1
|
An Y, Wang Y, Huang Y, Sun B, Lv M, Zhu Y, Zhu X. Structural characterization and stability studies of hemp peptides and chelates for efficient chelation of ferrous ions. J Food Sci 2025; 90:e70204. [PMID: 40205828 DOI: 10.1111/1750-3841.70204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 03/12/2025] [Accepted: 03/26/2025] [Indexed: 04/11/2025]
Abstract
Synthesis of peptide-iron chelates provides a novel approach to alleviating iron deficiency in humans. The study used hemp protein isolate to make hemp protein hydrolysates (HPHs), which were combined with ferrous chloride to make hemp protein peptide iron chelates (HPH-Fe). The HPH-Fe were structurally characterized and analyzed for stability. The strongest ferrous ion-binding fraction HPH-I (<3 kDa) was isolated by ultrafiltration, and Sephadex G-15 was used to obtain fractions with high ferrous ion-binding capacity (82.47%), identified by amino acid sequences as QASSDGFEWVSFK (1482.31 Da), ARVDWKETPE (1223.53 Da), ILLPSF (719.34 Da), and WLNGGP (643.32 Da). Aspartic acid, lysine, glutamic acid, glycine, and histidine in HPH-Fe were involved in the chelation reaction. HPH-Fe maintained a good chelation rate at 25-65°C, pH = 4.0-7.0, stability during 35 days of storage at ambient temperature, and in vitro digestion tolerance. This study presents HPH-Fe as a potential alternative to chemical iron supplements in food. PRACTICAL APPLICATION: Preparation of novel, highly efficient ferrous iron ion hemp peptide and its chelates by hydrolysis, separation, and enrichment using hemp protein as raw material. Aspartic acid, glutamic acid, glycine, lysine, and histidine in HPH-Fe were involved in the chelating reaction. The peptides QASSDGFEWVSFK, ARVDWKETPE, ILLPSF, and WLNGGP showed high ferrous ion binding capacity. Iron chelates of hemp protein peptides have good acid resistance, storage stability, and digestive properties.
Collapse
Affiliation(s)
- Yuexin An
- Department of Food Engineering, Provincial Engineering Laboratory of Green Food Processing and Storage, Heilongjiang Key Laboratory of Food Science and Engineering, Heilongjiang Key Laboratory of Grain Food and Comprehensive Processing, Harbin University of Commerce, Harbin, Heilongjiang, China
| | - Yuan Wang
- Department of Food Engineering, Provincial Engineering Laboratory of Green Food Processing and Storage, Heilongjiang Key Laboratory of Food Science and Engineering, Heilongjiang Key Laboratory of Grain Food and Comprehensive Processing, Harbin University of Commerce, Harbin, Heilongjiang, China
| | - Yuyang Huang
- Department of Food Engineering, Provincial Engineering Laboratory of Green Food Processing and Storage, Heilongjiang Key Laboratory of Food Science and Engineering, Heilongjiang Key Laboratory of Grain Food and Comprehensive Processing, Harbin University of Commerce, Harbin, Heilongjiang, China
| | - Bingyu Sun
- Department of Food Engineering, Provincial Engineering Laboratory of Green Food Processing and Storage, Heilongjiang Key Laboratory of Food Science and Engineering, Heilongjiang Key Laboratory of Grain Food and Comprehensive Processing, Harbin University of Commerce, Harbin, Heilongjiang, China
| | - Mingshou Lv
- Department of Food Engineering, Provincial Engineering Laboratory of Green Food Processing and Storage, Heilongjiang Key Laboratory of Food Science and Engineering, Heilongjiang Key Laboratory of Grain Food and Comprehensive Processing, Harbin University of Commerce, Harbin, Heilongjiang, China
| | - Ying Zhu
- Department of Food Engineering, Provincial Engineering Laboratory of Green Food Processing and Storage, Heilongjiang Key Laboratory of Food Science and Engineering, Heilongjiang Key Laboratory of Grain Food and Comprehensive Processing, Harbin University of Commerce, Harbin, Heilongjiang, China
| | - Xiuqing Zhu
- Department of Food Engineering, Provincial Engineering Laboratory of Green Food Processing and Storage, Heilongjiang Key Laboratory of Food Science and Engineering, Heilongjiang Key Laboratory of Grain Food and Comprehensive Processing, Harbin University of Commerce, Harbin, Heilongjiang, China
