChemieTechnische Universität BraunschweigHagenring 3038106BraunschweigGermany
| |
Collapse
|
2
|
Heng WS, Jadhav SR, Ueland M, Shellie RA. Rapid detection of Escherichia coli in dairy milk using static headspace-comprehensive two-dimensional gas chromatography. Anal Bioanal Chem 2022; 415:2535-2545. [PMID: 36539609 DOI: 10.1007/s00216-022-04485-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/28/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022]
Abstract
A new approach is introduced for rapid and reliable bacteria detection in food. Namely, static headspace-comprehensive two-dimensional gas chromatography (HS-GC × GC) with backflushing. The introduced approach provides fast detection of Escherichia coli (E. coli) in enriched ultra-high-temperature processed (UHT) dairy milk. The presence of E. coli may be indicated by detecting microbial volatile organic compounds emanating from test solutions inoculated with E. coli. In the present investigation, HS-GC × GC analysis is preceded by conventional enrichment in nutrient broth and inoculated samples are clearly discernable from controls following as little as 15 h sample enrichment. Headspace equilibration for 28 min followed by an 8 min GC × GC analysis of enriched test solutions reduces time-to-response by approximately one full day compared to conventional culture-based methods. The presence of ethanol, 1-propanol, and acetaldehyde may be used as a putative marker of E. coli contamination in milk and the introduced approach is able to detect single-cell initial bacterial load. Faster, reliable detection of pathogens and/or spoilage microbes in food products is desirable for the food industry. The described approach has great potential to complement the conventional workflow and be utilised for rapid microbial screening of foodstuff.
Collapse
Affiliation(s)
- Wan Sin Heng
- School of Exercise and Nutrition Sciences, CASS Food Research Centre, Deakin University, 221 Burwood Highway, Burwood, Australia
| | - Snehal R Jadhav
- School of Exercise and Nutrition Sciences, CASS Food Research Centre, Deakin University, 221 Burwood Highway, Burwood, Australia
| | - Maiken Ueland
- Centre for Forensic Science, School of Mathematical and Physical Sciences, University of Technology Sydney, 15 Broadway, Ultimo, Australia
| | - Robert A Shellie
- School of Exercise and Nutrition Sciences, CASS Food Research Centre, Deakin University, 221 Burwood Highway, Burwood, Australia.
- Centre for Food Innovation, Tasmania Institute of Agriculture, University of Tasmania, Locked Bag 1325, Launceston, Australia.
| |
Collapse
|
3
|
Rosenthal K, Hunsicker E, Ratcliffe E, Lindley MR, Leonard J, Hitchens JR, Turner MA. Volatile atmospheric pressure chemical ionisation mass spectrometry headspace analysis of E. coli and S. aureus. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:5441-5449. [PMID: 34780594 DOI: 10.1039/d1ay01555a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Identifying the characteristics of bacterial species can improve treatment outcomes and mass spectrometry methods have been shown to be capable of identifying biomarkers of bacterial species. This study is the first to use volatile atmospheric pressure chemical ionisation mass spectrometry to directly and non-invasively analyse the headspace of E. coli and S. aureus bacterial cultures, enabling major biological classification at species level (Gram negative/positive respectively). Four different protocols were used to collect data, three utilising discrete 5 min samples taken between 2 and 96 h after inoculation and one method employing 24 h continuous sampling. Characteristic marker ions were found for both E. coli and S. aureus. A model to distinguish between sample types was able to correctly identify the bacteria samples after sufficient growth (24-48 h), with similar results obtained across different sampling methods. This demonstrates that this is a robust method to analyse and classify bacterial cultures accurately and within a relevant time frame, offering a promising technique for both clinical and research applications.
Collapse
Affiliation(s)
- Kerry Rosenthal
- School of Sport, Exercise & Health Sciences, Loughborough University, Loughborough, UK.
| | - Eugenie Hunsicker
- Department of Mathematical Sciences, Loughborough University, Loughborough, UK
| | - Elizabeth Ratcliffe
- Department of Chemical Engineering, Loughborough University, Loughborough, UK
| | - Martin R Lindley
- School of Sport, Exercise & Health Sciences, Loughborough University, Loughborough, UK.
