1
|
Lee CC, Fan H, Tsopmo A, Regenstein JM, Ashaolu TJ. Plant-based antioxidant peptides: impact on oxidative stress and gut microbiota. Crit Rev Food Sci Nutr 2025:1-24. [PMID: 40219794 DOI: 10.1080/10408398.2025.2490270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2025]
Abstract
Plant-based peptides can be obtained from natural and climate-friendly sources. These peptides show various bioactivities including antioxidant activity. Oxidative stress has an impact on the gut microbiota causing inflammation, insulin resistance, osteoporosis, cancer, and several chronic diseases like type 2 diabetes, arthritis, hypertension, and atherosclerosis. Therefore, antioxidant peptides may significantly affect oxidative stress as a potential alternative to conventional medication. The production of antioxidant peptides from plant-based protein sources through conventional and innovative approaches may provide promising strategies to improve gut microbiota. Recent studies in plant-based antioxidant peptides (PBAP) focus on their advanced identification and characterization techniques, structure-activity relationship, improvement of extraction and purification, cellular and molecular mechanisms, specific health applications in preventing and managing conditions with gut microbiota, and commercial applications in nutraceuticals. Short-chain fatty acids and reactive sulfur species are specific gut-derived metabolites that can improve metabolic function by modulating oxidative stress and the immune system. This review highlights the influence of food oxidants on the gut microbiota and PBAP-induced modulation of gut microbiota. Moreover, the production of PBAP and the challenges in their application will be discussed.
Collapse
Affiliation(s)
- Chi Ching Lee
- Department of Food Engineering, Faculty of Engineering and Natural Sciences, Istanbul Sabahattin Zaim University, Istanbul, Turkey
- Department of Food Technology and Nutrition, Faculty of Technologies, Klaipeda State University of Applied Sciences, Klaipeda, Lithuania
| | - Hongbing Fan
- Department of Animal and Food Sciences, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, USA
| | - Apollinaire Tsopmo
- Food Science and Nutrition Program, Department of Chemistry, Carleton University, Ottawa, Canada
- Institute of Biochemistry, Carleton University, Ottawa, Canada
| | - Joe M Regenstein
- Department of Food Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, USA
| | - Tolulope Joshua Ashaolu
- Institute for Global Health Innovations, Duy Tan University, Da Nang, Vietnam
- Faculty of Medicine, Duy Tan University, Da Nang, Vietnam
| |
Collapse
|
2
|
Valencia-Olivares C, Franca-Oliveira G, Luna-Vital DA, Hernández-Ledesma B. Green guaje (Leucaena leucocephala) and pigmented guaje (Leucaena esculenta) as sources of antioxidant and immunomodulatory peptides. Food Chem 2025; 464:141781. [PMID: 39515165 DOI: 10.1016/j.foodchem.2024.141781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 10/09/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024]
Abstract
In recent years, there has been a growing interest in plant-based diets, particularly legumes, as a sustainable and healthy dietary choice. This study breaks new ground by investigating the effects of simulated gastrointestinal digestion on green (Leucaena leucocephala) and pigmented (Leucaena esculenta) guaje proteins. We evaluated the antioxidant and immunomodulatory properties of ultrafiltered fractions resulting from digestion in a macrophage model. Both fractions showed promising potential as radical scavengers. The fraction <5 kDa from pigmented guaje, even at the lowest doses tested, significantly (p < 0.05) inhibited the release of pro-inflammatory cytokines TNF-α and IL-6, and demonstrated an immunomodulatory effect by reducing the levels of ROS and NO. These findings suggest that green and pigmented guaje could be a valuable source of bioactive peptides, potentially used as a coadjutant for treating and preventing oxidative stress and inflammation-associated non-communicable diseases through the utilization of underutilized legumes.
Collapse
Affiliation(s)
- C Valencia-Olivares
- School of Engineering and Sciences, Tecnológico de Monterrey, Campus Puebla, Mexico; The Institute for Obesity Research, Tecnológico de Monterrey, Mexico
| | - G Franca-Oliveira
- Institute of Food Science Research (CIAL, CSIC-UAM, CEI UAM+CSIC), Nicolás Cabrera 9, Madrid 28049, Spain
| | - D A Luna-Vital
- School of Engineering and Sciences, Tecnológico de Monterrey, Campus Puebla, Mexico; The Institute for Obesity Research, Tecnológico de Monterrey, Mexico
| | - B Hernández-Ledesma
- Institute of Food Science Research (CIAL, CSIC-UAM, CEI UAM+CSIC), Nicolás Cabrera 9, Madrid 28049, Spain.
| |
Collapse
|
3
|
Zhang D, Yuan Y, Zeng Q, Xiong J, Gan Y, Jiang K, Xie N. Plant protein-derived anti-breast cancer peptides: sources, therapeutic approaches, mechanisms, and nanoparticle design. Front Pharmacol 2025; 15:1468977. [PMID: 39898323 PMCID: PMC11783187 DOI: 10.3389/fphar.2024.1468977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 11/19/2024] [Indexed: 02/04/2025] Open
Abstract
Breast cancer causes the deaths of approximately 685,000 women annually, posing a severe threat to women's health. Consequently, there is an urgent need for low-cost, low-toxicity and effective therapeutic methods to prevent or mitigate breast cancer progression. PDBP are natural, non-toxic, and affordable substances and have demonstrated excellent anti-breast cancer activities in inhibiting proliferation, migration, and invasion, and promoting apoptosis both in vitro and in vivo, thus effectively preventing or inhibiting breast cancer. However, there are no comprehensive reviews summarizing the effects and mechanisms of PDBP on the treatment of breast cancer. Therefore, this review described the inhibitory effects and mechanisms of active peptides from different plant protein sources on breast cancer. Additionally, we summarized the advantages and preparation methods of plant protein-derived anticancer peptide-encapsulated nanoparticles and their effects in inhibiting breast cancer. This review provides a scientific basis for understanding the anti-breast cancer mechanisms of PDBP and offers guidance for the development of therapeutic adjuvants enriched with these peptides.
Collapse
Affiliation(s)
- Deju Zhang
- Biobank, Shenzhen Second People’s Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, China
- Food and Nutritional Sciences, School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Ying Yuan
- Biobank, Shenzhen Second People’s Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, China
| | - Qingdong Zeng
- Biobank, Shenzhen Second People’s Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, China
- Hengyang Medical School, University of South China, Hengyang, China
| | - Juan Xiong
- Biobank, Shenzhen Second People’s Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, China
- Hengyang Medical School, University of South China, Hengyang, China
| | - Yiming Gan
- Plant Science, School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Kai Jiang
- Eastern Institute for Advanced Study, Eastern Institute of Technology, Ningbo, China
- Department of Thermal Science and Energy Engineering, University of Science and Technology of China, Hefei, China
| | - Ni Xie
- Biobank, Shenzhen Second People’s Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, China
| |
Collapse
|
4
|
Du C, Gong H, Zhao H, Wang P. Recent progress in the preparation of bioactive peptides using simulated gastrointestinal digestion processes. Food Chem 2024; 453:139587. [PMID: 38781909 DOI: 10.1016/j.foodchem.2024.139587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 05/05/2024] [Accepted: 05/06/2024] [Indexed: 05/25/2024]
Abstract
Bioactive peptides (BAPs) represent a unique class of peptides known for their extensive physiological functions and their role in enhancing human health. In recent decades, owing to their notable biological attributes such as antioxidant, antihypertensive, antidiabetic, and anti-inflammatory activities, BAPs have received considerable attention. Simulated gastrointestinal digestion (SGD) is a technique designed to mimic physiological conditions by adjusting factors such as digestive enzymes and their concentrations, pH levels, digestion duration, and salt content. Initially established for analyzing the gastrointestinal processing of foods or their constituents, SGD has recently become a preferred method for generating BAPs. The BAPs produced via SGD often exhibit superior biological activity and stability compared with those of BAPs prepared via other methods. This review offers a comprehensive examination of the recent advancements in BAP production from foods via SGD, addressing the challenges of the method and outlining prospective directions for further investigation.