| |
Collapse
|
2
|
Dehnad D, Ghorani B, Emadzadeh B, Emadzadeh M, Assadpour E, Rajabzadeh G, Jafari SM. Recent advances in iron encapsulation and its application in food fortification. Crit Rev Food Sci Nutr 2023; 64:12685-12701. [PMID: 37703437 DOI: 10.1080/10408398.2023.2256004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
Iron (Fe) is an important element for our body since it takes part in a huge variety of metabolic processes. However, the direct incorporation of Fe into food fortification causes a number of problems along with undesirable organoleptic properties. Thus, encapsulation has been suggested to alleviate this problem. This study first sheds more light on the Fe encapsulation strategies and comprehensively explains the results of Fe encapsulation studies in the last decade. Then, the latest attempts to use Fe (in free or encapsulated forms) to fortify foods such as bakery products, dairy products, rice, lipid-containing foods, salt, fruit/vegetable-based products, and infant formula are presented. Double emulsions are highly effective at keeping their Fe content and display encapsulation efficiency (EE) > 88% although it decreases upon storage. The encapsulation by gel beads possesses several advantages including high EE, as well as reduced and great Fe release in gastric and duodenal conditions, respectively. Cereals, particularly bread and wheat, are common staple foods globally; they are very suitable for food fortification by Fe derivatives. Nevertheless, the majority of Fe in flour is available as salts of phytic acid (IP6) and phytates, reducing Fe bioavailability in the human body. The sourdough process degrades IP6 completely while Chorleywood Bread Making Process and conventional processes decrease it by 75% in comparison with whole meal flour.
Collapse
Affiliation(s)
- Danial Dehnad
- Department of Food Nanotechnology, Research Institute of Food Science and Technology (RIFST), Mashhad, Iran
| | - Behrouz Ghorani
- Department of Food Nanotechnology, Research Institute of Food Science and Technology (RIFST), Mashhad, Iran
| | - Bahareh Emadzadeh
- Department of Food Nanotechnology, Research Institute of Food Science and Technology (RIFST), Mashhad, Iran
| | - Maryam Emadzadeh
- Clinical Research Development Unit, Ghaem Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elham Assadpour
- Food Industry Research Co, Gorgan, Iran
- Food and Bio-Nanotech International Research Center (Fabiano), Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Ghadir Rajabzadeh
- Department of Food Nanotechnology, Research Institute of Food Science and Technology (RIFST), Mashhad, Iran
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| |
Collapse
|
3
|
Tan C, Karaca AC, Assadpour E, Jafari SM. Influence of different nano/micro-carriers on the bioavailability of iron: Focus on in vitro-in vivo studies. Adv Colloid Interface Sci 2023; 318:102949. [PMID: 37348384 DOI: 10.1016/j.cis.2023.102949] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/09/2023] [Accepted: 06/11/2023] [Indexed: 06/24/2023]
Abstract
Anemia resulting from iron (Fe) deficiency is a global public health problem. The deficiency of Fe is usually due to insufficient dietary intake of iron, interaction of Fe with other food components, and thus low bioaccessibility/bioavailability. Fe encapsulation has the potential to tackle some major challenges in iron fortification of foods. Various nano/micro-carriers have been developed for encapsulation of Fe, including emulsions, liposomes, hydrogels, and spray-dried microcapsules. They could reduce the interactions of Fe with food components, increase iron tolerance and intestinal uptake, and decrease adverse effects. This article review covers the factors affecting the bioavailability of Fe along with emerging carriers that can be used as a solution of this issue. The application of Fe-loaded carriers in food supplements and products is also described. The advantages and limitations associated with the delivery efficiency of each carrier for Fe are highlighted.
