1
|
Hu Q, Zhang J, Xing R, Huang W, Zhang T, Chen Y. Comprehensive multiomics analysis reveals the effects of French fries and chicken breast meat on the oxidative degradation of lipids in soybean oil during deep-frying. Food Chem 2025; 473:143052. [PMID: 39874895 DOI: 10.1016/j.foodchem.2025.143052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 01/11/2025] [Accepted: 01/22/2025] [Indexed: 01/30/2025]
Abstract
This study investigated the oxidative degradation of lipids in soybean oil used for frying French fries (SOFFF) and chicken breast meat (SOFCBM) using integrated volatolomics and oxidative lipidomics. Water in the food matrix promotes triglyceride hydrolysis. The rate of lipid hydrolysis was higher in SOFCBM, whereas the rate of lipid oxidation was higher in SOFFF. Prolonged frying with SOFFF may be more harmful to health because of the toxic oxidized triglycerides. Nitrogenous volatile derivatives are characteristic of SOFCBM. The volatile derivatives produced by SOFFF were similar to those produced by thermal processing. Ten non-volatile derivatives were identified as potential markers related to the total polar compound content, and 17 non-volatile derivatives were identified as potential markers related to deep-frying time in both SOFFF and SOFCBM. These results provide a comprehensive insight into the effects of fried foods on the oxidative degradation of lipids.
Collapse
Affiliation(s)
- Qian Hu
- Chinese Academy of Inspection and Quarantine, Beijing 100176, PR China; Key Laboratory of Food Authenticity Identification, State Administration for Market Regulation, Beijing 100176, PR China
| | - Jiukai Zhang
- Chinese Academy of Inspection and Quarantine, Beijing 100176, PR China; Key Laboratory of Food Authenticity Identification, State Administration for Market Regulation, Beijing 100176, PR China.
| | - Ranran Xing
- Chinese Academy of Inspection and Quarantine, Beijing 100176, PR China; Key Laboratory of Food Authenticity Identification, State Administration for Market Regulation, Beijing 100176, PR China
| | - Wensheng Huang
- Chinese Academy of Inspection and Quarantine, Beijing 100176, PR China; Key Laboratory of Food Authenticity Identification, State Administration for Market Regulation, Beijing 100176, PR China
| | - Ting Zhang
- Institute of Farm Product Storage and Processing, Xinjiang Academy of Agricultural Sciences /Research Center of Xinjiang Main Farm Products Processing Engineering, Urumqi 830091, PR China
| | - Ying Chen
- Chinese Academy of Inspection and Quarantine, Beijing 100176, PR China; Key Laboratory of Food Authenticity Identification, State Administration for Market Regulation, Beijing 100176, PR China
| |
Collapse
|
2
|
Zhu Q, Zhang L, Sun X, Sun B, Zhang Y. Analyzing the Effect of Dried Shrimp on the Flavor of Sheep Bone Soup Through Sensory Evaluation Combined with Untargeted Approaches. Foods 2025; 14:1425. [PMID: 40282826 PMCID: PMC12026518 DOI: 10.3390/foods14081425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 04/06/2025] [Accepted: 04/14/2025] [Indexed: 04/29/2025] Open
Abstract
Dried shrimp is a popular dietary ingredient that is often included in appetizer soups, stir-fry dishes, or other stews to improve the umami taste. The effects of adding dried shrimp on the sensory characteristics and taste components of sheep bone soup were investigated through sensory evaluation and untargeted approaches. The results of the single-factor and orthogonal experiments showed that the flavor qualities of sheep bone soup were optimal under the following conditions: 30% dried shrimp added, a 1:4.5 material-water ratio, and 2.7 h of stewing time. Sensory analysis showed a significant increase in the aroma, umami, kokumi, and texture intensity of the optimized sheep bone soup with dried shrimp. The untargeted approach combined with multivariate statistical analysis showed that compounds with a sweet taste (Lys and Ser), a umami taste and umami enhancement (Ala-Leu, Glu-Pro, Glu-Glu, Asp-Phe, pyroglutamic acid, and cinnamic acid), a bitter taste (Gly-Leu, Leu-Leu, Ile-Lys, and taurine), a kokumi taste (γ-Glu-Met, γ-Glu-Leu, γ-Glu-Ile, N-acetylmethionine, and N-acetylphenylalanine), a sour taste (malic acid), and a popcorn-like aroma (2-acetylthiazole) contributed significantly to the flavor enhancement of sheep bone soup. In addition, the contribution of Ac-Ser-Asp-Lys-Pro could not be ignored. These results contribute to a better understanding and improvement of the flavor qualities of sheep bone soup.
Collapse
Affiliation(s)
- Qiuyu Zhu
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing 100048, China; (Q.Z.); (L.Z.); (X.S.); (B.S.)
- Beijing Life Science Academy, Beijing 102209, China
- Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China
- Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
| | - Lili Zhang
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing 100048, China; (Q.Z.); (L.Z.); (X.S.); (B.S.)
- Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China
- Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
| | - Xingming Sun
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing 100048, China; (Q.Z.); (L.Z.); (X.S.); (B.S.)
- Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China
- Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
| | - Baoguo Sun
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing 100048, China; (Q.Z.); (L.Z.); (X.S.); (B.S.)
| | - Yuyu Zhang
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing 100048, China; (Q.Z.); (L.Z.); (X.S.); (B.S.)
- Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China
- Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
3
|
Mishra A, Verma A, Srivastava D, Kumar Ramappa V. Temperature-Based Extraction, Characterization by Gas Chromatography-Mass Spectrometry and Fourier Transform Infrared Spectroscopy With Prospective Antibacterial Properties of Eri (Philosamia ricini) Pupal Oil. Chem Biodivers 2025; 22:e202401935. [PMID: 39579369 DOI: 10.1002/cbdv.202401935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 11/18/2024] [Accepted: 11/22/2024] [Indexed: 11/25/2024]
Abstract
Lepidopteran insects are novel source of omega-3 fatty acids as revealed by the studies recently. In the current study, we assessed the effects of four different drying temperatures (50, 60, 70 and 80°C) of eri silkworm (Philosamia ricini) pupal oil (EPO) abbreviated as EPO50, 60, 70 and 80 followed by conducting the characterization and antibacterial efficacy studies. Gas chromatography-mass spectroscopy (GC-MS) and Fourier transform infrared (FTIR) were used for chemical profiling of EPOs. The agar-well diffusion method was performed to evaluate the antibacterial activities. The trend of this study clearly revealed that enhanced drying percentage of temperatures showed raising saturated fats and reduced unsaturated fats. However, the best suitable temperature was found at 60°C with high unsaturated fatty acids, including omega-3. Further, at higher temperature, FTIR analysis revealed an increasing complexity of functional groups with potential bioactive compounds. EPOs were found to have significant antibacterial activity against Salmonella typhi and Staphylococcus aureus at all tested (10, 20, 30 and 40 µL) volumes used in the study.
Collapse
Affiliation(s)
- Akash Mishra
- Department of Zoology, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, India
| | - Abhishek Verma
- Department of Zoology, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, India
| | - Devika Srivastava
- Department of Zoology, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, India
| | | |
Collapse
|
4
|
Li X, Liu X, Su S, Yao Z, Zhu Z, Chen X, Lao F, Li X. Impact of Oil Temperature and Splashing Frequency on Chili Oil Flavor: Volatilomics and Lipidomics. Foods 2025; 14:1006. [PMID: 40231999 PMCID: PMC11941942 DOI: 10.3390/foods14061006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 03/06/2025] [Accepted: 03/14/2025] [Indexed: 04/16/2025] Open
Abstract
In this study, headspace gas chromatography-ion mobility spectrometry, headspace gas chromatography-mass spectrometry, and lipidomics were used to explore the effects of three oil temperatures (210 °C, 180 °C, 150 °C) with single- and traditional triple-oil-splashing processes (210 °C → 180 °C → 150 °C) on the formation of key chili oil aromas. A total of 31 key aroma compounds were identified, with 2,4-nonadienal, α-pinene, α-phellandrene, and β-ocimene being found in all treatment groups. Lipidomics suggested that oleic acid, linoleic acid, and α-linolenic acid were highly positively correlated with key chili oil key aroma compounds, such as (E)-2-heptenal, 2-methylbutyraldehyde, limonene, (E, E)-2,4-heptadienal, 2,4-nonadienal, and 2,4-decadienal. The temperature and frequency of oil splashing significantly affected the chili oil aroma profile (p < 0.05). The citrus, woody, and grassy notes were richer in chili oil prepared at 150 °C, malty and fatty aromas were more prominent at 180 °C, and the nutty aroma was stronger in 210 °C prepared and triple-splashed chili oil. The present study reveals how sequential oil splashing processes synergistically activate distinct lipid degradation pathways compared to single-temperature treatments, providing new insights into lipid-rich condiment preparation, enabling chefs and food manufacturers to target specific aroma profiles.
Collapse
Affiliation(s)
- Xiaoping Li
- College of Culinary and Food Science Engineering, Sichuan Tourism University, Chengdu 610100, China
| | - Xiaopeng Liu
- College of Culinary and Food Science Engineering, Sichuan Tourism University, Chengdu 610100, China
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit & Vegetable Processing, Key Laboratory of Fruit and Vegetable Processing of Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100083, China
| | - Shiting Su
- College of Culinary and Food Science Engineering, Sichuan Tourism University, Chengdu 610100, China
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit & Vegetable Processing, Key Laboratory of Fruit and Vegetable Processing of Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100083, China
| | - Zhao Yao
- School of Health Industry, Sichuan Tourism University, Chengdu 610100, China
| | - Zhenhua Zhu
- College of Culinary and Food Science Engineering, Sichuan Tourism University, Chengdu 610100, China
| | - Xingyou Chen
- College of Culinary and Food Science Engineering, Sichuan Tourism University, Chengdu 610100, China
- College of Food and Biological Engineering, Qiqihar University, Qiqihar 161006, China
| | - Fei Lao
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit & Vegetable Processing, Key Laboratory of Fruit and Vegetable Processing of Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100083, China
| | - Xiang Li
- College of Culinary and Food Science Engineering, Sichuan Tourism University, Chengdu 610100, China
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
5
|
Zhang ZS, Zhang YZ, Liu XX, Le W, Xiang PF. Comparative study of volatile compounds of cold-pressed oils extracted from three different oilseeds after gamma irradiation. J Food Sci 2024; 89:8930-8944. [PMID: 39437226 DOI: 10.1111/1750-3841.17484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/22/2024] [Accepted: 10/03/2024] [Indexed: 10/25/2024]
Abstract
To investigate the effect of gamma irradiation on the volatile compounds of edible oils. Three types of oilseeds, including peanut, sesame, and flaxseed, were subjected to 8 kGy gamma irradiation, followed by cold pressing to extract their oils. The volatile compounds of the oils were isolated by simultaneous distillation extraction and analyzed by gas chromatography-mass spectrometry. A total of 91 volatile compounds were identified, which can be grouped into eight categories: hydrocarbons, aldehydes, ketones, alcohols, acids, esters, furans, and benzene derivatives. Irradiation treatment resulted in a significant increase in the levels of hydrocarbons, aldehydes, and ketones in all oil samples (p < 0.05), with the greatest increase observed in hydrocarbons (4-14 times). In contrast, changes in alcohols, acids, esters, furans, and benzene derivatives were related to oilseed type. The increased hydrocarbons mainly originated from the degradation of palmitic, stearic, oleic, and linoleic acids. The irradiation resistance of the three oilseeds varied considerably, in the order: flaxseed > sesame > peanut. Based on the odor activity value, 11 key aroma compounds were selected, and (E)-2-decenal (tallow, oily, and orange), 1-octanol (soapy and oily), and 1-nonanol (floral and soapy) were only detected in the irradiated samples. Principal component analysis revealed that the oil samples of the three oilseeds could be well classified based on their key aroma compounds, and that the irradiation treatment had no remarkable effect on their intrinsic aroma.