Collapse
Affiliation(s)
- Chao Du
- School of Food Engineering, Ludong University, 186 Middle Hongqi Road, Yantai, Shandong Province 264025, PR China; BioNanotechnology Institute, Ludong University, 186 Middle Hongqi Road, Yantai Shandong Province 264025, PR China; Yantai Key Laboratory of Nanoscience and Technology for Prepared Food, 186 Middle Hongqi Road, Yantai, Shandong Province 264025, PR China; Yantai Engineering Research Center of Green Food Processing and Quality Control, 186 Middle Hongqi Road, Yantai, Shandong Province 264025, PR China
| | - Hansheng Gong
- School of Food Engineering, Ludong University, 186 Middle Hongqi Road, Yantai, Shandong Province 264025, PR China; Yantai Key Laboratory of Nanoscience and Technology for Prepared Food, 186 Middle Hongqi Road, Yantai, Shandong Province 264025, PR China; Yantai Engineering Research Center of Green Food Processing and Quality Control, 186 Middle Hongqi Road, Yantai, Shandong Province 264025, PR China
| | - Huawei Zhao
- School of Food Engineering, Ludong University, 186 Middle Hongqi Road, Yantai, Shandong Province 264025, PR China; BioNanotechnology Institute, Ludong University, 186 Middle Hongqi Road, Yantai Shandong Province 264025, PR China.
| | - Ping Wang
- Department of Bioproducts and Biosystems Engineering, University of Minnesota, St Paul, MN 55108, USA.
| |
Collapse
|
5
|
Liu C, Wang J, Hong D, Chen Z, Li S, Ma A, Jia Y. Preparation, Isolation and Antioxidant Function of Peptides from a New Resource of Rumexpatientia L. × Rumextianshanicus A. Los. Foods 2024; 13:981. [PMID: 38611286 PMCID: PMC11011613 DOI: 10.3390/foods13070981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/17/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024] Open
Abstract
Rumexpatientia L. ×Rumextianshanicus A. Los (RRL), known as "protein grass" in China, was recognized as a new food ingredient in 2021. However, the cultivation and product development of RRL are still at an early stage, and no peptide research has been reported. In this study, two novel antioxidant peptides, LKPPF and LPFRP, were purified and identified from RRL and applied to H2O2-induced HepG2 cells to investigate their antioxidant properties. It was shown that 121 peptides were identified by ultrafiltration, gel filtration chromatography, and LC-MS/MS, while computer simulation and molecular docking indicated that LKPPF and LPFRP may have strong antioxidant properties. Both peptides were not cytotoxic to HepG2 cells at low concentrations and promoted cell growth, which effectively reduced the production of intracellular ROS and MDA, and increased cell viability and the enzymatic activities of SOD, GSH-Px, and CAT. Therefore, LKPPF and LPFRP, two peptides, possess strong antioxidant activity, which provides a theoretical basis for their potential as food additives or functional food supplements, but still need to be further investigated through animal models as well as cellular pathways.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yingmin Jia
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; (C.L.); (J.W.); (D.H.); (Z.C.); (S.L.); (A.M.)
| |
Collapse
|
6
|
Serena-Romero G, Ignot-Gutiérrez A, Conde-Rivas O, Lima-Silva MY, Martínez AJ, Guajardo-Flores D, Cruz-Huerta E. Impact of In Vitro Digestion on the Digestibility, Amino Acid Release, and Antioxidant Activity of Amaranth ( Amaranthus cruentus L.) and Cañihua ( Chenopodium pallidicaule Aellen) Proteins in Caco-2 and HepG2 Cells. Antioxidants (Basel) 2023; 12:2075. [PMID: 38136195 PMCID: PMC10740650 DOI: 10.3390/antiox12122075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/20/2023] [Accepted: 11/20/2023] [Indexed: 12/24/2023] Open
Abstract
This study evaluated the impact of in vitro gastrointestinal digestion on the digestibility, amino acid release, and antioxidant activity of proteins from amaranth (Amarantus cruentus L.) and cañihua (Chenopodium pallidicaule Aellen). Antioxidant activity was assessed using ORAC, ABTS, DPPH, and cellular antioxidant activity (CAA) assays in human intestinal Caco-2 and hepatic Hep-G2 cell lines. The results showed that amaranth had higher protein digestibility (79.19%) than cañihua (71.22%). In addition, intestinal digestion promoted the release of essential amino acids, such as leucine, lysine, and phenylalanine, in both protein concentrates. Concentrations of amaranth and cañihua proteins, ranging from 0.125 to 1.0 mg mL-1, were non-cytotoxic in both cell lines. At a concentration of 0.750 mg mL-1, simulated gastrointestinal digestion enhanced cellular antioxidant activity. Intestinal digest fractions containing peptides >5 kDa were the principal contributors to CAA in both cell lines. Notably, cañihua proteins exhibited high CAA, reaching values of 85.55% and 82.57% in Caco-2 and HepG2 cells, respectively, compared to amaranth proteins, which reached 84.68% in Caco-2 and 81.06% in HepG2 cells. In conclusion, both amaranth and cañihua proteins, after simulated gastrointestinal digestion, showcased high digestibility and released peptides and amino acids with potent antioxidant properties, underscoring their potential health benefits.