- Translational Chemical Biology Research Group, Loughborough University, Loughborough, UK
| | - Joshua Leonard
- Department of Chemistry, Loughborough University, Loughborough, UK
| | - Jack R Hitchens
- Department of Chemistry, Loughborough University, Loughborough, UK
| | - Matthew A Turner
- Translational Chemical Biology Research Group, Loughborough University, Loughborough, UK
- Department of Chemistry, Loughborough University, Loughborough, UK
| |
Collapse
|
4
|
Fang S, Liu S, Song J, Huang Q, Xiang Z. Recognition of pathogens in food matrixes based on the untargeted in vivo microbial metabolite profiling via a novel SPME/GC × GC-QTOFMS approach. Food Res Int 2021; 142:110213. [PMID: 33773687 DOI: 10.1016/j.foodres.2021.110213] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 01/22/2021] [Accepted: 01/24/2021] [Indexed: 10/22/2022]
Abstract
Foodborne diseases incurred by pathogenic bacteria are one of the major threats in food safety, and thus it is important to develop facile and effective recognition methodology of pathogens in food. Herein, a new automatic approach for detection of in vivo volatile metabolites emitted from foodborne pathogens was proposed by coupling solid phase microextraction (SPME) technique with a comprehensive two-dimensional gas chromatography quadrupole time-of-flight mass spectrometry (GC × GC-QTOFMS). A novel polymer composite based SPME probe which possessed high-coverage of microbial metabolites was utilized in this contribution to realize the sensitive extraction of untargeted metabolites. As a result, a total of 126 in vivo metabolites generated by the investigated pathogens were detected and identified, with 33, 29, 25, 21 and 18 volatile metabolites belonging to Shigella sonnei, Escherichia coli, Salmonella typhimurium, Vibrio parahaemolyticus and Staphylococcus aureus, respectively. Multivariate statistical analyses were applied for further analysis of metabolic data and separation of responsive metabolic features among different microbial systems were found, which were also successfully verified in foodstuffs contaminated by microorganisms. The growth trend of the potential volatile markers of each pathogen in food samples kept consistent with that of the pure strain incubated in medium during the whole incubation time. This study promotes the application of SPME technology in microbial volatile metabolomics and contributes to the development of new approaches for foodborne pathogens recognition.
Collapse
Affiliation(s)
- Shuting Fang
- Guangdong Provincial Engineering Research Center for Ambient Mass Spectrometry, Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Institute of Analysis, Guangdong Academy of Sciences(China National Analytical Center, Guangzhou), Guangzhou 510070, China
| | - Shuqin Liu
- Guangdong Provincial Engineering Research Center for Ambient Mass Spectrometry, Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Institute of Analysis, Guangdong Academy of Sciences(China National Analytical Center, Guangzhou), Guangzhou 510070, China
| | - Juyi Song
- School of Chemical Engineering, Guizhou Minzu University, Guiyang 550001, China
| | - Qihong Huang
- Guangdong Provincial Engineering Research Center for Ambient Mass Spectrometry, Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Institute of Analysis, Guangdong Academy of Sciences(China National Analytical Center, Guangzhou), Guangzhou 510070, China
| | - Zhangmin Xiang
- Guangdong Provincial Engineering Research Center for Ambient Mass Spectrometry, Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Institute of Analysis, Guangdong Academy of Sciences(China National Analytical Center, Guangzhou), Guangzhou 510070, China.
| |
Collapse
|
5
|
Cheng Z, McCann S, Faraone N, Clarke JA, Hudson EA, Cloonan K, Hillier NK, Tahlan K. Production of Plant-Associated Volatiles by Select Model and Industrially Important Streptomyces spp. Microorganisms 2020; 8:microorganisms8111767. [PMID: 33187102 PMCID: PMC7697265 DOI: 10.3390/microorganisms8111767] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/01/2020] [Accepted: 11/09/2020] [Indexed: 01/13/2023] Open
Abstract
The Streptomyces produce a great diversity of specialized metabolites, including highly volatile compounds with potential biological activities. Volatile organic compounds (VOCs) produced by nine Streptomyces spp., some of which are of industrial importance, were collected and identified using gas chromatography–mass spectrometry (GC-MS). Biosynthetic gene clusters (BGCs) present in the genomes of the respective Streptomyces spp. were also predicted to match them with the VOCs detected. Overall, 33 specific VOCs were identified, of which the production of 16 has not been previously reported in the Streptomyces. Among chemical classes, the most abundant VOCs were terpenes, which is consistent with predicted biosynthetic capabilities. In addition, 27 of the identified VOCs were plant-associated, demonstrating that some Streptomyces spp. can also produce such molecules. It is possible that some of the VOCs detected in the current study have roles in the interaction of Streptomyces with plants and other higher organisms, which might provide opportunities for their application in agriculture or industry.