Collapse
Affiliation(s)
- Zhen-Shan Zhang
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, P. R. China
| | - Ya-Zhe Zhang
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, P. R. China
| | - Xing-Xin Liu
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, P. R. China
| | - Wu Le
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, P. R. China
| | - Peng-Fei Xiang
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, P. R. China
| |
Collapse
|
6
|
Belhoussaine O, El Kourchi C, Harhar H, El Moudden H, El Yadini A, Ullah R, Iqbal Z, Goh KW, Goh BH, Bouyahya A, Tabyaoui M. Phytochemical characterization and nutritional value of vegetable oils from ripe berries of Schinus terebinthifolia raddi and Schinus molle L., through extraction methods. Food Chem X 2024; 23:101580. [PMID: 39027685 PMCID: PMC11254949 DOI: 10.1016/j.fochx.2024.101580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/09/2024] [Accepted: 06/17/2024] [Indexed: 07/20/2024] Open
Abstract
The aims of this study are the phytochemical exploration and food valorization of Schinus molle L. (S. molle) and Schinus terebinthifolia Raddi (S. terebinthifolia) from the Rabat, Morocco. Gas chromatography (GC) and high-performance liquid chromatography (HPLC) were used to analyze the chemical composition of the oils extracted from both species by soxhlet and maceration. Moreover, physicochemical characteristics such as lipid quality indexes such as thrombogenic index (TI), atherogenic index (AI), oxidation susceptibility (OS), and calculated oxidability (Cox) were determined. These characteristics included percentage acidity, peroxide, saponification, iodine, specific extinction values, chlorophyll, and carotenoid pigments. As results, the oil yields varied from 7% (S. molle) to 13% (S. terebinthifolia). In addition, unsaturated fatty acids represented the major fraction for S. terebinthifolia (79%) and S. molle (81%). However, S. terebinthifolia contains more saturated fatty acids (20%) than S. molle (16%) with a predominance of linoleic acid (59.53% and 55%, C18,2), oleic acid (19.29% and 21.69%, C18,1), and palmitic acid (12.56% and 15.48%, C16,0) in S. molle and S. terebinthifolia, respectively. Moreover, the main sterols are β-sitosterol followed by campesterol and then Δ-5-avenasterol, while β-sitosterol varies according to the species and the extraction method. Results revealed also that campesterol is influenced by the extraction results in a content of 179.66 mg/kg (soxhlet) and 63.48 mg/kg (maceration) for S. molle, while S. terebinthifolia yeilds concentrations of 170 mg/kg and 138 mg/kg, then Δ-5-avenasterol, which present with (117 mg/kg and 136 mg/kg), (34 mg/kg and 80 mg/kg) of the total amount of sterols for the oils extracted by soxhlet and maceration, respectively. In addition, there are favorable physicochemical properties for all oils, such as chlorophylls (0.4 to 0.8 mg/kg) and carotenoids (0.7 to 2 mg/kg). However, further investigations are needed to determine other chemical compounds of both extracts as well as to evaluate their biological and health benefits.
Collapse
Affiliation(s)
- Oumayma Belhoussaine
- Laboratory of Materials, Nanotechnology and Environment, Faculty of Sciences, Mohammed V University in Rabat, Av. Ibn Battouta, B.P1014, Rabat, Morocco
| | - Chaimae El Kourchi
- Laboratory of Materials, Nanotechnology and Environment, Faculty of Sciences, Mohammed V University in Rabat, Av. Ibn Battouta, B.P1014, Rabat, Morocco
| | - Hicham Harhar
- Laboratory of Materials, Nanotechnology and Environment, Faculty of Sciences, Mohammed V University in Rabat, Av. Ibn Battouta, B.P1014, Rabat, Morocco
| | - Hamza El Moudden
- Higher School of Technology of El Kelaa Des Sraghna, Cadi Ayyad University, El Kelaa Des Sraghna B.P 104, Morocco
| | - Adil El Yadini
- Laboratory of Materials, Nanotechnology and Environment, Faculty of Sciences, Mohammed V University in Rabat, Av. Ibn Battouta, B.P1014, Rabat, Morocco
| | - Riaz Ullah
- Department of Pharmacognosy College of Pharmacy King Saud University Riyadh, Saudi Arabia
| | - Zafar Iqbal
- Department of Surgery, College of Medicine, King Saud University, P.O.Box 7805, Riyadh.11472, Saudi Arabia
| | - Khang Wen Goh
- Faculty of Data Science and Information Technology, INTI International University, Nilai, Malaysia
- Faculty of Engineering, Shinawatra University, Samkhok, Pathum Thani, Thailand
| | - Bey Hing Goh
- Sunway Biofunctional Molecules Discovery Centre (SBMDC), School of Medical and Life Sciences, Sunway University, Sunway City, Selangor, Malaysia
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Morocco
| | - Mohamed Tabyaoui
- Laboratory of Materials, Nanotechnology and Environment, Faculty of Sciences, Mohammed V University in Rabat, Av. Ibn Battouta, B.P1014, Rabat, Morocco
| |
Collapse
|
7
|
Jiang X, Zhang R, Yao Y, Tang C, Wang B, Wang Z. Effects of Steaming on Chemical Composition of Different Varieties of Purple-Fleshed Sweetpotato. Foods 2024; 13:3168. [PMID: 39410203 PMCID: PMC11475826 DOI: 10.3390/foods13193168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/03/2024] [Accepted: 10/04/2024] [Indexed: 10/20/2024] Open
Abstract
Purple-fleshed sweetpotatoes (PFSPs) are rich in anthocyanins and are one of the health foods of interest. In this study, the effects of steaming on the anthocyanin, starch, soluble sugar, volatile organic compounds (VOCs) and pasting properties of nine PFSPs from China were investigated. The anthocyanin content of raw PFSP ranged from 9 to 185 mg/100 g. The total starch content decreased and soluble sugar content increased in all purple potatoes after steaming. Among the nine PFSPs varieties, Guangshu20 showed the greatest decrease in starch content (30.61%) and the greatest increase in soluble sugar content (31.12%). The pasting properties affected the taste of the PFSPs, with Shuangpihuang having the lowest peak viscosity (720.33 cP) and Guangzishu12 having the highest peak viscosity (2501.67 cP). Correlation studies showed that the anthocyanin content and pasting properties were negatively correlated with most of the sensory indicators, whereas the soluble sugar content of steamed PFSPs was significantly positively correlated with sweetness. A total of 54 VOCs were identified in this study, and aldehydes and terpenoids were the major VOCs in PFSPs. This study provides a theoretical basis for the processing of different PFSP varieties.
Collapse
Affiliation(s)
- Xia Jiang
- Guangdong Province Key Laboratory of Crop Genetic Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (X.J.); (R.Z.); (Y.Y.); (C.T.)
| | - Rong Zhang
- Guangdong Province Key Laboratory of Crop Genetic Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (X.J.); (R.Z.); (Y.Y.); (C.T.)
| | - Yanqiang Yao
- Guangdong Province Key Laboratory of Crop Genetic Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (X.J.); (R.Z.); (Y.Y.); (C.T.)
| | - Chaochen Tang
- Guangdong Province Key Laboratory of Crop Genetic Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (X.J.); (R.Z.); (Y.Y.); (C.T.)
| | - Bin Wang
- School of Food Science and Technology, Shihezi University, Shihezi 832000, China;
| | - Zhangying Wang
- Guangdong Province Key Laboratory of Crop Genetic Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (X.J.); (R.Z.); (Y.Y.); (C.T.)
| |
Collapse
|
8
|
Nagy K, Iacob BC, Bodoki E, Oprean R. Investigating the Thermal Stability of Omega Fatty Acid-Enriched Vegetable Oils. Foods 2024; 13:2961. [PMID: 39335890 PMCID: PMC11431109 DOI: 10.3390/foods13182961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/13/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
This study investigates the thermal stability of omega fatty acid-enriched vegetable oils, focusing on their behavior under high-temperature conditions commonly encountered during frying. This research aims to evaluate changes in fatty acid composition, particularly the degradation of essential omega-3, -6, and -9 fatty acids, and the formation of harmful compounds such as trans fatty acids (TFAs). Various commercially available vegetable oils labeled as containing omega-3, omega-6, and omega-9, including refined sunflower, high-oleic sunflower, rapeseed, and blends, were analyzed under temperatures from 180 °C to 230 °C for varying durations. The fatty acid profiles were determined using gas chromatography-mass spectrometry (GC-MS). The results indicated a significant degradation of polyunsaturated fatty acids (PUFAs) and an increase in saturated fatty acids (SFAs) and TFAs with prolonged heating. The findings highlight the varying degrees of thermal stability among different oils, with high-oleic sunflower and blended oils exhibiting greater resistance to thermal degradation compared to conventional sunflower oils. This study underscores the importance of selecting oils with favorable fatty acid compositions for high-temperature cooking to minimize adverse health effects associated with degraded oil consumption. Furthermore, it provides insights into optimizing oil blends to enhance thermal stability and maintain nutritional quality, crucial for consumer health and food industry practices.