Collapse
Affiliation(s)
- Chen Tan
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, China-Canada Joint Lab of Food Nutrition and Health (Beijing), School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Asli Can Karaca
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469 Istanbul, Turkey
| | - Elham Assadpour
- Food Industry Research Co., Gorgan, Iran; Food and Bio-Nanotech International Research Center (Fabiano), Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
| |
Collapse
|
4
|
Li M, Guo Q, Lin Y, Bao H, Miao S. Recent Progress in Microencapsulation of Active Peptides-Wall Material, Preparation, and Application: A Review. Foods 2023; 12:foods12040896. [PMID: 36832971 PMCID: PMC9956665 DOI: 10.3390/foods12040896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 01/30/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Being a natural active substance with a wide variety of sources, easy access, significant curative effect, and high safety, active peptides have gradually become one of the new research directions in food, medicine, agriculture, and other fields in recent years. The technology associated with active peptides is constantly evolving. There are obvious difficulties in the preservation, delivery, and slow release of exposed peptides. Microencapsulation technology can effectively solve these difficulties and improve the utilization rate of active peptides. In this paper, the commonly used materials for embedding active peptides (natural polymer materials, modified polymer materials, and synthetic polymer materials) and embedding technologies are reviewed, with emphasis on four new technologies (microfluidics, microjets, layer-by-layer self-assembly, and yeast cells). Compared with natural materials, modified materials and synthetic polymer materials show higher embedding rates and mechanical strength. The new technology improves the preparation efficiency and embedding rate of microencapsulated peptides and makes the microencapsulated particle size tend to be controllable. In addition, the current application of peptide microcapsules in different fields was also introduced. Selecting active peptides with different functions, using appropriate materials and efficient preparation technology to achieve targeted delivery and slow release of active peptides in the application system, will become the focus of future research.
Collapse
Affiliation(s)
- Mengjie Li
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Quanyou Guo
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China
| | - Yichen Lin
- Teagasc Food Research Centre, Moorepark, P61C996 Fermoy, Ireland
| | - Hairong Bao
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
- Correspondence: (H.B.); (S.M.)
| | - Song Miao
- Teagasc Food Research Centre, Moorepark, P61C996 Fermoy, Ireland
- Correspondence: (H.B.); (S.M.)
| |
Collapse
|
5
|
Piskin E, Cianciosi D, Gulec S, Tomas M, Capanoglu E. Iron Absorption: Factors, Limitations, and Improvement Methods. ACS OMEGA 2022; 7:20441-20456. [PMID: 35755397 PMCID: PMC9219084 DOI: 10.1021/acsomega.2c01833] [Citation(s) in RCA: 131] [Impact Index Per Article: 43.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/20/2022] [Indexed: 05/04/2023]
Abstract
Iron is an essential element for human life since it participates in many functions in the human body, including oxygen transport, immunity, cell division and differentiation, and energy metabolism. Iron homeostasis is mainly controlled by intestinal absorption because iron does not have active excretory mechanisms for humans. Thus, efficient intestinal iron bioavailability is essential to reduce the risk of iron deficiency anemia. There are two forms of iron, heme and nonheme, found in foods. The average daily dietary iron intake is 10 to 15 mg in humans since only 1 to 2 mg is absorbed through the intestinal system. Nutrient-nutrient interactions may play a role in dietary intestinal iron absorption. Dietary inhibitors such as calcium, phytates, polyphenols and enhancers such as ascorbic acid and proteins mainly influence iron bioavailability. Numerous studies have been carried out for years to enhance iron bioavailability and combat iron deficiency. In addition to traditional methods, innovative techniques are being developed day by day to enhance iron bioavailability. This review will provide information about iron bioavailability, factors affecting absorption, iron deficiency, and recent studies on improving iron bioavailability.