Collapse
Affiliation(s)
- Zhenlong Cheng
- Department of Biology, Memorial University of Newfoundland, St. John’s, NL A1B 3X9, Canada; (Z.C.); (J.-A.C.)
| | - Sean McCann
- Department of Biology, Acadia University, Wolfville, NS B4P 2R6, Canada; (S.M.); (E.A.H.); (K.C.)
| | - Nicoletta Faraone
- Department of Chemistry, Acadia University, Wolfville, NS B4P 2R6, Canada;
| | - Jody-Ann Clarke
- Department of Biology, Memorial University of Newfoundland, St. John’s, NL A1B 3X9, Canada; (Z.C.); (J.-A.C.)
| | - E. Abbie Hudson
- Department of Biology, Acadia University, Wolfville, NS B4P 2R6, Canada; (S.M.); (E.A.H.); (K.C.)
| | - Kevin Cloonan
- Department of Biology, Acadia University, Wolfville, NS B4P 2R6, Canada; (S.M.); (E.A.H.); (K.C.)
| | - N. Kirk Hillier
- Department of Biology, Acadia University, Wolfville, NS B4P 2R6, Canada; (S.M.); (E.A.H.); (K.C.)
- Correspondence: (N.K.H.); (K.T.)
| | - Kapil Tahlan
- Department of Biology, Memorial University of Newfoundland, St. John’s, NL A1B 3X9, Canada; (Z.C.); (J.-A.C.)
- Correspondence: (N.K.H.); (K.T.)
| |
Collapse
|
6
|
Ferone M, Gowen A, Fanning S, Scannell AGM. Microbial detection and identification methods: Bench top assays to omics approaches. Compr Rev Food Sci Food Saf 2020; 19:3106-3129. [PMID: 33337061 DOI: 10.1111/1541-4337.12618] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 07/20/2020] [Accepted: 07/20/2020] [Indexed: 12/26/2022]
Abstract
Rapid detection of foodborne pathogens, spoilage microbes, and other biological contaminants in complex food matrices is essential to maintain food quality and ensure consumer safety. Traditional methods involve culturing microbes using a range of nonselective and selective enrichment methods, followed by biochemical confirmation among others. The time-to-detection is a key limitation when testing foods, particularly those with short shelf lives, such as fresh meat, fish, dairy products, and vegetables. Some recent detection methods developed include the use of spectroscopic techniques, such as matrix-assisted laser desorption ionization-time of flight along with hyperspectral imaging protocols.This review presents a comprehensive overview comparing insights into the principles, characteristics, and applications of newer and emerging techniques methods applied to the detection and identification of microbes in food matrices, to more traditional benchtop approaches. The content has been developed to provide specialist scientists a broad view of bacterial identification methods available in terms of their benefits and limitations, which may be useful in the development of future experimental design. The case is also made for incorporating some of these emerging methods into the mainstream, for example, underutilized potential of spectroscopic techniques and hyperspectral imaging.
Collapse
Affiliation(s)
- Mariateresa Ferone
- UCD School of Agriculture and Food Science, Dublin, Ireland.,UCD School of Biosystems and Food Engineering, Dublin, Ireland.,UCD Institute of Food and Health, Dublin, Ireland
| | - Aoife Gowen
- UCD School of Agriculture and Food Science, Dublin, Ireland.,UCD School of Biosystems and Food Engineering, Dublin, Ireland.,UCD Institute of Food and Health, Dublin, Ireland
| | - Séamus Fanning
- UCD Institute of Food and Health, Dublin, Ireland.,UCD-Centre for Food Safety, Dublin, Ireland.,UCD School of Public Health, Physiotherapy and Sport Science University College Dublin, Dublin, Ireland
| | - Amalia G M Scannell
- UCD School of Agriculture and Food Science, Dublin, Ireland.,UCD Institute of Food and Health, Dublin, Ireland.,UCD-Centre for Food Safety, Dublin, Ireland
| |
Collapse
|
7
|
Shift of Aromatic Profile in Probiotic Hemp Drink Formulations: A Metabolomic Approach. Microorganisms 2019; 7:microorganisms7110509. [PMID: 31671881 PMCID: PMC6920803 DOI: 10.3390/microorganisms7110509] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 10/24/2019] [Accepted: 10/26/2019] [Indexed: 12/18/2022] Open
Abstract
Vegetal drinks as a substitute for milk consumption are raising striking interest in the food industry. Soy and rice drinks are the most successful milk substitutes but are low in protein and fiber contents, are rich in sugars, and their cultivation systems are unsustainable; thus, alternative vegetal sources to resolve these limits must be found. A winning candidate could be hemp seed, which is a powerhouse of nutrients, is sugarless, rich in fiber and proteins, and little land and nutrients demanding. The aim is to develop novel drinks obtained from hemp seeds mixed or not with soy and rice and fermented with probiotics (Lactobacillus fermentum, Lb. plantarum, and Bifidobacterium bifidum). The drinks were characterized for their microbial growth, by means of culture-dependent and -independent techniques, and for their volatilome, by means of solid-phase microextraction-gas chromatography-mass spectrometry (SPME-GC-MS) analysis. The results showed that hemp seed drinks have a specific aroma and its compounds are dependent on the type of formulation and to the probiotic used. For example, in hemp seed drinks, 2-heptanol, 2-methyl, 2,4-decadienal, 2-butanone, 3-hydroxy, 2,3-butanedione, and propanoic acid were fine descriptors of probiotics fermentations. Multivariate analysis of volatile metabolites and their correlation to some physiological parameters and nutritional values offered a novel approach to assess the quality of functional hemp drinks which could result in a decisional tool for industrial applications.