Collapse
Affiliation(s)
- Katalin Nagy
- Analytical Chemistry Department, "Iuliu Hațieganu" University of Medicine and Pharmacy, 4, Louis Pasteur St., 400349 Cluj-Napoca, Romania
| | - Bogdan-Cezar Iacob
- Analytical Chemistry Department, "Iuliu Hațieganu" University of Medicine and Pharmacy, 4, Louis Pasteur St., 400349 Cluj-Napoca, Romania
| | - Ede Bodoki
- Analytical Chemistry Department, "Iuliu Hațieganu" University of Medicine and Pharmacy, 4, Louis Pasteur St., 400349 Cluj-Napoca, Romania
| | - Radu Oprean
- Analytical Chemistry Department, "Iuliu Hațieganu" University of Medicine and Pharmacy, 4, Louis Pasteur St., 400349 Cluj-Napoca, Romania
| |
Collapse
|
9
|
Fedko M, Siger A, Szydłowska-Czerniak A, Rabiej-Kozioł D, Tymczewska A, Włodarczyk K, Kmiecik D. The Effect of High-Temperature Heating on Amounts of Bioactive Compounds and Antiradical Properties of Refined Rapeseed Oil Blended with Rapeseed, Coriander and Apricot Cold-Pressed Oils. Foods 2024; 13:2336. [PMID: 39123528 PMCID: PMC11311388 DOI: 10.3390/foods13152336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/22/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
Cold-pressed oils are rich sources of bioactive substances, which may protect triacylglycerols from degradation during frying. Nevertheless, these substances may decompose under high temperature. This work considers the content of bioactive substances in blends and their changes during high-temperature heating. Blends of refined rapeseed oil with 5% or 25% in one of three cold-pressed oils (rapeseed, coriander and apricot) were heated at 170 or 200 °C in a thin layer on a pan. All non-heated blends and cold-pressed oils were tested for fatty acid profile, content and composition of phytosterols, tocochromanols, chlorophyll and radical scavenging activity (RSA) analyzed by 2,2-diphenyl-1-picrylhydrazyl (DPPH), and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) assays. Moreover, the stability of phytosterols, tocochromanols, DPPH and ABTS values was determined in heated blends. All tocochromanols were lost during the heating process, in particular, at 200 °C. However, there were some differences between homologues. α-Tocopherol and δ-tocopherol were the most thermolabile and the most stable, respectively. Phytosterols were characterized by very high stability at both temperatures. We observed relationships between ABTS and DPPH values and contents of total tocochromanols and α-tocopherol. The obtained results may be useful in designing a new type of fried food with improved health properties and it may be the basis for further research on this topic.
Collapse
Affiliation(s)
- Monika Fedko
- Department of Food Technology and Assessment, Institute of Food Science, Warsaw University of Life Sciences, Nowoursynowska 159c, 02-787 Warsaw, Poland
| | - Aleksander Siger
- Department of Food Biochemistry and Analysis, Poznań University of Life Sciences, Wojska Polskiego 31, 60-634 Poznań, Poland;
| | - Aleksandra Szydłowska-Czerniak
- Department of Analytical Chemistry and Applied Spectroscopy, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland; (A.S.-C.); (D.R.-K.); (A.T.); (K.W.)
| | - Dobrochna Rabiej-Kozioł
- Department of Analytical Chemistry and Applied Spectroscopy, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland; (A.S.-C.); (D.R.-K.); (A.T.); (K.W.)
| | - Alicja Tymczewska
- Department of Analytical Chemistry and Applied Spectroscopy, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland; (A.S.-C.); (D.R.-K.); (A.T.); (K.W.)
| | - Katarzyna Włodarczyk
- Department of Analytical Chemistry and Applied Spectroscopy, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland; (A.S.-C.); (D.R.-K.); (A.T.); (K.W.)
| | - Dominik Kmiecik
- Department of Food Technology of Plant Origin, Poznań University of Life Sciences, Wojska Polskiego 31, 60-634 Poznań, Poland;
| |
Collapse
|
10
|
Bergesse AE, Camiletti OF, Vázquez C, Grosso NR, Ryan LC, Nepote V. Microencapsulation of peanut skin polyphenols for shelf life improvement of sunflower seeds. J Food Sci 2024; 89:4064-4078. [PMID: 38829747 DOI: 10.1111/1750-3841.17146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/03/2024] [Accepted: 05/13/2024] [Indexed: 06/05/2024]
Abstract
Derived from industrial processing waste, peanut skins contain polyphenols that delay oxidative food spoilage. However, these compounds are susceptible to light, heat, and oxygen exposure. Microencapsulation provides a solution by offering protection from these factors. The aim of this study was to evaluate the protective effect of peanut skin extract microcapsules on the chemical, microbiological, and sensory property and shelf life of sunflower seeds during storage. Five roasted sunflower seed samples were prepared: control (S-C); added with butylhydroxytoluene (S-BHT); coated with carboxymethyl cellulose (S-CMC); coated with CMC and the addition of peanut skin crude extract (S-CMC-CE); coated with CMC and the addition of microcapsules (S-CMC-M20). Sensory acceptability was determined using hedonic testing. Chemical (peroxide value, conjugated dienes, hexanal and nonanal content, and fatty acid profile), microbiological, and descriptive analyses were carried out on samples stored for 45 days at room temperature. Shelf life was calculated using a simple linear regression. All samples were microbiologically fit for human consumption and accepted by consumer panelists, scoring above five points on the nine-point hedonic scale. S-CMC-M20 exhibited the lowest peroxide value (6.59 meqO2/kg) and hexanal content (0.4 µg/g) at the end of the storage. Estimated shelf life showed that S-MC-M20 (76.3 days) extended its duration nearly ninefold compared to S-C (8.3 days) and doubled that of S-CMC-CE (37.5 days). This indicates a superior efficacy of microencapsulated extract compared to its unencapsulated form, presenting a promising natural strategy for improving the shelf life of analogous food items. PRACTICAL APPLICATION: Incorporating peanut skin extract microcapsules in coating sunflower seeds presents a promising strategy to extend the shelf life of lipid-rich foods, capitalizing on the antioxidant properties of polyphenols. This innovative approach not only enhances nutritional quality but also addresses sustainability concerns by repurposing agro-industrial byproducts, such as peanut skins. By meeting consumer demand for functional foods with added health benefits, this technique offers potential opportunities for the development of novel, value-added food products while contributing to circular economy principles and waste management efforts.
Collapse
Affiliation(s)
- Antonella Estefanía Bergesse
- Instituto Multidisciplinario de Biología Vegetal (IMBIV-CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina
- Facultad de Ciencias Agropecuarias, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Ornella Francina Camiletti
- Instituto Multidisciplinario de Biología Vegetal (IMBIV-CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina
- Facultad de Ciencias Agropecuarias, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Carolina Vázquez
- Facultad de Ciencias Agropecuarias, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Nelson Rubén Grosso
- Instituto Multidisciplinario de Biología Vegetal (IMBIV-CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina
- Facultad de Ciencias Agropecuarias, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Liliana Cecilia Ryan
- Escuela de Nutrición, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba (UNC), Córdoba, Argentina
| | - Valeria Nepote
- Instituto Multidisciplinario de Biología Vegetal (IMBIV-CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina
- Facultad de Ciencias Exactas, Físicas y Naturales (UNC), Instituto de Ciencia y Tecnología de los Alimentos (ICTA), Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
11
|
Moraes IA, Neves MG, Siesler HW, E L Villa J, Cunha RL, Barbin DF. Characterization and classification of oleogels and edible oil using vibrational spectroscopy in tandem with one-class and multiclass chemometric methods. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 313:124148. [PMID: 38492463 DOI: 10.1016/j.saa.2024.124148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/14/2024] [Accepted: 03/10/2024] [Indexed: 03/18/2024]
Abstract
Oleogel represents a promising healthier alternative to act as a substitute for conventional fat in various food products. Oil selection is a crucial factor in determining the technological properties and applications of oleogels due to their distinct fatty acid composition, molecular weight, and thermal properties, as well as the presence of antioxidants and oxidative stability. Hence, the relevance of monitoring oleogel properties by non-destructive, eco-friendly, portable, fast, and effective techniques is a relevant task and constitutes an advance in the evaluation of oleogels quality. Thus, the present study aims to classify oleogels rapidly and reliably, without the use of chemicals, comparing two handheld near infrared (NIR) spectrometers and one portable Raman device. Furthermore, two different multivariate methods are compared for oleogel classification according to oil type. Three types of oleogels were prepared, containing 95 % oil (sunflower, soy, olive) and 5 % beeswax as a structuring agent, melted at 90 °C. Polarized light microscopy (PLM) images were acquired, and fatty acid composition, peroxide index and free fatty acid content were determined using official methods. A total of 240 oleogel and 92 oil spectra were obtained for each instrument. After spectra pretreatment, Principal Component Analysis (PCA) was performed, and two classification methods were investigated. The Data Driven - Soft Independent Modelling of Class Analogy (DD-SIMCA) and Partial Least Squares Discriminant Analysis (PLS-DA) models demonstrated 95 % to 100 % of accuracy for the external test set. In conclusion, the use of vibrational spectroscopy using handheld and portable instruments in tandem with chemometrics showed to be an efficient alternative for classifying oils and oleogels and could be extended to other food samples. Although the classification of vegetable oils by NIR is widely used and known, this work proposes the classification of different types of oil in oleogel matrices, which has not yet been explored in the literature.
Collapse
Affiliation(s)
- Ingrid A Moraes
- Department of Food Engineering and Technology. School of Food Engineering. University of Campinas, SP, Brazil.
| | - Marina G Neves
- Department of Physical Chemistry, University Duisburg-Essen, Essen, Germany
| | - Heinz W Siesler
- Department of Physical Chemistry, University Duisburg-Essen, Essen, Germany
| | - Javier E L Villa
- Institute of Chemistry, University of Campinas, Campinas-SP, Brazil
| | - Rosiane L Cunha
- Department of Food Engineering and Technology. School of Food Engineering. University of Campinas, SP, Brazil
| | - Douglas F Barbin
- Department of Food Engineering and Technology. School of Food Engineering. University of Campinas, SP, Brazil
| |
Collapse
|
12
|
Zhang HL, Wang ZX, Wang KL, Du J, He JB, Zhang WN. Lipid concomitant γ-oryzanol decreased oil absorbency of French fries by changing the microstructure of French fries and physical properties of frying oil. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:3246-3255. [PMID: 38081762 DOI: 10.1002/jsfa.13211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 12/05/2023] [Accepted: 12/12/2023] [Indexed: 12/21/2023]
Abstract
BACKGROUND The aim of this research was to evaluate the possibility of lipid concomitant γ-oryzanol reducing oil absorbency of fried foods and the underlying mechanism. Therefore, the influence of γ-oryzanol on moisture and oil content, and distribution and micromorphology of French fries and the viscosity, fatty acid composition and total polar compounds content of rice bran oil (RBO) after frying were studied. RESULTS Our results showed that the incorporation of low concentration of γ-oryzanol [low addition group (LAG)] (5.754 g/kg) decreased the oil absorbency and porous structure of French fries during frying. Additionally, LAG incorporation inhibited the degradation of linoleic acid, decreased the growth rate of saturated fatty acids, total polar compounds and viscosity of frying oil. CONCLUSIONS Consequently, it was recommended to incorporate a small amount of γ-oryzanol in frying oil because it could inhibit oil absorption behavior of French fries. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Hai-Long Zhang
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan Polytechnic University, Wuhan, China
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan, China
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, China
- Engineering Research Center of Lipid-based Fine Chemicals of Hubei Province, Wuhan, China
| | - Zhi-Xian Wang
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Kun-Li Wang
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Jing Du
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan Polytechnic University, Wuhan, China
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan, China
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Jun-Bo He
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan Polytechnic University, Wuhan, China
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan, China
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, China
- Engineering Research Center of Lipid-based Fine Chemicals of Hubei Province, Wuhan, China
| | - Wei-Nong Zhang
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan Polytechnic University, Wuhan, China
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan, China
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, China
- Engineering Research Center of Lipid-based Fine Chemicals of Hubei Province, Wuhan, China
| |
Collapse
|
13
|
Luo X, Hu B, Jia C, Liu R, Rong J, Zhao S, Niu M, Xu Y, Yin T, You J. Study by means of 1H nuclear magnetic resonance of the oxidation process in high oleic sunflower oil and palm oil during deep-frying of fish cakes. Food Res Int 2024; 179:113942. [PMID: 38342517 DOI: 10.1016/j.foodres.2024.113942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/26/2023] [Accepted: 01/02/2024] [Indexed: 02/13/2024]
Abstract
This study aimed to compare the frying performance of palm oil (PO) and high oleic sunflower oil (HOSO) during frying aquatic products. The quality change and frying performance of HOSO and PO during frying of fish cakes were investigated. The oxidation and hydrolysis products of both oils were explored by the nuclear magnetic resonance technique. The results showed that the color deepening rate of PO was higher than that of HOSO. After 18 h of frying, the total polar compound content of PO and HOSO reached 25.67% and 27.50%, respectively. HOSO had lower degree of oxidation than PO after 24 h of continuous frying. The polyunsaturated fatty acid content in HOSO and PO significantly decreased. The oleic acid content in HOSO remained above 80% during the frying process. The major aldehydes in both oils were (E, E)-2,4-alkadienals and n-alkanals and glycerol diesters (DAGs) were abundant in PO. Furthermore, the addition of fish cakes had slight effect on the quality of the frying oil. Therefore, HOSO is an appropriate candidate for frying owing to its excellent frying stability and nutritional value.