Collapse
Affiliation(s)
- Gloricel Serena-Romero
- Centro de Investigaciones Biomédicas, Universidad Veracruzana, Dr. Luis Castelazo Ayala s/n, Industrial Ánimas, Xalapa 91193, Veracruz, Mexico
| | - Anaís Ignot-Gutiérrez
- Instituto de Neuroetología, Universidad Veracruzana, Dr. Luis Castelazo Ayala s/n, Industrial Ánimas, Xalapa 91193, Veracruz, Mexico
| | - Osvaldo Conde-Rivas
- Centro de Investigaciones Biomédicas, Universidad Veracruzana, Dr. Luis Castelazo Ayala s/n, Industrial Ánimas, Xalapa 91193, Veracruz, Mexico
| | - Marlenne Y. Lima-Silva
- Facultad de Nutrición-Xalapa, Médicos y Odontólogos s/n, Unidad del Bosque, Xalapa 91017, Veracruz, Mexico
| | - Armando J. Martínez
- Instituto de Neuroetología, Universidad Veracruzana, Dr. Luis Castelazo Ayala s/n, Industrial Ánimas, Xalapa 91193, Veracruz, Mexico
| | - Daniel Guajardo-Flores
- Tecnológico de Monterrey, Escuela de Ingeniería y Ciencias, Centro de Biotecnología FEMSA, Eugenio Garza Sada 2501 Sur, Monterrey 64849, Nuevo León, Mexico
| | - Elvia Cruz-Huerta
- Centro de Investigación y Desarrollo en Alimentos, Universidad Veracruzana, Dr. Luis Castelazo Ayala s/n, Industrial Ánimas, Xalapa 91193, Veracruz, Mexico
| |
Collapse
|
7
|
Zhu Y, Chen G, Diao J, Wang C. Recent advances in exploring and exploiting soybean functional peptides-a review. Front Nutr 2023; 10:1185047. [PMID: 37396130 PMCID: PMC10310054 DOI: 10.3389/fnut.2023.1185047] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 05/09/2023] [Indexed: 07/04/2023] Open
Abstract
Soybeans are rich in proteins and phytochemicals such as isoflavones and phenolic compounds. It is an excellent source of peptides with numerous biological functions, including anti-inflammatory, anticancer, and antidiabetic activities. Soy bioactive peptides are small building blocks of proteins that are released after fermentation or gastrointestinal digestion as well as by food processing through enzymatic hydrolysis, often in combination with novel food processing techniques (i.e., microwave, ultrasound, and high-pressure homogenization), which are associated with numerous health benefits. Various studies have reported the potential health benefits of soybean-derived functional peptides, which have made them a great substitute for many chemical-based functional elements in foods and pharmaceutical products for a healthy lifestyle. This review provides unprecedented and up-to-date insights into the role of soybean peptides in various diseases and metabolic disorders, ranging from diabetes and hypertension to neurodegenerative disorders and viral infections with mechanisms were discussed. In addition, we discuss all the known techniques, including conventional and emerging approaches, for the prediction of active soybean peptides. Finally, real-life applications of soybean peptides as functional entities in food and pharmaceutical products are discussed.
Collapse
Affiliation(s)
- Yongsheng Zhu
- Hangzhou Joyoung Soymilk & Food Co., Ltd., Hangzhou, China
| | - Gang Chen
- Hangzhou Joyoung Soymilk & Food Co., Ltd., Hangzhou, China
| | - Jingjing Diao
- National Coarse Cereals Engineering Research Center, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Changyuan Wang
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, China
| |
Collapse
|
8
|
Nieto-Veloza A, Hong S, Reeder M, Sula MJ, D'Souza DH, Zhong Q, Dia VP. Lunasin reduces the susceptibility of IL-10 deficient mice to inflammatory bowel disease and modulates the activation of the NLRP3 inflammasome. J Nutr Biochem 2023:109383. [PMID: 37209953 DOI: 10.1016/j.jnutbio.2023.109383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/21/2023] [Accepted: 05/15/2023] [Indexed: 05/22/2023]
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory condition that can cause severe damage to the gastrointestinal tract leading to lower quality of life and productivity. Our goal was to investigate the protective effect of the soy peptide lunasin in an in vivo model of susceptibility to IBD and to identify the potential mechanism of action in vitro. In IL-10 deficient mice, oral administration of lunasin reduced the number and frequency of mice exhibiting macroscopic signs of susceptibility to inflammation and significantly decreased levels of the pro-inflammatory cytokines TNF-α, IL-1β, IL-6, and IL-18 by up to 95%, 90%, 90%, and 47%, respectively, in different sections of the small and large intestines. Dose-dependent decrease of caspase-1, IL-1β, and IL-18 in LPS-primed and ATP-activated THP-1 human macrophages demonstrated the ability of lunasin to modulate the NLRP3 inflammasome. We demonstrated that lunasin can decrease susceptibility to IBD in genetically susceptible mice by exerting anti-inflammatory properties.
Collapse
Affiliation(s)
- Andrea Nieto-Veloza
- Department of Food Science, University of Tennessee Institute of Agriculture, 2510 River Dr., Knoxville, TN, 37996, USA.
| | - Shan Hong
- Department of Food Science, University of Tennessee Institute of Agriculture, 2510 River Dr., Knoxville, TN, 37996, USA.
| | - Matthew Reeder
- Department of Food Science, University of Tennessee Institute of Agriculture, 2510 River Dr., Knoxville, TN, 37996, USA.
| | - Mee-Ja Sula
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, 2407 River Dr., Knoxville, TN, 37996, USA.
| | - Doris H D'Souza
- Department of Food Science, University of Tennessee Institute of Agriculture, 2510 River Dr., Knoxville, TN, 37996, USA.
| | - Qixin Zhong
- Department of Food Science, University of Tennessee Institute of Agriculture, 2510 River Dr., Knoxville, TN, 37996, USA.
| | - Vermont P Dia
- Department of Food Science, University of Tennessee Institute of Agriculture, 2510 River Dr., Knoxville, TN, 37996, USA.
| |
Collapse
|
9
|
Franca-Oliveira G, Martinez-Rodriguez AJ, Morato E, Hernández-Ledesma B. Contribution of Proteins and Peptides to the Impact of a Soy Protein Isolate on Oxidative Stress and Inflammation-Associated Biomarkers in an Innate Immune Cell Model. PLANTS (BASEL, SWITZERLAND) 2023; 12:2011. [PMID: 37653928 PMCID: PMC10223871 DOI: 10.3390/plants12102011] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/10/2023] [Accepted: 05/15/2023] [Indexed: 09/02/2023]
Abstract
The innate and adaptative immune systems are involved in the regulation of inflammatory and oxidative processes and mediators such as reactive oxygen species (ROS) and nitric oxide (NO). The exacerbated action of these players results in an oxidative stress status and chronic inflammation, which is responsible for the development of non-communicable diseases (NCDs). By modulating these mediators, bioactive compounds in food can exert a key role in the prevention of several NCDs. Among these compounds, soybean proteins and peptides such as lunasin have been considered to be among the most promising. The aim of this study was to obtain and characterize a soluble protein-enriched extract from a commercial soybean protein isolate and fractionate it into different fractions through ultrafiltration. Their antioxidant and immunomodulatory properties were then evaluated using biochemical and cell models. A total of 535 proteins (from 282 protein groups) were identified in the extract, in which the presence of the peptide lunasin was confirmed. The enrichment of this peptide was achieved in the 3-10 kDa fraction. The protective effects against the oxidative stress induced by LPS in the macrophage model could have been mediated by the radical scavenging capacity of the peptides present in the soybean samples. Under basal conditions, the extract and its ultrafiltered fractions activated macrophages and induced the release of NO. However, under challenged conditions, the whole extract potentiated the NO-stimulating effects of LPS, whereas the fraction containing 3-10 kDa peptides, including lunasin, counteracted the LPS-induced NO increase. Our findings suggest a promising role of soybean protein as an ingredient for functional foods and nutraceuticals aimed at promoting health and preventing oxidative stress and/or immune-alteration-associated diseases.