Collapse
|
8
|
Pawlikowska E, James SA, Breierova E, Antolak H, Kregiel D. Biocontrol capability of local Metschnikowia sp. isolates. Antonie Van Leeuwenhoek 2019; 112:1425-1445. [PMID: 31111331 PMCID: PMC6748895 DOI: 10.1007/s10482-019-01272-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 05/03/2019] [Indexed: 12/16/2022]
Abstract
This study set out to isolate and identify epiphytic yeasts producing pulcherrimin, and to evaluate their potential as biological control agents (BCAs). We isolated Metschnikowia sp. strains from flowers and fruits collected in Poland. The plant material had been collected between April to September 2017 from two small orchards where traditional organic management is employed. We identified the essential phenotypic features of the yeast, including assimilation and enzymatic profiles, stress resistance, adhesion properties, and antimicrobial activity against various fungi involved in crop and/or food spoilage. Yeast screening was performed using YPD agar supplemented with chloramphenicol and Fe(III) ions. Taxonomic classification was determined by sequence analysis of the D1/D2 domains of the large subunit rRNA gene. The isolates were identified as Metschnikowia andauensis and Metschnikowia sinensis. The yeast isolates were further characterized based on their enzymatic and assimilation profiles, as well as their growth under various stress conditions. In addition, the hydrophobicity and adhesive abilities of the Metschnikowia isolates were determined using a MATH test and luminometry. Their antagonistic action against molds representing typical crop spoiling microflora was also evaluated. The assimilation profiles of the wild isolates were similar to those displayed by collection strains of M. pulcherrima. However, some of the isolates displayed more beneficial phenotypic properties, especially good growth under stress conditions. Several of the epiphytes grew well over a wider range of temperatures (8-30 °C) and pH levels (3-9), and additionally showed elevated tolerance to ethanol (8%), glucose (30%), and peroxides (50 mM). The hydrophobicity and adhesion of the yeast cells were strain- and surface-dependent. The tested yeasts showed potential for use as BCAs, with some exhibiting strong antagonism against molds belonging to the genera Alternaria, Botrytis, Fusarium, Rhizopus, and Verticillium, as well as against yeasts isolated as food spoilage microbiota.
Collapse
Affiliation(s)
- Ewelina Pawlikowska
- Institute of Fermentation Technology and Microbiology, Lodz University of Technology, Wolczanska 171/173, 90-924 Lodz, Poland
| | - Steve A. James
- Gut Microbes and Health, Quadram Institute Bioscience, Colney Lane, Norwich Research Park, Norwich, NR4 7UA UK
| | - Emilia Breierova
- Culture Collection of Yeasts (CCY), Institute of Chemistry, Slovak Academy of Sciences, Dúbravskácesta 9, 845 38 Bratislava, Slovakia
| | - Hubert Antolak
- Institute of Fermentation Technology and Microbiology, Lodz University of Technology, Wolczanska 171/173, 90-924 Lodz, Poland
| | - Dorota Kregiel
- Institute of Fermentation Technology and Microbiology, Lodz University of Technology, Wolczanska 171/173, 90-924 Lodz, Poland
| |
Collapse
|