Collapse
Affiliation(s)
- Elif Piskin
- Faculty of Engineering and Natural Sciences, Food Engineering Department, Istanbul Sabahattin Zaim University, Halkali, 34303 Istanbul, Turkey
| | - Danila Cianciosi
- Faculty of Medicine, Department of Clinical Sciences, Polytechnic University of Marche, via Pietro Ranieri, 60131 Ancona, Italy
| | - Sukru Gulec
- Molecular Nutrition and Human Physiology Laboratory, Department of Food Engineering, İzmir Institute of Technology, 35430 Urla, İzmir
| | - Merve Tomas
- Faculty of Engineering and Natural Sciences, Food Engineering Department, Istanbul Sabahattin Zaim University, Halkali, 34303 Istanbul, Turkey
| | - Esra Capanoglu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak, 34469 Istanbul, Turkey
| |
Collapse
|
6
|
Hu S, Lin S, He X, Sun N. Iron delivery systems for controlled release of iron and enhancement of iron absorption and bioavailability. Crit Rev Food Sci Nutr 2022; 63:10197-10216. [PMID: 35588258 DOI: 10.1080/10408398.2022.2076652] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Iron deficiency is a global nutritional problem, and adding iron salts directly to food will have certain side effects on the human body. Therefore, there is growing interest in food-grade iron delivery systems. This review provides an overview of iron delivery systems, with emphasis on the controlled release of iron during gastrointestinal digestion, as well as the enhancement of iron absorption and bioavailability. Iron-bearing proteins are easily degraded by digestive enzymes and absorbed through receptor-mediated endocytosis. Instead, protein aggregates are slowly degraded in the stomach, which delays iron release and serves as a potential iron supplement. Amino acids, peptides and polysaccharides can bind iron through iron binding sites, but the formed compounds are prone to dissociation in the stomach. Moreover, peptides and polysaccharides can deliver iron by mediating the formation of ferric oxyhydroxide which is absorbed through endocytosis or bivalent transporter 1. In addition, liposomes are unstable during gastric digestion and iron is released in large quantities. Complexes formed by polysaccharides and proteins, and microcapsules formed by polysaccharides can delay the release of iron in the gastric environment and prolong iron release in the intestinal environment. This review is conducive to the development of iron functional ingredients and dietary supplements.
Collapse
Affiliation(s)
- Shengjie Hu
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, P. R. China
| | - Songyi Lin
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, P. R. China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, P. R. China
| | - Xueqing He
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, P. R. China
| | - Na Sun
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, P. R. China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, P. R. China
| |
Collapse
|
7
|
Gaigher B, do Nascimento da Silva E, Lacerda Sanches V, Fernanda Milani R, Galland F, Cadore S, Grancieri M, Bertoldo Pacheco MT. Formulations with microencapsulated Fe–peptides improve in vitro bioaccessibility and bioavailability. Curr Res Food Sci 2022; 5:687-697. [PMID: 35465643 PMCID: PMC9019146 DOI: 10.1016/j.crfs.2022.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 03/04/2022] [Accepted: 03/17/2022] [Indexed: 11/25/2022] Open
Abstract
The bioaccessibility and the bioavailability of iron complexed to peptides (active) in microparticles forms contained in dry beverages formulations were evaluated. The peptide-iron complexes microparticles were obtained by spray drying and added in three dry formulations (tangerine, strawberry, and chocolate flavors). The peptides isolated by iron ion affinity (IMAC-Fe III) had their biological activity predicted by BIOPEP® database and were evaluated by molecular coupling. The bioaccessibility was evaluated by solubility and dialysability and the bioavalability was assessed by Caco-2 cellular model. The proportion 10:1 of peptide-iron complexes presented higher rates of bioaccessibility (49%) and bioavailability (56%). The microparticle with peptide-iron complex showed greater solubility after digestion (39.1%), bioaccessibility (19.8%), and bioavailability (34.8%) than the ferrous sulfate salt (control) for the three assays (10.2%; 12.9%; 9.7%, respectively). Tangerine and strawberry formulations contributed to the iron absorption according to the results of bioaccessibility (36.2%, 30.0% respectively) and bioavailability (80.5%, 84.1%, respectively). The results showed that iron peptide complexation and microencapsulation process improve the bioaccessibility and bioavailability when incorporated into formulations. Iron solubility is increased in iron peptide complexes. In silico interaction between peptides > 5 KDa and ferric iron (Fe2+). Microparticle with Fe-peptides increase iron bioavailability after digestion. Microparticle formulations improve iron bioaccessibility and bioavailability.