Collapse
Affiliation(s)
- Giselle Franca-Oliveira
- Institute of Food Science Research (CIAL, CSIC-UAM, CEI UAM+CSIC), Nicolás Cabrera, 28049 Madrid, Spain;
| | | | - Esperanza Morato
- Center of Molecular Biology “Severo Ochoa” (CBMSO), CSIC-UAM, Nicolás Cabrera 1, 28049 Madrid, Spain;
| | - Blanca Hernández-Ledesma
- Institute of Food Science Research (CIAL, CSIC-UAM, CEI UAM+CSIC), Nicolás Cabrera, 28049 Madrid, Spain;
| |
Collapse
|
10
|
Evaluation of the Multifunctionality of Soybean Proteins and Peptides in Immune Cell Models. Nutrients 2023; 15:nu15051220. [PMID: 36904220 PMCID: PMC10005611 DOI: 10.3390/nu15051220] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 03/04/2023] Open
Abstract
Inflammatory and oxidative processes are tightly regulated by innate and adaptive immune systems, which are involved in the pathology of a diversity of chronic diseases. Soybean peptides, such as lunasin, have emerged as one of the most hopeful food-derived peptides with a positive impact on health. The aim was to study the potential antioxidant and immunomodulatory activity of a lunasin-enriched soybean extract (LES). The protein profile of LES was characterized, and its behavior under simulated gastrointestinal digestion was evaluated. Besides its in vitro radical scavenging capacity, LES and lunasin's effects on cell viability, phagocytic capacity, oxidative stress, and inflammation-associated biomarkers were investigated in both RAW264.7 macrophages and lymphocytes EL4. Lunasin and other soluble peptides enriched after aqueous solvent extraction partially resisted the action of digestive enzymes, being potentially responsible for the beneficial effects of LES. This extract scavenged radicals, reduced reactive oxygen species (ROS) and exerted immunostimulatory effects, increasing nitric oxide (NO) production, phagocytic activity, and cytokine release in macrophages. Lunasin and LES also exerted dose-dependent immunomodulatory effects on EL4 cell proliferation and cytokine production. The modulatory effects of soybean peptides on both immune cell models suggest their potential protective role against oxidative stress, inflammation, and immune response-associated disorders.
Collapse
|
11
|
Jian S, Yang K, Zhang L, Zhang L, Xin Z, Wen C, He S, Deng J, Deng B. The modulation effects of plant‐derived bioactive ingredients on chronic kidney disease: Focus on the gut–kidney axis. FOOD FRONTIERS 2023. [DOI: 10.1002/fft2.209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Affiliation(s)
- Shiyan Jian
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science South China Agricultural University Guangzhou China
| | - Kang Yang
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science South China Agricultural University Guangzhou China
| | - Lingna Zhang
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science South China Agricultural University Guangzhou China
| | - Limeng Zhang
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science South China Agricultural University Guangzhou China
| | - Zhongquan Xin
- Faculty of Food Science and Engineering Kunming University of Science and Technology Kunming China
| | - Chaoyu Wen
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science South China Agricultural University Guangzhou China
| | - Shansong He
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science South China Agricultural University Guangzhou China
| | - Jinping Deng
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science South China Agricultural University Guangzhou China
| | - Baichuan Deng
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science South China Agricultural University Guangzhou China
| |
Collapse
|
12
|
Mardani M, Badakné K, Farmani J, Aluko RE. Antioxidant peptides: Overview of production, properties, and applications in food systems. Compr Rev Food Sci Food Saf 2023; 22:46-106. [PMID: 36370116 DOI: 10.1111/1541-4337.13061] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 08/23/2022] [Accepted: 09/19/2022] [Indexed: 11/13/2022]
Abstract
In recent years, several studies have reported the beneficial effects of antioxidant peptides in delaying oxidation reactions. Thus, a growing number of food proteins have been investigated as suitable sources for obtaining these antioxidant peptides. In this study, some of the most critical developments in the discovery of peptidic antioxidants are discussed. Initially, the primary methods to release, purify, and identify these antioxidant peptides from various food-derived sources are reviewed. Then, computer-based screening methods of the available peptides are summarized, and methods to interpret their structure-activity relationship are illustrated. Finally, approaches to the large-scale production of these bioactive peptides are described. In addition, the applications of these antioxidants in food systems are discussed, and gaps, future challenges, and opportunities in this field are highlighted. In conclusion, various food items can be considered promising sources to obtain these novel antioxidant peptides, which present various opportunities for food applications in addition to health promotion. The lack of in-depth data on the link between the structure and activity of these antioxidants, which is critical for the prediction of possible bioactive amino acid sequences and their potency in food systems and in vivo conditions (rather than in vitro systems), requires further attention. Consequently, future collaborative research activities between the industry and academia are required to realize the commercialization objectives of these novel antioxidant peptides.
Collapse
Affiliation(s)
- Mohsen Mardani
- Department of Cereal and Industrial Plant Processing, Faculty of Food Science, Hungarian University of Agriculture and Life Sciences, Budapest, Hungary
| | - Katalin Badakné
- Department of Cereal and Industrial Plant Processing, Faculty of Food Science, Hungarian University of Agriculture and Life Sciences, Budapest, Hungary
| | - Jamshid Farmani
- Department of Food Science and Technology, Faculty of Agricultural Engineering, Sari Agricultural Sciences and Natural Resources University, Sari, Iran
| | - Rotimi E Aluko
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
13
|
Kusumah J, Gonzalez de Mejia E. Impact of soybean bioactive compounds as response to diet-induced chronic inflammation: A systematic review. Food Res Int 2022; 162:111928. [DOI: 10.1016/j.foodres.2022.111928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 11/04/2022]
|
14
|
Peptide release, radical scavenging capacity, and antioxidant responses in intestinal cells are determined by soybean variety and gastrointestinal digestion under simulated conditions. Food Chem 2022. [DOI: 10.1016/j.foodchem.2022.134929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
15
|
Wang L, Wang Z, Reziwangul S, Chen S. Study on antioxidant activity of chicken plasma protein hydrolysates. ACTA ALIMENTARIA 2022. [DOI: 10.1556/066.2022.00087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Abstract
This study optimised the hydrolysis process of chicken plasma protein and explored the in vivo antioxidant activity of its hydrolysates. The results showed that alkaline protease provided the highest degree of hydrolysis (19.30%), the best antioxidant effect in vitro. The optimal hydrolysis process of alkaline protease was: temperature 50 °C, time 8 h, [E]/[S] 7000 U g−1, pH 7.5. Antioxidant studies in vivo showed that the low, medium, and high dose groups significantly reduced the serum MDA and protein carbonyl content (P < 0.05) and significantly increased the serum SOD and GSH contents (P < 0.05). The results of HE staining of the liver showed that the liver cells in the model group were severely damaged, but the chicken plasma protein hydrolysates could alleviate this pathological damage. Chicken plasma protein hydrolysis products had certain antioxidant activity.