Collapse
Affiliation(s)
- Xiaoyu Luo
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province 430070, PR China
| | - Benlun Hu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province 430070, PR China
| | - Caihua Jia
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province 430070, PR China; Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Wuhan, Hubei Province 430070, PR China.
| | - Ru Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province 430070, PR China
| | - Jianhua Rong
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province 430070, PR China
| | - Siming Zhao
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province 430070, PR China
| | - Meng Niu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province 430070, PR China
| | - Yan Xu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province 430070, PR China
| | - Tao Yin
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province 430070, PR China
| | - Juan You
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province 430070, PR China
| |
Collapse
|
14
|
Anand V, Ksh V, Kar A, Varghese E, Vasudev S, Kaur C. Encapsulation efficiency and fatty acid analysis of chia seed oil microencapsulated by freeze-drying using combinations of wall material. Food Chem 2024; 430:136960. [PMID: 37531916 DOI: 10.1016/j.foodchem.2023.136960] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 07/11/2023] [Accepted: 07/19/2023] [Indexed: 08/04/2023]
Abstract
Chia seed oil (CSO) was encapsulated using whey protein concentrate (WPC) and modified tapioca starch (MTS) through freeze-drying. A central composite design was used to evaluate the effect of independent variables (MTS:WPC ratio, homogenization pressure, and oil content). Encapsulation efficiency (EE) and α-linolenic acid content (ALA) were evaluated for all runs. The results showed that higher MTS ratios led to maximum ALA retention, while higher WPC ratios led to maximum EE. The optimized conditions resulted in high EE (97 %), ALA content (59.54 %), and a Ω-3:Ω-6 ratio (3.34). The fatty acid composition, oxidative and thermal stability showed that the MTS:WPC ratio of 25:75 was the best combination for encapsulating CSO. The encapsulated CSO with a balanced Ω-3:Ω-6 ratio can be used as a functional ingredient in foods for health benefits.
Collapse
Affiliation(s)
- Vishnu Anand
- Division of Food Science & Post Harvest Technology, ICAR-IARI, New Delhi 110012, India
| | - Vikono Ksh
- Division of Food Science & Post Harvest Technology, ICAR-IARI, New Delhi 110012, India
| | - Abhijit Kar
- ICAR - National Institute of Secondary Agriculture, Namkum, Ranchi 834010, India.
| | - Eldho Varghese
- Fishery Resources Assessment Division (FRAD), ICAR-Central Marine Fisheries Research Institute, Kochi 682018, India
| | - Sujata Vasudev
- Division of Genetics, ICAR-IARI, New Delhi 110012, India
| | - Charanjit Kaur
- Division of Food Science & Post Harvest Technology, ICAR-IARI, New Delhi 110012, India.
| |
Collapse
|
15
|
Fu H, Feng Q, Qiu D, Shen X, Li C, He Y, Shang W. Improving the flavor of tilapia fish head soup by adding lipid oxidation products and cysteine. Food Chem 2023; 429:136976. [PMID: 37517226 DOI: 10.1016/j.foodchem.2023.136976] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/01/2023] [Accepted: 07/20/2023] [Indexed: 08/01/2023]
Abstract
Deodorization and umami enhancement are important challenges in promoting and consuming fish products. The aim of this study was to establish whether exogenous addition of oxidized lipids and cysteine can improve the fishy, umami and create a characteristic flavor in tilapia fish head soup. The results revealed that adding oxidized lipids and cysteine enhanced the sensory attributes of fish head soup and promoted the production of pleasant-tasting amino acids and fewer bitter amino acids in the Maillard reaction. Additionally, the combination increased the levels of well-flavored aldehydes, esters, heterocyclic compounds and less hydrocarbons in the fish head soup. Among the 13 volatile compounds screened, nine were identified as characteristic aromas of fish head soup, including nonanal, (E,E)-2,4-decadienal, 1-octen-3-ol, (E)-2-decenal, acetic acid, hexanal, heptanal, 2-octenal, and decanal. Exogenous lipid oxidation products, fatty acid oxidation, and Maillard reaction can improve the aroma and umami of tilapia fish head soup.
Collapse
Affiliation(s)
- Huixian Fu
- College of Food Science and Engineering, Hainan University, 58th Renmin Road, Meilan District, Haikou 570100, Hainan Province, China
| | - Qiaohui Feng
- College of Food Science and Engineering, Hainan University, 58th Renmin Road, Meilan District, Haikou 570100, Hainan Province, China
| | - Dan Qiu
- College of Food Science and Engineering, Hainan University, 58th Renmin Road, Meilan District, Haikou 570100, Hainan Province, China
| | - Xuanri Shen
- College of Food Science and Technology, Hainan Tropical Ocean University, China
| | - Chuan Li
- College of Food Science and Engineering, Hainan University, 58th Renmin Road, Meilan District, Haikou 570100, Hainan Province, China; Hainan Provincial Engineering Research Centre of Aquatic Resources Efficient Utilization in the South China Sea, 58th Renmin Road, Meilan District, Haikou 570100, Hainan Province, China
| | - Yanfu He
- College of Food Science and Engineering, Hainan University, 58th Renmin Road, Meilan District, Haikou 570100, Hainan Province, China; Hainan Provincial Engineering Research Centre of Aquatic Resources Efficient Utilization in the South China Sea, 58th Renmin Road, Meilan District, Haikou 570100, Hainan Province, China.
| | - Wenting Shang
- College of Food Science and Engineering, Hainan University, 58th Renmin Road, Meilan District, Haikou 570100, Hainan Province, China
| |
Collapse
|
16
|
Stefanidis S, Ordoudi SA, Nenadis N, Pyrka I. Improving the functionality of virgin and cold-pressed edible vegetable oils: Oxidative stability, sensory acceptability and safety challenges. Food Res Int 2023; 174:113599. [PMID: 37986461 DOI: 10.1016/j.foodres.2023.113599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/08/2023] [Accepted: 10/13/2023] [Indexed: 11/22/2023]
Abstract
In recent years, there has been a growing demand for minimally processed foods that offer health benefits and premium sensory characteristics. This trend has led to increased consumption of virgin (VOs) and cold-pressed (CPOs) oils, which are rich sources of bioactive substances. To meet consumer needs for new oil products conferring multi-functional properties over a longer storage period, the scientific community has been revisiting traditional enrichment practices while exploring novel fortification technologies. In the last four years, the interest has been growing faster; an ascending number of annually published studies are about the addition of different plant materials, agri-food by-products, or wastes (intact or extracts) to VOs and CPOs using traditional or innovative fortification processes. Considering this trend, the present review aims to provide an overview and summarize the key findings from relevant papers that were retrieved from extensively searched databases. Our meta-analysis focuses on exposing the most recent trends regarding the exploitation of VOs and CPOs as substrates, the fortification agents and their form of use, as well as the fortification technologies employed. The review critically discusses possible health claim and labeling issues and highlights some chemical and microbial safety concerns along with authenticity issues and gaps in quality specifications that manufacturers have yet to address. All these aspects are examined from the perspective of developing new oil products with well-balanced techno-, senso- and bio-functional characteristics.
Collapse
Affiliation(s)
- Stavros Stefanidis
- Laboratory of Food Chemistry and Technology, School of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | - Stella A Ordoudi
- Laboratory of Food Chemistry and Technology, School of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | - Nikolaos Nenadis
- Laboratory of Food Chemistry and Technology, School of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | - Ioanna Pyrka
- Laboratory of Food Chemistry and Technology, School of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| |
Collapse
|
17
|
Herkenhoff ME, de Medeiros IUD, Garutti LHG, Salgaço MK, Sivieri K, Saad SMI. Cashew By-Product as a Functional Substrate for the Development of Probiotic Fermented Milk. Foods 2023; 12:3383. [PMID: 37761092 PMCID: PMC10528859 DOI: 10.3390/foods12183383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 08/31/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Cashew (Anacardium occidentale) processing generates a by-product (CB) with potential for health benefits and that could be a favorable ingredient to be added to a probiotic food matrix. This study aimed to assess the functional attributes of CB in fermented milk with a probiotic and a starter culture using in vitro gastrointestinal conditions. Two formulations were tested, without CB (Control Formulation-CF) and with CB (Test Formulation-TF), and the two strains most adapted to CB, the probiotic Lacticaseibacillus paracasei subsp. paracasei F19® and the starter Streptococcus thermophilus ST-M6®, were chosen to be fermented in the CF and the TF. During a 28-day period of refrigeration (4 °C), both strains used in the CF and TF maintained a population above 8.0 log CFU/mL. Strains cultured in the TF had a significant increase in total phenolic compounds and greater antioxidant potential during their shelf life, along with improved survival of F19® after in vitro-simulated gastrointestinal conditions. Our study revealed the promising potential of CB in the probiotic beverage. The CB-containing formulation (TF) also exhibited higher phenolic content and antioxidant activity. Furthermore, it acted as a protector for bacteria during gastrointestinal simulation, highlighting its potential as a healthy and sustainable product.
Collapse
Affiliation(s)
- Marcos Edgar Herkenhoff
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of São Paulo (USP), Av. Professor Lineu Prestes, 580, São Paulo 05508-000, SP, Brazil; (M.E.H.); (I.U.D.d.M.); (L.H.G.G.)
- Food Research Center FoRC, University of São Paulo (USP), Av. Professor Lineu Prestes, 580, São Paulo 05508-000, SP, Brazil
| | - Igor Ucella Dantas de Medeiros
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of São Paulo (USP), Av. Professor Lineu Prestes, 580, São Paulo 05508-000, SP, Brazil; (M.E.H.); (I.U.D.d.M.); (L.H.G.G.)
- Food Research Center FoRC, University of São Paulo (USP), Av. Professor Lineu Prestes, 580, São Paulo 05508-000, SP, Brazil
| | - Luiz Henrique Grotto Garutti
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of São Paulo (USP), Av. Professor Lineu Prestes, 580, São Paulo 05508-000, SP, Brazil; (M.E.H.); (I.U.D.d.M.); (L.H.G.G.)