Collapse
|
8
|
Wang Y, Ye A, Hou Y, Jin Y, Xu X, Han J, Liu W. Microcapsule delivery systems of functional ingredients in infant formulae: Research progress, technology, and feasible application of liposomes. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2021.11.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
9
|
Hu S, Lin S, Wang D, Zhang S, Sun N. Antarctic krill-derived peptides with consecutive Glu residues enhanced iron binding, solubility, and absorption. Food Funct 2021; 12:8615-8625. [PMID: 34346465 DOI: 10.1039/d1fo01405f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Three peptides containing three glutamic acid (Glu) residues at different positions derived from Antarctic krill were obtained to investigate their iron-binding properties, digestive stability, and effectiveness on enhancing iron solubility and absorption. Results indicated that Fe2+ bound to the carbonyl, carboxyl, or hydroxyl groups of DELEDSLER, EEEFDATR, and DTDSEEEIR at stoichiometric ratios of 0.453, 0.466, and 0.490, respectively. DTDSEEEIR with three consecutive Glu in the middle of the sequence possessed higher iron-binding ability and iron release potential than EEEFDATR with three consecutive Glu in the N-terminal, and DELEDSLER with three discontinuous Glu showed the lowest values. Although EEEFDATR showed remarkably lower digestion stability than DTDSEEEIR, the effect of EEEFDATR-iron on iron solubility and absorption was comparable to that of DTDSEEEIR-iron, but better than that of DELEDSLER-iron and FeSO4. Thus, peptides with consecutive Glu have the potential as an effective iron carrier to improve iron absorption.
Collapse
Affiliation(s)
- Shengjie Hu
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, P. R. China.
| | - Songyi Lin
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, P. R. China. and Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Di Wang
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, P. R. China.
| | - Shuyue Zhang
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, P. R. China.
| | - Na Sun
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, P. R. China. and Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, P. R. China
| |
Collapse
|
10
|
Audiverth HLF, Oliveira Garcia A, Salvucci Celeste Ormenese RDC, Bertoldo Pacheco MT. Use of the Kano model and sensory evaluation in the development of an iron supplement for women. J SENS STUD 2021. [DOI: 10.1111/joss.12655] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
| | - Aline Oliveira Garcia
- Laboratory of Physical and Sensory Analysis (LAFISE) Food Science and Quality Center/Institute of Food Technology (CCQA/ITAL) Campinas Brazil
| | | | | |
Collapse
|
11
|
Meng K, Chen L, Xia G, Shen X. Effects of zinc sulfate and zinc lactate on the properties of tilapia (Oreochromis Niloticus) skin collagen peptide chelate zinc. Food Chem 2021; 347:129043. [PMID: 33476919 DOI: 10.1016/j.foodchem.2021.129043] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 12/21/2020] [Accepted: 01/04/2021] [Indexed: 12/24/2022]
Abstract
In this study, the properties difference of Tilapia (Oreochromis Niloticus) skin collagen peptide chelate zinc prepared by zinc sulfate (P-Zn-S) and zinc lactate (P-Zn-L) were investigated. The results indicated that compared with P-Zn-L, P-Zn-S exhibited higher Zn-chelating capacity and different structural morphology, which may closely relate to the composition amino acid of Asp, Glu, His, Lys, Arg, Cys and Pro. FTIR and UV-Vis analysis indicated that different zinc sources could influence the metal ligands and the types of amino acid residues which were involved in chelation reaction. P-Zn-L exhibited better zinc solubility and had higher dialyzable zinc than P-Zn-S, indicating that P-Zn-L had better zinc bioaccessibility. These results suggested that P-Zn-L with a granular structure could reduced gastric stability, promoted intestinal release, and was beneficial to zinc absorption, which can be used as dietary zinc carriers.
Collapse
Affiliation(s)
- Keke Meng
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Hainan University, Hainan 570228, China; College of Food Science and Technology, Hainan University, Hainan 570228, China
| | - Lei Chen
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Hainan University, Hainan 570228, China; College of Food Science and Technology, Hainan University, Hainan 570228, China
| | - Guanghua Xia
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Hainan University, Hainan 570228, China; Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou 570228, China; Engineering Research Center of Utilization of Tropical Polysaccharide Resources, Ministry of Education, Haikou 570228, China; College of Food Science and Technology, Hainan University, Hainan 570228, China.
| | - Xuanri Shen
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Hainan University, Hainan 570228, China; Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou 570228, China; Engineering Research Center of Utilization of Tropical Polysaccharide Resources, Ministry of Education, Haikou 570228, China; College of Food Science and Technology, Hainan University, Hainan 570228, China.
| |
Collapse
|
12
|
Wu W, Yang Y, Sun N, Bao Z, Lin S. Food protein-derived iron-chelating peptides: The binding mode and promotive effects of iron bioavailability. Food Res Int 2020; 131:108976. [DOI: 10.1016/j.foodres.2020.108976] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 01/01/2020] [Accepted: 01/01/2020] [Indexed: 12/16/2022]
|