Collapse
Affiliation(s)
- L.P. Wang
- School of Life Sciences and Engineering, Northwest University of Nationalities, Lanzhou, 730124, China
- Biomedical Research Center, China-Malaysia National Joint Laboratory, Northwest University of Nationalities, Lanzhou, 730124, China
| | - Z.F. Wang
- School of Life Sciences and Engineering, Northwest University of Nationalities, Lanzhou, 730124, China
- Biomedical Research Center, China-Malaysia National Joint Laboratory, Northwest University of Nationalities, Lanzhou, 730124, China
| | - S. Reziwangul
- School of Life Sciences and Engineering, Northwest University of Nationalities, Lanzhou, 730124, China
| | - S.E. Chen
- School of Life Sciences and Engineering, Northwest University of Nationalities, Lanzhou, 730124, China
- Biomedical Research Center, China-Malaysia National Joint Laboratory, Northwest University of Nationalities, Lanzhou, 730124, China
| |
Collapse
|
16
|
Juárez-Chairez MF, Cid-Gallegos MS, Meza-Márquez OG, Jiménez-Martínez C. Biological functions of peptides from legumes in gastrointestinal health. A review legume peptides with gastrointestinal protection. J Food Biochem 2022; 46:e14308. [PMID: 35770807 DOI: 10.1111/jfbc.14308] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/27/2022] [Accepted: 06/09/2022] [Indexed: 12/19/2022]
Abstract
Extensively consumed worldwide, legumes such as beans, soybeans, chickpeas, and peas represent a great source of protein. Legume-derived proteins provide bioactive peptides, small sequences of amino acids produced by enzymatic hydrolysis, gastrointestinal digestion, fermentation, or germination. Recent studies showed diverse biological effects of these peptides as antioxidants, antihypertensives, anti-inflammatory, antimicrobial, antithrombotic, antidiabetic, hypocholesterolemic, and even immunomodulators. These beneficial effects aid in preventing and treating chronic illnesses, particularly inflammatory disorders, obesity, and cardiovascular diseases. Thus, this work discusses these biological functions in gastrointestinal digestion health of bioactive peptides obtained from common beans, soybeans, chickpeas, peas, and other legumes. PRACTICAL APPLICATIONS: Knowledge of the nutraceutical properties of legumes can encourage the use of these seeds as ingredients in the development and design of functional foods.
Collapse
Affiliation(s)
- Milagros Faridy Juárez-Chairez
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, México City, Mexico
| | - María Stephanie Cid-Gallegos
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, México City, Mexico
| | - Ofelia Gabriela Meza-Márquez
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, México City, Mexico
| | - Cristian Jiménez-Martínez
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, México City, Mexico
| |
Collapse
|
17
|
Wen L, Bi H, Zhou X, Jiang Y, Zhu H, Fu X, Yang B. Structure characterization of soybean peptides and their protective activity against intestinal inflammation. Food Chem 2022; 387:132868. [PMID: 35381416 DOI: 10.1016/j.foodchem.2022.132868] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 03/20/2022] [Accepted: 03/30/2022] [Indexed: 12/11/2022]
Abstract
Soybean peptides serve as functional foods with impressive health benefits. The structure characteristics of peptides are highly related to the health benefits. The structure-activity relationship and mechanism underlined are important scientific questions in this field. To answer these questions, soybean peptides were produced by combinatory enzymatic hydrolysis in this work. Fifty-two peptide sequences were identified by ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). The anti-inflammatory activities of these peptides were investigated by using a lipopolysaccharide (LPS)-induced inflammation cell model. Soybean peptides could significantly promote cell proliferation. Additionally, soybean peptides could alleviate LPS-induced inflammation by reducing the production and expression of nitric oxide (NO), tumor necrosis factor alpha (TNF-α), interleukin-1β (IL-1β) and interleukin-6 (IL-6). Moreover, soybean peptides could promote the mRNA expression of proteins related to inflammation inhibition (IL-10) and tight junction modulation. The structure-activity relationship was addressed. The results documented the potential of soybean peptides as functional foods.
Collapse
Affiliation(s)
- Lingrong Wen
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Huimin Bi
- Guangzhou College of Technology and Business, Guangzhou 510850, China
| | - Xuesong Zhou
- Guangzhou Honsea Industry Co., Ltd., Guangzhou 510530, China
| | - Yueming Jiang
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Hong Zhu
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Xiong Fu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Bao Yang
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China.
| |
Collapse
|
18
|
Lunasin as a Promising Plant-Derived Peptide for Cancer Therapy. Int J Mol Sci 2022; 23:ijms23179548. [PMID: 36076946 PMCID: PMC9455814 DOI: 10.3390/ijms23179548] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/17/2022] [Accepted: 08/22/2022] [Indexed: 11/17/2022] Open
Abstract
Cancer has become one of the main public health problems worldwide, demanding the development of new therapeutic agents that can help reduce mortality. Lunasin is a soybean peptide that has emerged as an attractive option because its preventive and therapeutic actions against cancer. In this review, we evaluated available research on lunasin’s structure and mechanism of action, which should be useful for the development of lunasin-based therapeutic products. We described data on its primary, secondary, tertiary, and possible quaternary structure, susceptibility to post-translational modifications, and structural stability. These characteristics are important for understanding drug activity and characterizing lunasin products. We also provided an overview of research on lunasin pharmacokinetics and safety. Studies examining lunasin’s mechanisms of action against cancer were reviewed, highlighting reported activities, and known molecular partners. Finally, we briefly discussed commercially available lunasin products and potential combination therapeutics.
Collapse
|
19
|
Peng Y, Bu L, Zhang X, Ji Z, Xie H, Liang G. Identification and molecular mechanism of a tri-peptide inhibitor targeting iNOS from duck embryo protein hydrolysates by experimental and bioinformatics studies. Bioorg Chem 2022; 122:105736. [DOI: 10.1016/j.bioorg.2022.105736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 03/04/2022] [Accepted: 03/08/2022] [Indexed: 11/29/2022]
|
20
|
Swallah MS, Yang X, Li J, Korese JK, Wang S, Fan H, Yu H, Huang Q. The Pros and Cons of Soybean Bioactive Compounds: An Overview. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2062763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Mohammed Sharif Swallah
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
- Processing, Soybean Research & Development Centre, Chinese Agricultural Research SystemDivision of Soybean, Changchun, China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, China
- Laboratory of High Magnetic Field and Iron Beam Physical Biology, Institute of Intelligent Agriculture, Institute of Intelligent Machines, Hefei Institute of Physical Sciences, Chinese Academy of SciencesCAS Key, Hefei, China
| | - Xiaoqing Yang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
- Processing, Soybean Research & Development Centre, Chinese Agricultural Research SystemDivision of Soybean, Changchun, China
| | - Jiaxin Li
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
- Processing, Soybean Research & Development Centre, Chinese Agricultural Research SystemDivision of Soybean, Changchun, China
| | - Joseph Kudadam Korese
- Agricultural Mechanization and Irrigation Technology, Faculty of Agriculture, Food and Consumer Sciences, University for Development StudiesDepartment of, Tamale, Ghana
| | - Sainan Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
- Processing, Soybean Research & Development Centre, Chinese Agricultural Research SystemDivision of Soybean, Changchun, China
| | - Hongliang Fan
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
- Processing, Soybean Research & Development Centre, Chinese Agricultural Research SystemDivision of Soybean, Changchun, China
| | - Hansong Yu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
- Processing, Soybean Research & Development Centre, Chinese Agricultural Research SystemDivision of Soybean, Changchun, China
| | - Qing Huang
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, China
- Laboratory of High Magnetic Field and Iron Beam Physical Biology, Institute of Intelligent Agriculture, Institute of Intelligent Machines, Hefei Institute of Physical Sciences, Chinese Academy of SciencesCAS Key, Hefei, China
| |
Collapse
|
21
|
Li T, Zhang X, Ren Y, Zeng Y, Huang Q, Wang C. Antihypertensive effect of soybean bioactive peptides: A review. Curr Opin Pharmacol 2022; 62:74-81. [PMID: 34929528 DOI: 10.1016/j.coph.2021.11.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 11/10/2021] [Accepted: 11/12/2021] [Indexed: 01/18/2023]
Abstract
Hypertension is a global disease that is extremely harmful to humans. Timely lowering of blood pressure is necessary in order to avoid the occurrence of corresponding complications. This review shows that soy peptides are beneficial in resisting hypertension. One of the advantages is the abundance of raw materials for producing soybean peptides. Secondly, there are no reports of adverse reactions due to soy peptides. Moreover, they exert protective effect against hypertension-induced complications such as long-term memory impairment and kidney damage. However, there are still some obstacles associated with the development of soybean peptides. Therefore, this review is focused on statistical analysis of peptide sequences, amino acid residues, and possible targets of anti-hypertensive soybean peptides. Eventually, it proposes that application of genetic engineering technology to specifically modify the N- and C-terminal of the soybean peptides, and possible targets in identifying the likely drug targets involved in the antihypertensive effects of these peptides.