- Food Research Center FoRC, University of São Paulo (USP), Av. Professor Lineu Prestes, 580, São Paulo 05508-000, SP, Brazil
| | - Mateus Kawata Salgaço
- School of Pharmaceutical Sciences of Araraquara, São Paulo State University (UNESP), Rodovia Araraquara Jaú, Km 01 s/n, Araraquara 14800-903, SP, Brazil; (M.K.S.); (K.S.)
| | - Katia Sivieri
- School of Pharmaceutical Sciences of Araraquara, São Paulo State University (UNESP), Rodovia Araraquara Jaú, Km 01 s/n, Araraquara 14800-903, SP, Brazil; (M.K.S.); (K.S.)
| | - Susana Marta Isay Saad
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of São Paulo (USP), Av. Professor Lineu Prestes, 580, São Paulo 05508-000, SP, Brazil; (M.E.H.); (I.U.D.d.M.); (L.H.G.G.)
- Food Research Center FoRC, University of São Paulo (USP), Av. Professor Lineu Prestes, 580, São Paulo 05508-000, SP, Brazil
| |
Collapse
|
18
|
Ma Y, Wang G, Deng Z, Zhang B, Li H. Effects of Endogenous Anti-Oxidative Components from Different Vegetable Oils on Their Oxidative Stability. Foods 2023; 12:foods12112273. [PMID: 37297517 DOI: 10.3390/foods12112273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 05/23/2023] [Accepted: 06/03/2023] [Indexed: 06/12/2023] Open
Abstract
The effects of endogenous anti-oxidative components of ten common edible vegetable oils (palm olein, corn oil, rapeseed oil, soybean oil, perilla seed oil, high oleic sunflower oil, peanut oil, camellia oil, linseed oil, and sesame oil) on oxidation were explored in this research. The oxidation processes and patterns of the oils were investigated with the Schaal oven test using fatty acids and the oxidative stability index, acid value, peroxide value, p-anisidine value, total oxidation value, and content of major endogenous anti-oxidative components as indicators. The major endogenous anti-oxidative components in vegetable oils were tocopherols, sterols, polyphenols, and squalene, among which α-tocopherol, β-sitosterol, and polyphenols showed good anti-oxidative activity. However, squalene and polyphenols were relatively low and showed limited anti-oxidative effects. Moreover, the oxidative stability index of edible vegetable oils oxidized at high temperature (120 °C) was positively correlated with the content of saturated fatty acids (r = 0.659) and negatively correlated with the content of polyunsaturated fatty acids (r = -0.634) and calculated oxidizability (r = -0.696). When oxidized at a low temperature (62 °C), oxidative stability was influenced by a combination of fatty acid composition as well as endogenous anti-oxidative components. An improved TOPSIS based on Mahalanobis distance was used to evaluate the oxidative stability of different types of vegetable oils. Moreover, the oxidative stability of corn oil was better than the other vegetable oils, while perilla seed oil was very weak.
Collapse
Affiliation(s)
- Yuchen Ma
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Guangyi Wang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Zeyuan Deng
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
- Institute for Advanced Study, Nanchang University, Nanchang 330031, China
| | - Bing Zhang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Hongyan Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| |
Collapse
|
19
|
Ansorena D, Ramírez R, Lopez de Cerain A, Azqueta A, Astiasaran I. Oxidative Stability and Genotoxic Activity of Vegetable Oils Subjected to Accelerated Oxidation and Cooking Conditions. Foods 2023; 12:foods12112186. [PMID: 37297430 DOI: 10.3390/foods12112186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 05/24/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
The oxidative stability and genotoxicity of coconut, rapeseed and grape seed oils were evaluated. Samples were submitted to different treatments: 10 days at 65 °C, 20 days at 65 °C (accelerated storage) and 90 min at 180 °C. Peroxide values and thiobarbituric acid reactive substances values were altered as a function of storage time, but their greatest changes were recorded in samples subjected to 180 °C. Fatty acid profiles did not show significant changes from the nutritional point of view. Volatile compounds showed the highest increases at 180 °C for 90 min (18, 30 and 35 fold the amount in unheated samples in rapeseed, grape seed and coconut oils, respectively), particularly due to the increment in aldehydes. This family accounted for 60, 82 and 90% of the total area in coconut, rapeseed and grapeseed oil, respectively, with cooking. Mutagenicity was not detected in any case in a miniaturized version of the Ames test using TA97a and TA98 Salmonella typhimurium strains. Despite the increment in the presence of lipid oxidation compounds in the three oils, they were not compromised from the safety perspective.
Collapse
Affiliation(s)
- Diana Ansorena
- Department of Nutrition, Food Science and Physiology, Center for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, Irunlarrea 3, 31008 Pamplona, Spain
| | - Rubén Ramírez
- Department of Nutrition, Food Science and Physiology, Center for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain
- Department of Pharmacology and Toxicology, Faculty of Pharmacy and Nutrition, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain
| | - Adela Lopez de Cerain
- IdiSNA, Navarra Institute for Health Research, Irunlarrea 3, 31008 Pamplona, Spain
- Department of Pharmacology and Toxicology, Faculty of Pharmacy and Nutrition, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain
| | - Amaya Azqueta
- IdiSNA, Navarra Institute for Health Research, Irunlarrea 3, 31008 Pamplona, Spain
- Department of Pharmacology and Toxicology, Faculty of Pharmacy and Nutrition, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain
| | - Iciar Astiasaran
- Department of Nutrition, Food Science and Physiology, Center for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, Irunlarrea 3, 31008 Pamplona, Spain
| |
Collapse
|
20
|
Pizzimenti S, Bernazzani L, Duce C, Tinè MR, Bonaduce I. A versatile method to fingerprint and compare the oxidative behaviour of lipids beyond their oxidative stability. Sci Rep 2023; 13:8094. [PMID: 37208395 DOI: 10.1038/s41598-023-34599-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 05/04/2023] [Indexed: 05/21/2023] Open
Abstract
In this work we propose the use of isothermal thermogravimetry to evaluate the oxidative stability of a lipid and to evaluate how the glyceride composition affects the entire oxidative process, to quantify the oxidation undertaken by the lipid, and numerically compare the oxidative behaviour of different lipids. The innovative aspect of the present method lies in the acquisition of a prolonged "oxygen uptake" curve (4000-10,000 min) of a lipid under oxygen and in the development of a semi-empirical fitting equation for the experimental data. This provides the induction period (oxidative stability), and allows to evaluate the rate of oxidation, the rate and the magnitude of oxidative degradation, the overall mass loss and the mass of oxygen taken by the lipid upon time. The proposed approach is used to characterize the oxidation of different edible oils with different degrees of unsaturation (linseed oil, sunflower oil, and olive oil) as well as chemically simpler compounds used in the literature to model the autoxidation of vegetable oils and lipids in general: triglycerides (glyceryl trilinolenate, glyceryl trilinoleate and glyceryl trioleate) and methyl esters (methyl linoleate and methyl linolenate). The approach proves very robust and very sensitive to changes in the sample composition.
Collapse
Affiliation(s)
- Silvia Pizzimenti
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Giuseppe Moruzzi 13, 56124, Pisa, Italy
| | - Luca Bernazzani
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Giuseppe Moruzzi 13, 56124, Pisa, Italy.
| | - Celia Duce
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Giuseppe Moruzzi 13, 56124, Pisa, Italy.
- Istituto Nazionale di Ottica (INO) - SS Pisa, CNR area di Pisa, Via Moruzzi 1, 56124, Pisa, Italy.
| | - Maria Rosaria Tinè
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Giuseppe Moruzzi 13, 56124, Pisa, Italy
- Istituto Nazionale di Ottica (INO) - SS Pisa, CNR area di Pisa, Via Moruzzi 1, 56124, Pisa, Italy
| | - Ilaria Bonaduce
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Giuseppe Moruzzi 13, 56124, Pisa, Italy
| |
Collapse
|
21
|
Wang J, Qiao L, Wang R, Zhang N, Liu Y, Chen H, Sun J, Wang S, Zhang Y. Effect of Frying Process on the Flavor Variations of Allium Plants. Foods 2023; 12:foods12071371. [PMID: 37048190 PMCID: PMC10093356 DOI: 10.3390/foods12071371] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/08/2023] [Accepted: 03/22/2023] [Indexed: 04/14/2023] Open
Abstract
The Allium plant is widely used in cuisines around the world for its characteristic flavor. The general profile of the plant changes a lot and presents quite different smells after the frying process. In this work, five Allium plants and their fried oils were compared to find out how the frying process impacts the general flavor profile. The results of sensory analysis indicated that the frying process could substantially increase the flavor acceptability of fresh Allium plants. Meanwhile, according to gas chromatography-mass spectrometry (GC-MS) analysis, fewer volatile compounds were detected in fresh Allium plants than in their fried oils. Furthermore, contents of nitrogen-containing compounds (ranging from 0.17 μg/g to 268.97 μg/g), aldehydes (ranging from 71.82 μg/g to 1164.84 μg/g), and lactones (ranging from 0 μg/g to 12.38 μg/g) increased significantly. In addition, more aroma-active substances were identified in the fried Allium oils revealed by gas chromatography-olfactometry (GC-O) analysis. Sulfur-containing compounds were the most abundant in fresh Allium plants, whereas nitrogen-containing compounds dominated in fried oils. The thermal degradation of sugars, amino acids and lipids as well as interactions between carbohydrates, proteins, and fats during the frying process were thought to be the main contributors to these variations. Therefore, this research provides a theoretical basis for the quality control of onion oil flavor and promotes the further development of the onion plant industry. Consequently, the research provided a theoretical basis for the quality control of Allium oils' flavor and promoted the further development of Allium plant industries.
Collapse
Affiliation(s)
- Jing Wang
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology & Business University, Beijing 100048, China
| | - Lina Qiao
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology & Business University, Beijing 100048, China
| | - Ruifang Wang
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology & Business University, Beijing 100048, China
| | - Ning Zhang
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology & Business University, Beijing 100048, China
| | - Yuping Liu
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology & Business University, Beijing 100048, China
| | - Haitao Chen
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology & Business University, Beijing 100048, China
| | - Jie Sun
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology & Business University, Beijing 100048, China
| | - Shuqi Wang
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology & Business University, Beijing 100048, China
| | - Yu Zhang
- College of Food Science, Southwest University, Chongqing 400700, China
| |
Collapse
|
22
|
Hu Q, Zhang J, He L, Xing R, Yu N, Chen Y. New insight into the evolution of volatile profiles in four vegetable oils with different saturations during thermal processing by integrated volatolomics and lipidomics analysis. Food Chem 2023; 403:134342. [DOI: 10.1016/j.foodchem.2022.134342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/05/2022] [Accepted: 09/16/2022] [Indexed: 10/14/2022]
|
23
|
Liu W, Luo X, Huang Y, Zhao M, Liu T, Wang J, Feng F. Influence of cooking techniques on food quality, digestibility, and health risks regarding lipid oxidation. Food Res Int 2023; 167:112685. [PMID: 37087258 DOI: 10.1016/j.foodres.2023.112685] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/27/2023] [Accepted: 03/09/2023] [Indexed: 03/16/2023]
Abstract
Foods undergo various physical and chemical reactions during cooking. Boiling, steaming, baking, smoking and frying are common traditional cooking techniques. At present, new cooking technologies including ultrasonic-assisted cooking, vacuum low-temperature cooking, vacuum frying, microwave heating, infrared heating, ohmic heating and air frying are widely studied and used. In cooking, lipid oxidation is the main reason for the change in lipid quality. Oxidative decomposition, triglyceride monomer oxidation, hydrolysis, isomerization, cyclization reaction and polymerization occurred in lipid oxidation affect lipids' quality, flavor, digestibility and safety. Meanwhile, lipid oxidation in cooking might cause the decline of lipid digestibility and increase of health risks. Compared with the traditional cooking technology, the new cooking technology that is milder, more uniform and faster can reduce the loss of lipid nutrition and produce a better flavor. In the future, the combination of various cooking technologies is an effective strategy for families to obtain healthier food.