Collapse
Affiliation(s)
- Tingna Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, China
| | - Xiaorui Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, China
| | - Yuanyuan Ren
- State Key Laboratory of Southwestern Chinese Medicine Resources, China
| | - Yijia Zeng
- State Key Laboratory of Southwestern Chinese Medicine Resources, China
| | - Qinwan Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, China.
| | - Chao Wang
- Sichuan Integrated Traditional Chinese and Western Medicine Hospital, China.
| |
Collapse
|
22
|
Cotabarren J, Ozón B, Claver S, Garcia-Pardo J, Obregón WD. Purification and Identification of Novel Antioxidant Peptides Isolated from Geoffroea decorticans Seeds with Anticoagulant Activity. Pharmaceutics 2021; 13:1153. [PMID: 34452114 PMCID: PMC8399481 DOI: 10.3390/pharmaceutics13081153] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/16/2021] [Accepted: 07/22/2021] [Indexed: 11/17/2022] Open
Abstract
Geoffroea decorticans is a xerophilous deciduous tree present in most arid forests of southern South America, which is commonly used in traditional medicine. The seeds of this tree have been previously investigated for their singular chemical composition, but their protein content has been poorly investigated. Herein, we report the isolation, purification, and characterization of a set of thermostable peptides derived from Geoffroea decorticans seeds (GdAPs) with strong antioxidant and anticoagulant activities. The most potent antioxidant peptides showed a half maximal inhibitory concentration (IC50) of 35.5 ± 0.3 µg/mL determined by 1,1-diphenyl-2-picrylhydrazyl (DPPH). They also caused a dose-dependent prolongation of the aPTT clotting time with an IC50 value of ~82 µg/mL. Interestingly, MALDI-TOF/MS analysis showed the presence of three major peptides with low molecular weights of 2257.199 Da, 2717.165 Da, and 5422.002 Da. The derived amino-acid sequence of GdAPs revealed their unique structural features, exhibiting homology with various proteins present in the genome of Arachis hypogaea. All in all, our data suggest a direct applicability of GdAPs for pharmaceutical purposes.
Collapse
Affiliation(s)
- Juliana Cotabarren
- Centro de Investigación de Proteínas Vegetales (CIPROVE), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de la Plata, Buenos Aires B1900, Argentina; (B.O.); (S.C.)
| | - Brenda Ozón
- Centro de Investigación de Proteínas Vegetales (CIPROVE), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de la Plata, Buenos Aires B1900, Argentina; (B.O.); (S.C.)
| | - Santiago Claver
- Centro de Investigación de Proteínas Vegetales (CIPROVE), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de la Plata, Buenos Aires B1900, Argentina; (B.O.); (S.C.)
| | - Javier Garcia-Pardo
- Institut de Biotecnologia i Biomedicina and Departament de Bioquimica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Walter David Obregón
- Centro de Investigación de Proteínas Vegetales (CIPROVE), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de la Plata, Buenos Aires B1900, Argentina; (B.O.); (S.C.)
| |
Collapse
|
23
|
Durand E, Beaubier S, Ilic I, fine F, Kapel R, Villeneuve P. Production and antioxidant capacity of bioactive peptides from plant biomass to counteract lipid oxidation. Curr Res Food Sci 2021; 4:365-397. [PMID: 34142097 PMCID: PMC8187438 DOI: 10.1016/j.crfs.2021.05.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 05/07/2021] [Accepted: 05/25/2021] [Indexed: 12/30/2022] Open
Abstract
Preventing lipid oxidation, especially with the polyunsaturated fat-based products, is a major concern in sectors as agri-food and cosmetic. Even though the efficiency of synthetic antioxidants has been recognized, both consumers and manufacturers are looking for more innovative, healthy and quality products while rejecting synthetic additives due to their concern about safety, along with their environmental impact issues. In this context, plant biomass, which have shown to be rich in compounds, have raised interest for the isolation of novel naturally occurring antioxidants. Among their myriad of molecules, bioactive peptides, which are biologically active sequence of amino acid residues of proteins, seem to be of a great interest. Therefore, the number of identified amino acids sequences of bioactive peptides from plant biomass with potential antioxidant action is progressively increasing. Thus, this review provides a description of 129 works that have been made to produce bioactive peptides (hydrolysate, fraction and/or isolate peptide) from 55 plant biomass, along with the procedure to examine their antioxidant capacity (until 2019 included). The protein name, the process, and the method to concentrate or isolate antioxidant bioactive peptides, along with their identification and/or specificity were described. Considering the complex, dynamic and multifactorial physico-chemical mechanisms of the lipid oxidation, an appropriate in-vitro methodology should be better performed to efficiently probe the antioxidant potential of bioactive peptides. Therefore, the results were discussed, and perspective for antioxidant applications of bioactive peptides from plant biomass was argued.
Collapse
Affiliation(s)
- Erwann Durand
- CIRAD, UMR QualiSud, Montpellier, F-34398, France
- Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, Montpellier, France
| | - Sophie Beaubier
- Laboratoire Réactions et Génie des Procédés, UMR CNRS-7274, plateforme SVS, 13 rue du bois de la Champelle, Vandœuvre-lès-Nancy, F-54500, France
| | - Isidora Ilic
- CIRAD, UMR QualiSud, Montpellier, F-34398, France
- Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, Montpellier, France
| | - Frederic fine
- TERRES INOVIA, Parc Industriel – 11 Rue Monge, 33600 Pessac, France
| | - Romain Kapel
- Laboratoire Réactions et Génie des Procédés, UMR CNRS-7274, plateforme SVS, 13 rue du bois de la Champelle, Vandœuvre-lès-Nancy, F-54500, France
| | - Pierre Villeneuve
- CIRAD, UMR QualiSud, Montpellier, F-34398, France
- Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, Montpellier, France
| |
Collapse
|
24
|
Gonzalez de Mejia E, Castañeda-Reyes ED, Mojica L, Dia V, Wang H, Wang T, Johnson LA. Potential Health Benefits Associated with Lunasin Concentration in Dietary Supplements and Lunasin-Enriched Soy Extract. Nutrients 2021; 13:1618. [PMID: 34065911 PMCID: PMC8150303 DOI: 10.3390/nu13051618] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 12/22/2022] Open
Abstract
Lunasin has demonstrated antioxidative, anti-inflammatory, and chemopreventive properties. The objectives were to evaluate the concentration of lunasin in different lunasin-based commercial dietary supplements, to produce a lunasin-enriched soy extract (LESE) using a two-step pilot-plant-based ultrafiltration process, and to evaluate their biological potential in vitro. LESE was produced using 30 and 1 kDa membranes in a custom-made ultrafiltration skid. Lunasin was quantified in eight products and LESE. Lunasin concentrations of the lunasin-based products ranged from 9.2 ± 0.6 to 25.7 ± 1.1 mg lunasin/g protein. The LESE extract contained 58.2 mg lunasin/g protein, up to 6.3-fold higher lunasin enrichment than lunasin-based dietary supplements. Antioxidant capacity ranged from 121.5 mmol Trolox equivalents (TE)/g in Now® Kids to 354.4 mmol TE/g in LESE. Histone acetyltransferase (HAT) inhibition ranged from 5.3% on Soy Sentials® to 38.3% on synthetic lunasin. ORAC and lunasin concentrations were positively correlated, and HAT and lunasin concentrations were negatively correlated (p < 0.05). Melanoma B16-F10 and A375 cells treated with lunasin showed dose-dependent inhibitory potential (IC50 equivalent to 330 and 370 μM lunasin, respectively). Lunasin showed protein kinase B expression (57 ± 14%) compared to the control (100%) in B16-F10. Lunasin concentration found in commercial products and lunasin-enriched soy extract could exert benefits to consumers.
Collapse
Affiliation(s)
- Elvira Gonzalez de Mejia
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; (E.D.C.-R.); (L.M.); (V.D.)
| | - Erick Damian Castañeda-Reyes
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; (E.D.C.-R.); (L.M.); (V.D.)
| | - Luis Mojica
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; (E.D.C.-R.); (L.M.); (V.D.)
- Tecnología Alimentaria, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A. C., CIATEJ, Guadalajara 44270, Mexico
| | - Vermont Dia
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; (E.D.C.-R.); (L.M.); (V.D.)
| | - Hui Wang
- Center for Crops Utilization Research, Iowa State University, Ames, IA 50011, USA; (H.W.); (T.W.); (L.A.J.)
| | - Toni Wang
- Center for Crops Utilization Research, Iowa State University, Ames, IA 50011, USA; (H.W.); (T.W.); (L.A.J.)
| | - Lawrence A. Johnson
- Center for Crops Utilization Research, Iowa State University, Ames, IA 50011, USA; (H.W.); (T.W.); (L.A.J.)
| |
Collapse
|
25
|
Ofosu FK, Mensah DJF, Daliri EBM, Oh DH. Exploring Molecular Insights of Cereal Peptidic Antioxidants in Metabolic Syndrome Prevention. Antioxidants (Basel) 2021; 10:518. [PMID: 33810450 PMCID: PMC8066008 DOI: 10.3390/antiox10040518] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/18/2021] [Accepted: 03/20/2021] [Indexed: 11/23/2022] Open
Abstract
The prevalence of metabolic syndrome (MetS) is presently an alarming public health problem globally. Oxidative stress has been postulated to be strongly correlated with MetS, such as type 2 diabetes, obesity, hypertension, cardiovascular diseases, and certain cancers. Cereals are important staple foods which account for a huge proportion of the human diet. However, owing to recent growing demand and the search for natural antioxidants for the prevention and management of MetS, cereal peptides have gained increasing attention for developing functional ingredients or foods with substantial antioxidant properties. This review explores the current production techniques for cereal peptidic antioxidants and their potential mechanism of action in the prevention and management of MetS.
Collapse
Affiliation(s)
- Fred Kwame Ofosu
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 24341, Gangwon-do, Korea; (F.K.O.); (E.B.-M.D.)
| | - Dylis-Judith Fafa Mensah
- Department of Family and Consumer Sciences, College of Applied Science and Technology, Illinois State University, Normal, IL 61761, USA;
| | - Eric Banan-Mwine Daliri
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 24341, Gangwon-do, Korea; (F.K.O.); (E.B.-M.D.)
| | - Deog-Hwan Oh
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 24341, Gangwon-do, Korea; (F.K.O.); (E.B.-M.D.)
| |
Collapse
|
26
|
Gao R, Shu W, Shen Y, Sun Q, Jin W, Li D, Li Y, Yuan L. Peptide fraction from sturgeon muscle by pepsin hydrolysis exerts anti-inflammatory effects in LPS-stimulated RAW264.7 macrophages via MAPK and NF-κB pathways. FOOD SCIENCE AND HUMAN WELLNESS 2021. [DOI: 10.1016/j.fshw.2020.04.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
27
|
Aguilar‐Toalá JE, Liceaga AM. Cellular antioxidant effect of bioactive peptides and molecular mechanisms underlying: beyond chemical properties. Int J Food Sci Technol 2020. [DOI: 10.1111/ijfs.14855] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Jose Eleazar Aguilar‐Toalá
- Protein Chemistry and Bioactive Peptides Laboratory Department of Food Science Purdue University 745 Agriculture Mall Dr. West Lafayette IN47907USA
| | - Andrea M. Liceaga
- Protein Chemistry and Bioactive Peptides Laboratory Department of Food Science Purdue University 745 Agriculture Mall Dr. West Lafayette IN47907USA
| |
Collapse
|
28
|
Fernández-Tomé S, Hernández-Ledesma B. Gastrointestinal Digestion of Food Proteins under the Effects of Released Bioactive Peptides on Digestive Health. Mol Nutr Food Res 2020; 64:e2000401. [PMID: 32974997 DOI: 10.1002/mnfr.202000401] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 09/15/2020] [Indexed: 12/20/2022]
Abstract
The gastrointestinal tract represents a specialized interface between the organism and the external environment. Because of its direct contact with lumen substances, the modulation of digestive functions by dietary substances is supported by a growing body of evidence. Food-derived bioactive peptides have demonstrated a plethora of activities in the organism with increasing interest toward their impact over the digestive system and related physiological effects. This review updates the biological effects of food proteins, specifically milk and soybean proteins, associated to gastrointestinal health and highlights the study of digestion products and released peptides, the identification of the active form/s, and the evaluation of the mechanisms of action underlying their relationship with the digestive cells and receptors. The approach toward the modifications that food proteins and peptides undergo during gastrointestinal digestion and their bioavailability is a crucial step for current investigations on the field. The recent literature on the regulation of digestive functions by peptides has been mostly considered in terms of their influence on gastrointestinal motility and signaling, oxidative damage and inflammation, and malignant cellular proliferation. A final section regarding the actual challenges and future perspectives in this scientific topic is critically discussed.