Collapse
Affiliation(s)
- Wangxin Liu
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agricultural Product Processing, Zhejiang University, Hangzhou 310058, China
| | - Xianliang Luo
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agricultural Product Processing, Zhejiang University, Hangzhou 310058, China
| | - Ying Huang
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agricultural Product Processing, Zhejiang University, Hangzhou 310058, China
| | - Minjie Zhao
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agricultural Product Processing, Zhejiang University, Hangzhou 310058, China
| | - Tao Liu
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agricultural Product Processing, Zhejiang University, Hangzhou 310058, China
| | - Jing Wang
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agricultural Product Processing, Zhejiang University, Hangzhou 310058, China
| | - Fengqin Feng
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agricultural Product Processing, Zhejiang University, Hangzhou 310058, China; College of Biosystems Engineering and Food Science & ZhongYuan Institute, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
24
|
Effects of different drying temperatures on the profile and sources of flavor in semi-dried golden pompano (Trachinotus ovatus). Food Chem 2023; 401:134112. [DOI: 10.1016/j.foodchem.2022.134112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/21/2022] [Accepted: 09/01/2022] [Indexed: 11/20/2022]
|
25
|
Hu B, Wu R, Sun J, Shi H, Jia C, Liu R, Rong J. Monitoring the oxidation process of soybean oil during deep-frying of fish cakes with 1H nuclear magnetic resonance. Food Chem X 2023; 17:100587. [PMID: 36845470 PMCID: PMC9944498 DOI: 10.1016/j.fochx.2023.100587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/18/2023] [Accepted: 01/23/2023] [Indexed: 01/26/2023] Open
Abstract
The oxidation process of soybean oil (SBO) during frying fish cakes was investigated. The TOTOX value of before frying (BF) and after frying (AF) was significantly higher than control (CK). However, the total polar compound (TPC) content of AF reached 27.67% in frying oil continuously frying at 180℃ for 18 h, and 26.17% for CK. 2,2-Diphenyl-1-picrylhydrazyl (DPPH) loss in isooctane and methanol significantly decreased with the extension of frying time and then tended to be stable. The decrease of DPPH loss was related to the increase of TPC content. Antioxidant and prooxidant balance (APB) value below 0.5 was obtained after 12 h for heated oil. (E)-2-alkenals, (E, E)-2,4-alkadienals, and n-alkanals were dominant ingredients among the secondary oxidation products. Traces of monoglycerides (MAG) and diglycerides (DAG) were also detected. These results may improve our understanding of the oxidation deterioration in SBO during frying.
Collapse
|
26
|
Santos PDS, Silva GAR, Senes CER, Cruz VHM, Pizzo JS, Visentainer JV, Santos OO. Evaluation of the Stability of Popular Oils for Fittura Through Analytical Techniques. JOURNAL OF CULINARY SCIENCE & TECHNOLOGY 2023. [DOI: 10.1080/15428052.2022.2119912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
| | | | | | - Victor H. M. Cruz
- Department of Chemistry, State University of Maringá, Maringá, Brazil
| | - Jessica S. Pizzo
- Department of Chemistry, State University of Maringá, Maringá, Brazil
| | | | - Oscar O. Santos
- Department of Chemistry, State University of Maringá, Maringá, Brazil
| |
Collapse
|
27
|
Xu HY, Chen XW, Li J, Bi YL. Approach to evaluate the sensory quality deterioration of chicken seasoning using characteristic oxidation indicators. Food Chem X 2023; 17:100564. [PMID: 36845492 PMCID: PMC9944985 DOI: 10.1016/j.fochx.2023.100564] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 12/16/2022] [Accepted: 01/05/2023] [Indexed: 01/09/2023] Open
Abstract
Sensory quality deterioration of chicken seasoning was investigated using physicochemical properties, gas chromatography-mass spectrometry (GC-MS) and descriptive sensory analysis to approach an evaluation of the chicken seasoning deterioration. It was found that both peroxide value (POV) and total oxidation value (TOTOX) increased with the chicken seasoning deterioration, suggesting a dominant of the lipid oxidation in the sensory quality deterioration of chicken seasoning. Moreover, a continuously decreasing linoleic acid and contradictory increasing in volatile aldehydes (specifically for hexanal) indicated as characteristic oxidation indicators to evaluate the sensory quality deterioration. PLSR results further elucidated that the evolution of aldehydes was highly correlated with sensory quality deterioration. These results suggest the POV, TOTOX and hexanal as valuable indicators and provide a novel approach to quality and rapidly evaluate the sensory quality deterioration of chicken seasoning.
Collapse
Affiliation(s)
- Hao-Yu Xu
- Lipid Technology and Engineering, College of Food Science and Engineering, Henan University of Technology, Lianhua Road 100, Zhengzhou 450001, Henan Province, PR China
| | - Xiao-Wei Chen
- Lipid Technology and Engineering, College of Food Science and Engineering, Henan University of Technology, Lianhua Road 100, Zhengzhou 450001, Henan Province, PR China
| | - Jun Li
- Lipid Technology and Engineering, College of Food Science and Engineering, Henan University of Technology, Lianhua Road 100, Zhengzhou 450001, Henan Province, PR China
| | - Yan-Lan Bi
- Lipid Technology and Engineering, College of Food Science and Engineering, Henan University of Technology, Lianhua Road 100, Zhengzhou 450001, Henan Province, PR China
- Food Laboratory of Zhongyuan, Henan University of Technology, Zhengzhou 450001, PR China
- Corresponding author at: Lipid Technology and Engineering, College of Food Science and Engineering, Henan University of Technology, Lianhua Road 100, Zhengzhou 450001, Henan Province, PR China.
| |
Collapse
|
28
|
Quality Change in Camellia Oil during Intermittent Frying. Foods 2022; 11:foods11244047. [PMID: 36553789 PMCID: PMC9777539 DOI: 10.3390/foods11244047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/01/2022] [Accepted: 12/13/2022] [Indexed: 12/16/2022] Open
Abstract
Camellia oil with a high oleic acid content is widely used for frying. To comprehensively describe the quality change in camellia oil during frying, the changes in composition, deterioration indicators, and volatile profiles were investigated. The results showed that tocopherols mainly degraded in the early stage of frying, followed by unsaturated fatty acids (UFA). This caused the carbonyl value and total polar compounds level to significantly increase. Moreover, frying promoted the accumulation of volatile compounds in terms of type and abundance, especially aldehydes, which are related to the degradation of UFA. Principal component analysis showed that the frying of camellia oil was divided into three stages. First, the camellia oil with a heating time of 2.5-7.5 h showed excellent quality, where tocopherol played a major role in preventing the loss of UFA and was in the degradation acceleration stage. Subsequently, as tocopherol entered the degradation deceleration stage, the quality of camellia oil heated for 10.0-15.0 h presented a transition from good to deteriorated. Finally, tocopherol entered the degradation stagnation stage, and the quality of camellia oil heated for 17.5-25.0 h gradually deteriorated, accompanied by a high level of volatile compounds and deterioration indicators. Overall, this work comprehensively determined the deterioration of camellia oil during intermittent frying and offered valuable insights for its quality evaluation.
Collapse
|
29
|
Selection of 12 vegetable oils influences the prevalence of polycyclic aromatic hydrocarbons, fatty acids, tocol homologs and total polar components during deep frying. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
30
|
Faisal S, Ebaid R, Li L, Zhao F, Wang Q, Huang J, Abomohra A. Enhanced waste hot-pot oil (WHPO) anaerobic digestion for biomethane production: Mechanism and dynamics of fatty acids conversion. CHEMOSPHERE 2022; 307:135955. [PMID: 35961457 DOI: 10.1016/j.chemosphere.2022.135955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 07/07/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
Resource depletion and climate changes due to human activities and excessive burning of fossil fuels are the driving forces to explore alternatives clean energy resources. Anaerobic digestion of bio-waste provides a unique opportunity to fulfil this objective through biogas production. The present study aimed to evaluate waste hot-pot oil (WHPO) at different feeding ratios as a novel lipidic waste for anaerobic mono-digestion. The highest recorded maximum biomethane potential (Mmax) was 274.1 L kg-1 VS at 1.2% WHPO, which showed significant differences with those of 0.8% and 1.6% (227.09 and 237.62 L kg-1 VS, respectively). The changes in volatile fatty acids (VFAs), medium chain fatty acids (MCFAs), and long-chain fatty acids (LCFAs) as intermediates of WHPO decomposition were investigated before and after anaerobic digestion. Results showed efficient production and utilization of VFAs at all studied WHPO ratios, whereas the maximum utilization of VFAs (90-95%) was recorded in the reactors with up to 1.2 %WHPO. Although lipid conversion efficiency decreased by increasing the WHPO ratio, 81.2% lipid conversion efficiency was recorded at the highest applied WHPO treatment, which confirms the potential of WHPO as a promising feedstock for anaerobic digestion. The present results will have major implications towards efficient energy recovery and biochemical management of lipidic-waste through efficient anaerobic digestion.