Collapse
Affiliation(s)
- Samuel Fernández-Tomé
- Samuel Fernández-Tomé. Hospital Universitario de La Princesa and Instituto de Investigación Sanitaria Princesa (IIS-IP), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Diego de León, 62, 28006, Madrid, Spain
| | - Blanca Hernández-Ledesma
- Blanca Hernández-Ledesma. Instituto de Investigación en Ciencias de la Alimentación (CIAL, CSIC-UAM, CEI UAM+CSIC), Nicolás Cabrera, 9, 28049, Madrid, Spain
| |
Collapse
|
29
|
Anaya K, Podszun M, Franco OL, de Almeida Gadelha CA, Frank J. The Coconut Water Antimicrobial Peptide CnAMP1 Is Taken up into Intestinal Cells but Does Not Alter P-Glycoprotein Expression and Activity. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2020; 75:396-403. [PMID: 32462366 PMCID: PMC7378125 DOI: 10.1007/s11130-020-00826-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Coconut antimicrobial peptide-1 (CnAMP1) is a naturally occurring bioactive peptide from green coconut water (Cocos nucifera L.). Although biological activities have been reported, the physiological relevance of these reports remains elusive as it is unknown if CnAMP1 is taken up into intestinal cells. To address this open question, we investigated the cytotoxicity of CnAMP1 in intestinal cells and its cellular uptake into human intestinal cells. Considering the importance of the P-glycoprotein (P-gp) to the intestinal metabolism of xenobiotics, we also investigated the influence of CnAMP1 on P-gp activity and expression. Both cell lines showed intracellular fluorescence after incubation with fluorescein labelled CnAMP1, indicating cellular uptake of the intact or fragmented peptide. CnAMP1 (12.5-400 μmol/L) showed no signs of cytotoxicity in LS180 and differentiated Caco-2 cells and did not affect P-gp expression and activity. Further research is required to investigate the identity of CnAMP1 hydrolysis fragments and their potential biological activities.
Collapse
Affiliation(s)
- Katya Anaya
- Faculty of Health Sciences of Trairi, Federal University of Rio Grande do Norte, Santa Cruz, RN 59200-000 Brazil
- Institute of Nutritional Sciences, University of Hohenheim, D-70599 Stuttgart, Germany
- Department of Molecular Biology, Federal University of Paraíba, João Pessoa, PB 58051-900 Brazil
| | - Maren Podszun
- Institute of Nutritional Sciences, University of Hohenheim, D-70599 Stuttgart, Germany
| | - Octavio Luiz Franco
- Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF 70790-160 Brazil
- S-Inova Biotech, Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, MS 79117-900 Brazil
| | | | - Jan Frank
- Institute of Nutritional Sciences, University of Hohenheim, D-70599 Stuttgart, Germany
| |
Collapse
|
30
|
Pan M, Liu K, Yang J, Liu S, Wang S, Wang S. Advances on Food-Derived Peptidic Antioxidants-A Review. Antioxidants (Basel) 2020; 9:E799. [PMID: 32867173 PMCID: PMC7554705 DOI: 10.3390/antiox9090799] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 08/22/2020] [Accepted: 08/24/2020] [Indexed: 02/07/2023] Open
Abstract
The oxidation process is considered to be the main reason behind human aging, human degenerative diseases and food quality degradation. Food-derived peptidic antioxidants (PAs) have wide sources and great activity, and have broad application prospects in removing excess reactive oxygen species in the body, anti-aging and preventing and treating diseases related to oxidative stress. On the other hand, PAs are expected to inhibit the lipid peroxidation of foods and increase the stability of the food system in the food industry. However, the production pathways and action mechanism of food-derived PAs are diverse, which makes it is difficult to evaluate the performance of PAs which is why the commercial application of PAs is still in its infancy. This article focuses on reviewing the preparation, purification, and characterization methods of food-derived PAs, and expounds the latest progress in performance evaluation and potential applications, in order to provide an effective reference for subsequent related research of PAs.
Collapse
Affiliation(s)
- Mingfei Pan
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; (M.P.); (K.L.); (J.Y.); (S.L.); (S.W.)
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Kaixin Liu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; (M.P.); (K.L.); (J.Y.); (S.L.); (S.W.)
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Jingying Yang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; (M.P.); (K.L.); (J.Y.); (S.L.); (S.W.)
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Shengmiao Liu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; (M.P.); (K.L.); (J.Y.); (S.L.); (S.W.)
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Shan Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; (M.P.); (K.L.); (J.Y.); (S.L.); (S.W.)
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Shuo Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; (M.P.); (K.L.); (J.Y.); (S.L.); (S.W.)
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| |
Collapse
|
31
|
Amigo L, Martínez-Maqueda D, Hernández-Ledesma B. In Silico and In Vitro Analysis of Multifunctionality of Animal Food-Derived Peptides. Foods 2020; 9:foods9080991. [PMID: 32722144 PMCID: PMC7466261 DOI: 10.3390/foods9080991] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 07/19/2020] [Accepted: 07/21/2020] [Indexed: 12/12/2022] Open
Abstract
Currently, the associations between oxidative stress, inflammation, hypertension, and metabolic disturbances and non-communicable diseases are very well known. Since these risk factors show a preventable character, the searching of food peptides acting against them has become a promising strategy for the design and development of new multifunctional foods or nutraceuticals. In the present study, an integrated approach combining an in silico study and in vitro assays was used to confirm the multifunctionality of milk and meat protein-derived peptides that were similar to or shared amino acids with previously described opioid peptides. By the in silico analysis, 15 of the 27 assayed peptides were found to exert two or more activities, with Angiotensin-converting enzyme (ACE) inhibitory, antioxidant, and opioid being the most commonly found. The in vitro study confirmed ACE-inhibitory and antioxidant activities in 15 and 26 of the 27 synthetic peptides, respectively. Four fragments, RYLGYLE, YLGYLE, YFYPEL, and YPWT, also demonstrated the ability to protect Caco-2 and macrophages RAW264.7 cells from the oxidative damage caused by chemicals. The multifunctionality of these peptides makes them promising agents against oxidative stress-associated diseases.
Collapse
Affiliation(s)
- Lourdes Amigo
- Departamento de Bioactividad y Análisis de Alimentos, Instituto de Investigación en Ciencias de la Alimentación (CIAL, CSIC-UAM, CEI-UAM+CSIC), Nicolás Cabrera 9, 28049 Madrid, Spain;
| | - Daniel Martínez-Maqueda
- Departamento de Investigación Agroalimentaria, Instituto Madrileño de Investigación y Desarrollo Rural, Agrario y Alimentario (IMIDRA), 28800 Madrid, Spain;
| | - Blanca Hernández-Ledesma
- Departamento de Bioactividad y Análisis de Alimentos, Instituto de Investigación en Ciencias de la Alimentación (CIAL, CSIC-UAM, CEI-UAM+CSIC), Nicolás Cabrera 9, 28049 Madrid, Spain;
- Correspondence: ; Tel.: +34-001-70-970
| |
Collapse
|
32
|
Wong FC, Xiao J, Wang S, Ee KY, Chai TT. Advances on the antioxidant peptides from edible plant sources. Trends Food Sci Technol 2020; 99:44-57. [DOI: 10.1016/j.tifs.2020.02.012] [Citation(s) in RCA: 159] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|