Collapse
Affiliation(s)
- Shah Faisal
- Department of Environmental Engineering, School of Architecture and Civil Engineering, Chengdu University, Chengdu, 610106, China; Institute of New Energy and Low-carbon Technology, Sichuan University, Chengdu, 610065, China
| | - Reham Ebaid
- Institute of New Energy and Low-carbon Technology, Sichuan University, Chengdu, 610065, China
| | - Li Li
- Department of Environmental Engineering, School of Architecture and Civil Engineering, Chengdu University, Chengdu, 610106, China
| | - Feng Zhao
- Institute for Advanced Study, Chengdu University, Chengdu, 610106, China
| | - Qingyuan Wang
- Department of Environmental Engineering, School of Architecture and Civil Engineering, Chengdu University, Chengdu, 610106, China; Institute of New Energy and Low-carbon Technology, Sichuan University, Chengdu, 610065, China.
| | - Jin Huang
- Department of Environmental Engineering, School of Architecture and Civil Engineering, Chengdu University, Chengdu, 610106, China
| | - Abdelfatah Abomohra
- Department of Environmental Engineering, School of Architecture and Civil Engineering, Chengdu University, Chengdu, 610106, China.
| |
Collapse
|
31
|
Zhang Z, Wei Y, Guan N, Li B, Wang Y. Changes in Chemical Composition of Flaxseed Oil during Thermal-Induced Oxidation and Resultant Effect on DSC Thermal Properties. Molecules 2022; 27:7135. [PMID: 36296728 PMCID: PMC9607143 DOI: 10.3390/molecules27207135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/10/2022] [Accepted: 10/19/2022] [Indexed: 11/05/2022] Open
Abstract
To investigate the changes in chemical composition of flaxseed oil during thermal-induced oxidation and the resultant effect on thermal properties, samples with different oxidation levels were obtained by being heated at 180 °C for two hours and four hours. The oxidation degree was evaluated using peroxide value (PV), extinction coefficient at 232 nm and 268 nm (K232 and K268), and total polar compounds (TPC). Using chromatography, the fatty acid profile and triacylglycerol (TAG) profile were examined. Differential scanning calorimetry (DSC) was used to determine the crystallization and melting profiles. Thermal-induced oxidation of flaxseed oil led to a significant increase (p < 0.05) in PV, K232, K268, and TPC, but the relative content of linolenic acid (Ln) and LnLnLn reduced dramatically (p < 0.05). TPC derived from lipid degradation affected both crystallization and melting profiles. Statistical correlations showed that the onset temperature (Ton) of the crystallization curve was highly correlated with K232, TPC, and the relative content of LnLnLn (p < 0.05), whereas the offset temperature (Toff) of the melting curve was highly correlated with the relative content of most fatty acids (p < 0.05). This finding provides a new way of rapid evaluation of oxidation level and changes of chemical composition for flaxseed oils using DSC.
Collapse
Affiliation(s)
- Zhenshan Zhang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Yunyi Wei
- College of Food Science and Quality Engineering, Nanning University, Nanning 530200, China
| | - Ni Guan
- Guangxi Bioscience and Technology Research Center, Guangxi Academy of Sciences, Nanning 530007, China
| | - Bingzheng Li
- College of Food Science and Quality Engineering, Nanning University, Nanning 530200, China
- Guangxi Bioscience and Technology Research Center, Guangxi Academy of Sciences, Nanning 530007, China
| | - Yong Wang
- School of Chemical Engineering, UNSW, Sydney, NSW 2052, Australia
| |
Collapse
|
32
|
Sâmia RR, Lorenzo ND, Lessa Barbosa BV, Ferreira Fonseca AL, Nunes CA, Bastos SC. Lipid quality of fried and scrambled eggs prepared in different frying medium. Int J Gastron Food Sci 2022. [DOI: 10.1016/j.ijgfs.2022.100552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
33
|
Han J, Jia W, Wan Y, Sun X, Liang M, Wei C, Liu W. Ultrasonic-assisted extraction of carotenoids using cottonseed oil: optimization, physicochemical properties, and flavor studies. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
34
|
Kumar GP, Xavier KM, Nayak BB, Kumar SH, Gudipati V, Benerjee K, Priyadarshini BM, Balange AK. Quality evaluation of vacuum‐pack ready to eat hot smoked pangasius fillets during refrigerated storage. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- G Praveen Kumar
- Department of Fish Processing Technology APFU‐College of Fishery Science Muthukur‐524344 Andhra Pradesh India
| | - K.A. Martin Xavier
- Department of Post‐Harvest Technology ICAR‐Central Institute of Fisheries Education Versova Mumbai‐400061 Maharashtra India
| | - Binaya Bhusan Nayak
- Department of Post‐Harvest Technology ICAR‐Central Institute of Fisheries Education Versova Mumbai‐400061 Maharashtra India
| | - Sanath H Kumar
- Department of Post‐Harvest Technology ICAR‐Central Institute of Fisheries Education Versova Mumbai‐400061 Maharashtra India
| | | | - Kaushik Benerjee
- National Referral Laboratory ICAR‐National Research Centre for Grapes Manjri Pune 412307 Maharashtra India
| | - Bhargavi M Priyadarshini
- Department of Fish Processing Technology & Engg College of Fisheries Central AgricultureUniversity Lembucherra, Agartala, Tripura (West)‐799210
| | - Amjad K. Balange
- Department of Post‐Harvest Technology ICAR‐Central Institute of Fisheries Education Versova Mumbai‐400061 Maharashtra India
| |
Collapse
|
35
|
Pizzo JS, Cruz VH, Santos PD, Silva GR, Souza PM, Manin LP, Santos OO, Visentainer JV. Instantaneous characterization of crude vegetable oils via triacylglycerols fingerprint by atmospheric solids analysis probe tandem mass spectrometry with multiple neutral loss scans. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108710] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
36
|
Szabo Z, Marosvölgyi T, Szabo E, Koczka V, Verzar Z, Figler M, Decsi T. Effects of Repeated Heating on Fatty Acid Composition of Plant-Based Cooking Oils. Foods 2022; 11:foods11020192. [PMID: 35053923 PMCID: PMC8774349 DOI: 10.3390/foods11020192] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/10/2022] [Accepted: 01/10/2022] [Indexed: 01/25/2023] Open
Abstract
Several polyunsaturated fatty acids are considered to have beneficial health effects, while saturated fatty acids and industrial trans fatty acids (TFAs) are linked to negative health consequences. Given the increased formation of TFAs during heating, many studies already investigated compositional changes in oils after prolonged heating or at extremely high temperatures. In contrast, our aim was to measure changes in fatty acid composition and in some health-related indices in edible oils after short-time heating that resembles the conventional household use. Potatoes were fried in palm, rapeseed, soybean, sunflower and extra virgin olive oils at 180 °C for 5 min, and samples were collected from fresh oils and after 1, 5 and 10 consecutive heating sequences. Regardless of the type of oil, the highest linoleic acid and alpha-linolenic acid values were measured in the fresh samples, whereas significantly lower values were detected in almost all samples following the heating sequences. In contrast, the lowest levels of TFAs were detected in the fresh oils, while their values significantly increased in almost all samples during heating. Indices of atherogenicity and thrombogenicity were also significantly higher in these oils after heating. The present data indicate that prolonged or repeated heating of vegetable oils should be avoided; however, the type of oil has a greater effect on the changes of health-related indices than the number of heating sequences.
Collapse
Affiliation(s)
- Zoltan Szabo
- Institute of Nutritional Sciences and Dietetics, Faculty of Health Sciences, University of Pecs, 7621 Pecs, Hungary; (Z.S.); (Z.V.); (M.F.)
| | - Tamas Marosvölgyi
- Institute of Bioanalysis, Medical School, University of Pecs, 7624 Pecs, Hungary;
- Department of Pediatrics, Clinical Centre, University of Pecs, 7623 Pecs, Hungary;
| | - Eva Szabo
- Department of Biochemistry and Medical Chemistry, Medical School, University of Pecs, 7624 Pecs, Hungary;
- Correspondence:
| | - Viktor Koczka
- Department of Biochemistry and Medical Chemistry, Medical School, University of Pecs, 7624 Pecs, Hungary;
- Doctoral School of Health Sciences, Faculty of Health Sciences, University of Pecs, 7621 Pecs, Hungary
| | - Zsofia Verzar
- Institute of Nutritional Sciences and Dietetics, Faculty of Health Sciences, University of Pecs, 7621 Pecs, Hungary; (Z.S.); (Z.V.); (M.F.)
| | - Maria Figler
- Institute of Nutritional Sciences and Dietetics, Faculty of Health Sciences, University of Pecs, 7621 Pecs, Hungary; (Z.S.); (Z.V.); (M.F.)
- 2nd Department of Internal Medicine and Nephrology Centre, Clinical Centre, University of Pecs, 7624 Pecs, Hungary
| | - Tamas Decsi
- Department of Pediatrics, Clinical Centre, University of Pecs, 7623 Pecs, Hungary;
| |
Collapse
|
37
|
Emulsion Surimi Gel with Tunable Gel Properties and Improved Thermal Stability by Modulating Oil Types and Emulsification Degree. Foods 2022; 11:foods11020179. [PMID: 35053911 PMCID: PMC8774618 DOI: 10.3390/foods11020179] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/03/2022] [Accepted: 01/06/2022] [Indexed: 02/06/2023] Open
Abstract
High resistance to heating treatments is a prerequisite for ready-to-eat (RTE) surimi products. In this study, emulsion-formulated surimi gels were prepared, and the effects of oil types and emulsification degrees on the thermal stability of surimi gel were investigated. The results showed the gel properties of surimi gels were modulated by oil types and emulsification degrees. In detail, the rising pre-emulsification ratio caused the increase of the emulsifying activity index (EAI) and decrease of emulsifying stability index (ESI) for both emulsions. The larger droplet sizes of perilla seed oil than soybean oil may be responsible for their emulsifying stability difference. The gel strength, water retention, dynamic modulus and texture properties of both kinds of surimi gels displayed a firstly increased and then decreased tendency with the rising pre-emulsification ratios. The peak values were obtained as perilla seed oil emulsion with emulsification ratio of 20% group (P1) and soybean oil emulsion with emulsification ratio of 40% group (S2), respectively. Anyway, all emulsion gels showed higher thermal stability than the control group regardless of oil types. Similar curves were also obtained for the changes of hydrogen bond, ionic bond and hydrophobic interactions. Overall, perilla seed oil emulsion with emulsification ratio of 20% (P1 group) contributed to the improved thermal stability of surimi gels.
Collapse
|
38
|
Kaur A, Singh B, Kaur A, Yadav MP, Singh N. Impact of intermittent frying on chemical properties, fatty acid composition, and oxidative stability of 10 different vegetable oil blends. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.16015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Amarbir Kaur
- Department of Food Science and Technology Guru Nanak Dev University Amritsar India
| | - Balwinder Singh
- P.G. Department of Biotechnology Khalsa College Amritsar India
| | - Amritpal Kaur
- Department of Food Science and Technology Guru Nanak Dev University Amritsar India
| | - Madhav P. Yadav
- Eastern Regional Research Center, Agricultural Research Service, United States Department of Agriculture Wyndmoor Pennsylvania USA
| | - Narpinder Singh
- Department of Food Science and Technology Guru Nanak Dev University Amritsar India
| |
Collapse
|
39
|
Riveros CG, Grosso AL, Aguirre A, Grosso NR. Increased oilseed shelf life using peanut flour biopackages. J AM OIL CHEM SOC 2021. [DOI: 10.1002/aocs.12562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Cecilia Gabriela Riveros
- Facultad de Ciencias Agropecuarias, Universidad Nacional de Córdoba (UNC), Instituto Multidisciplinario de Biología Vegetal (IMBIV) Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Córdoba Argentina
| | - Antonella Luciana Grosso
- Facultad de Ciencias Agropecuarias, Universidad Nacional de Córdoba (UNC), Instituto Multidisciplinario de Biología Vegetal (IMBIV) Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Córdoba Argentina
| | - Alicia Aguirre
- Facultad de Ciencias Exactas Físicas y Naturales (UNC), ICYTAC‐CONICET Córdoba Argentina
| | - Nelson Ruben Grosso
- Facultad de Ciencias Agropecuarias, Universidad Nacional de Córdoba (UNC), Instituto Multidisciplinario de Biología Vegetal (IMBIV) Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Córdoba Argentina
| |
Collapse
|
40
|
Evaluation of the addition of artichoke by-products to O/W emulsions for oil microencapsulation by spray drying. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
41
|
Guo X, Wang R. Analysis of Dynamic Changes of Lipid Composition and Structure of Deep‐Fried Pork Slices during Storage. EUR J LIPID SCI TECH 2021. [DOI: 10.1002/ejlt.202100049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Xi‐Juan Guo
- College of Food Science Heilongjiang Bayi Agricultural University Daqing 163319 China
- Heilongjiang Engineering Research Center for Coarse Cereals Processing and Quality Safety Daqing 163319 China
| | - Rui‐Qi Wang
- College of Food Science Heilongjiang Bayi Agricultural University Daqing 163319 China
- Heilongjiang Engineering Research Center for Coarse Cereals Processing and Quality Safety Daqing 163319 China
| |
Collapse
|
42
|
Identification of Adulterated Extra Virgin Olive Oil by Colorimetric Sensor Array. FOOD ANAL METHOD 2021. [DOI: 10.1007/s12161-021-02141-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
43
|
Optimization of HS-SPME for GC-MS Analysis and Its Application in Characterization of Volatile Compounds in Sweet Potato. Molecules 2021; 26:molecules26195808. [PMID: 34641353 PMCID: PMC8510106 DOI: 10.3390/molecules26195808] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/20/2021] [Accepted: 09/22/2021] [Indexed: 11/16/2022] Open
Abstract
Volatile compounds are the main chemical species determining the characteristic aroma of food. A procedure based on headspace solid-phase microextraction (HP-SPME) coupled to gas chromatography-mass spectrometry (GC-MS) was developed to investigate the volatile compounds of sweet potato. The experimental conditions (fiber coating, incubation temperature and time, extraction time) were optimized for the extraction of volatile compounds from sweet potato. The samples incubated at 80 °C for 30 min and extracted at 80 °C by the fiber with a divinylbenzene/carboxen/polydimethylsiloxane (DVB/CAR/PDMS) coating for 30 min gave the most effective extraction of the analytes. The optimized method was applied to study the volatile profile of four sweet potato cultivars (Anna, Jieshu95-16, Ayamursaki, and Shuangzai) with different aroma. In total, 68 compounds were identified and the dominants were aldehydes, followed by alcohols, ketones, and terpenes. Significant differences were observed among the volatile profile of four cultivars. Furthermore, each cultivar was characterized by different compounds with typical flavor. The results substantiated that the optimized HS-SPME GC-MS method could provide an efficient and convenient approach to study the flavor characteristics of sweet potato. This is the basis for studying the key aroma-active compounds and selecting odor-rich accessions, which will help in the targeted improvement of sweet potato flavor in breeding.
Collapse
|
44
|
Wang Y, Wu X, McClements DJ, Chen L, Miao M, Jin Z. Effect of New Frying Technology on Starchy Food Quality. Foods 2021; 10:1852. [PMID: 34441629 PMCID: PMC8393420 DOI: 10.3390/foods10081852] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/29/2021] [Accepted: 08/04/2021] [Indexed: 11/17/2022] Open
Abstract
Frying is commonly used by consumers, restaurants, and industries around the globe to cook and process foods. Compared to other food processing methods, frying has several potential advantages, including reduced processing times and the creation of foods with desirable sensory attributes. Frying is often used to prepare starchy foods. After ingestion, the starch and fat in these foods are hydrolyzed by enzymes in the human digestive tract, thereby providing an important source of energy (glucose and fatty acids) for the human body. Conversely, overconsumption of fried starchy foods can promote overweight, obesity, and other chronic diseases. Moreover, frying can generate toxic reaction products that can damage people's health. Consequently, there is interest in developing alternative frying technologies that reduce the levels of nutritionally undesirable components in fried foods, such as vacuum, microwave, air, and radiant frying methods. In this review, we focus on the principles and applications of these innovative frying technologies, and highlight their potential advantages and shortcomings. Further development of these technologies should lead to the creation of healthier fried foods that can help combat the rise in diet-related chronic diseases.
Collapse
Affiliation(s)
- Yi Wang
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; (Y.W.); (X.W.); (Z.J.)
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China;
| | - Xianglei Wu
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; (Y.W.); (X.W.); (Z.J.)
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China;
| | | | - Long Chen
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; (Y.W.); (X.W.); (Z.J.)
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China;
| | - Ming Miao
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China;
| | - Zhengyu Jin
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; (Y.W.); (X.W.); (Z.J.)
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China;
| |
Collapse
|
45
|
Abdalla B, Christianti I, Wassell P. Polar compounds: a quantitative indicator for life cycle assessment during protracted semi‐continuous deep fat frying simulation. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Brata Abdalla
- Sinarmas agribusiness and food, R&D (PT, SMART Tbk) Marunda center, Blok D1, Desa Segara Makmur, Kec. Tarumajaya Jawa Barat Indonesia
| | - Isti Christianti
- Sinarmas agribusiness and food, R&D (PT, SMART Tbk) Marunda center, Blok D1, Desa Segara Makmur, Kec. Tarumajaya Jawa Barat Indonesia
| | - Paul Wassell
- Sinarmas agribusiness and food, R&D (PT, SMART Tbk) Marunda center, Blok D1, Desa Segara Makmur, Kec. Tarumajaya Jawa Barat Indonesia
| |
Collapse
|
46
|
Liu S, Zhong Y, Shen M, Yan Y, Yu Y, Xie J, Nie S, Xie M. Changes in fatty acids and formation of carbonyl compounds during frying of rice cakes and hairtails. J Food Compost Anal 2021. [DOI: 10.1016/j.jfca.2021.103937] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
47
|
Xu L, Ji X, Wu G, Karrar E, Yao L, Wang X. Influence of Oil Types and Prolonged Frying Time on the Volatile Compounds and Sensory Properties of French Fries. J Oleo Sci 2021; 70:885-899. [PMID: 34121029 DOI: 10.5650/jos.ess20360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In order to study the flavor of French fries (FFs) prepared in different frying oils, we identified and compared the volatiles of FFs fried in high-oleic sunflower oil (HSO), sunflower oil (SO), linseed oil (LO), and palm oil (PO) during prolonged 24 h frying time. 47 different kinds of volatiles were presented, and aldehydes were the most abundant compounds. The FFs prepared in SO were rich in alkadienals, especially the (E, E)-2,4-decadienal, thus inducing the highest deep-fried odor. The content of alkenals was higher in FFs prepared in HSO, among which (E)-2-nonenal and 2-undecenal provided the undesirable oily flavor. Whereas, FFs prepared in PO were rich in alkanals, and showed an undesirable green aroma because of hexanal. Besides, the aldehydes in FFs fried in LO were the least with more undesirable flavor substances (e.g. (E, E)-2,4-heptadienal). In addition, except for the FFs fried in LO, the aldehydes in other FFs showed an increasing trend. While, the volatiles from the Maillard reaction (e.g. pyrazines) showed no clear pattern. Meanwhile, frying process had optimum frying window (approximately 12 h with total polar compounds content of 14.5%-22.2% in different oils), and the French fries prepared in this period obtained higher flavor score. Therefore, the comparison related to volatiles of FFs provided a basis for the flavor control to a certain extent.
Collapse
Affiliation(s)
- Lirong Xu
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University
| | - Xin Ji
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University
| | - Gangcheng Wu
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University
| | - Emad Karrar
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University
| | - Ling Yao
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University
| | - Xingguo Wang
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University
| |
Collapse
|
48
|
Abstract
The aim of this study was to monitor sensory quality, stability, selected nutritionally interesting properties and their changes in cold-pressed oil blends after fortification with chia and sesame seeds and seed oils during repeated thermal treatments. Rapeseed (cv. Sidney) and sunflower (cv. Velox) seeds from the Czech Republic were used to produce cold-pressed oils, which were fortified with chia and sesame seeds and seed oils in the concentrations of 1% and 5%. In all oil blends, sensory evaluation (quantitative descriptive analysis and hedonic analysis) and chemical analyses (oxidation degree, hydrolytic stability, chlorophyll and carotenoid content) were carried out in order to perform separation of samples degraded by thermal treatment. Assessors representing consumers were able to differentiate between individual thermal treatments from the viewpoint of pleasantness. Interestingly, the overall pleasantness of all fortified oil samples was still acceptable until the second thermal treatment. On the other hand, the results of the study emphasized the problematic oxidation degree of cold-pressed oil blends. The fortification of cold-pressed oils with chia and sesame seeds and oils did not unambiguously lead to better stability during thermal treatment. The application of elevated temperatures during the culinary use of these types of products should be limited to only one thermal treatment since sensory and chemical changes occur after repeated heating.
Collapse
|
49
|
Ni R, Wang P, Zhan P, Tian H, Li T. Effects of different frying temperatures on the aroma profiles of fried mountain pepper (Litsea cubeba (Lour.) Pers.) oils and characterization of their key odorants. Food Chem 2021; 357:129786. [PMID: 33984740 DOI: 10.1016/j.foodchem.2021.129786] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 04/04/2021] [Accepted: 04/07/2021] [Indexed: 02/07/2023]
Abstract
Fried mountain pepper (Litsea cubeba (Lour.) Pers.) oil is widely used as a traditional spice flavoring oil in Chinese home cooking. To investigate the effects of different frying temperatures on the aroma of fried mountain pepper oil (FPO), four FPO samples were analyzed by descriptive sensory analysis (DSA), E-nose, gas chromatography-olfactometry/detection frequency analysis (GC-O/DFA) and odor activity value (OAV) calculation. DSA and E-nose results both indicated that significant differences existed among 4 FPOs, among which FPO3 showed superiority in several sensory attributes. 16 and 20 aroma-active compounds were screened by DFA and OAV, respectively. Thereafter, three aroma recombination models were performed, and results indicated the model solution derived from the combination of OAV and DFA was more closely resembled the FPO aroma. Omission tests corroborated the significant contributions of 11 compounds (1-octen-3-ol, linalool, geraniol, nonanal, (E)-2-octenal, citral, citronellal, limonene, α-pinene, β-myrcene and methylheptenone) to the characteristic aroma of FPO.
Collapse
Affiliation(s)
- Ruijie Ni
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710100, China
| | - Peng Wang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710100, China
| | - Ping Zhan
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710100, China; The Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education, Xi'an 710100, China.
| | - Honglei Tian
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710100, China; Food College of Shihezi University, Shihezi 832000, China; Shaanxi Provincial Research Center of Functional Food Engineering Technology, Xi'an 710100, China.
| | - Ting Li
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710100, China
| |
Collapse
|
50
|
Ishak I, Hussain N, Coorey R, Ghani MA. Optimization and characterization of chia seed (Salvia hispanica L.) oil extraction using supercritical carbon dioxide. J CO2 UTIL 2021. [DOI: 10.1016/j.jcou.2020.101430] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|