1
|
Alves VF, Tadielo LE, Pires ACMDS, Pereira MG, Bersot LDS, De Martinis ECP. Hidden Places for Foodborne Bacterial Pathogens and Novel Approaches to Control Biofilms in the Meat Industry. Foods 2024; 13:3994. [PMID: 39766937 PMCID: PMC11675819 DOI: 10.3390/foods13243994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/02/2024] [Accepted: 12/05/2024] [Indexed: 01/11/2025] Open
Abstract
Biofilms are of great concern for the meat industry because, despite the implementation of control plans, they remain important hotspots of contamination by foodborne pathogens, highlighting the need to better understand the ecology of these microecosystems. The objective of this paper was to critically survey the recent scientific literature on microbial biofilms of importance for meat safety and quality, also pointing out the most promising methods to combat them. For this, the databases PubMed, Scopus, Science Direct, Web of Science, and Google Scholar were surveyed in a 10-year time frame (but preferably papers less than 5 years old) using selected keywords relevant for the microbiology of meats, especially considering bacteria that are tolerant to cleaning and sanitization processes. The literature findings showed that massive DNA sequencing has deeply impacted the knowledge on the species that co-habit biofilms with important foodborne pathogens (Listeria monocytogenes, Salmonella, pathogenic Escherichia coli, and Staphylococcus aureus). It is likely that recalcitrant commensal and/or spoilage microbiota somehow protect the more fastidious organisms from harsh conditions, in addition to harboring antimicrobial resistance genes. Among the members of background microbiota, Pseudomonas, Acinetobacter, and Enterobacteriales have been commonly found on food contact and non-food contact surfaces in meat processing plants, in addition to less common genera, such as Psychrobacter, Enhydrobacter, Brevundimonas, and Rothia, among others. It has been hypothesized that these rare taxa may represent a primary layer in microbial biofilms, offering better conditions for the adhesion of otherwise poor biofilm formers, especially considering their tolerance to cold conditions and sanitizers. Taking into consideration these findings, it is not only important to target the foodborne pathogens per se in cleaning and disinfection plans but the use of multiple hurdles is also recommended to dismantle the recalcitrant structures of biofilms. In this sense, the last part of this manuscript presents an updated overview of the antibiofilm methods available, with an emphasis on eco-friendly approaches.
Collapse
Affiliation(s)
| | - Leonardo Ereno Tadielo
- Department of Animal Production and Food, State University of Santa Catarina, Lages 88040-900, Brazil;
| | | | - Marita Gimenez Pereira
- Ribeirão Preto School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-220, Brazil; (A.C.M.d.S.P.); (M.G.P.)
| | | | | |
Collapse
|
2
|
Estrada EM, Harris LJ. Phenotypic Characteristics That May Contribute to Persistence of Salmonella Strains in the Pistachio Supply Chain. J Food Prot 2024; 87:100268. [PMID: 38493873 DOI: 10.1016/j.jfp.2024.100268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/11/2024] [Accepted: 03/13/2024] [Indexed: 03/19/2024]
Abstract
Salmonella enterica subsp. enterica strain diversity in California pistachios is limited; some strains have persisted in the pistachio supply chain for ≥10 years. Representative isolates of six persistent strains and three sporadic strains isolated from California pistachios were selected to evaluate copper resistance, growth in pistachio hull slurry, biofilm formation, desiccation tolerance, and survival during subsequent storage. The presence of a copper homeostasis and silver-resistance island sequence in three of the persistent strains was associated with an increase in tolerance to CuSO4 from 7.5 mM to 15 mM under anaerobic but not aerobic conditions; all isolates were resistant to ≥120 mM Cu-EDTA under both anerobic and aerobic conditions. When inoculated into pistachio hull slurry at 2.75 ± 0.04 log CFU/mL and incubated at 30 °C, the populations of Salmonella Enteritidis strain A (sporadic) increased to significantly lower levels than the other strains at 16, 20, 24, and 28 h but not at 40 and 48 h. Maximum populations of 8.70-8.85 log CFU/mL were observed for all strains at ≥40 h of incubation. All nine Salmonella strains produced weak to strong biofilms after 4 days at 25 °C; seven strains, including two sporadic strains, produced moderate biofilms, and Salmonella Liverpool strain A (persistent) produced a strong biofilm. The rdar+ and rdar- morphotypes were observed in both persistent and sporadic Salmonella strains. Population declines of 5.03 log were observed for Salmonella Enteritidis strain A within 18 h of drying on filter paper whereas reductions of 0.50-1.25 log were observed for the other eight Salmonella strains. Population reductions (3.98-5.12 log) of these eight strains were not significantly different after storage at 25 ± 1 °C and 35% relative humidity for 50 days. The phenotypic characteristics evaluated here do not independently account for the persistence of a small number of Salmonella strains associated with the California pistachio production chain.
Collapse
Affiliation(s)
- Erika M Estrada
- Department of Food Science and Technology, University of California, Davis, CA 95616, USA
| | - Linda J Harris
- Department of Food Science and Technology, University of California, Davis, CA 95616, USA.
| |
Collapse
|
3
|
Campos IC, Saraiva MMS, Benevides VP, Ferreira TS, Ferreira VA, Almeida AM, Berchieri Junior A. Low temperatures do not impair the bacterial plasmid conjugation on poultry meat. Braz J Microbiol 2024; 55:711-717. [PMID: 38191970 PMCID: PMC10920582 DOI: 10.1007/s42770-023-01230-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 12/21/2023] [Indexed: 01/10/2024] Open
Abstract
Conjugation plays an important role in the dissemination of antimicrobial resistance genes. Besides, this process is influenced by many biotic and abiotic factors, especially temperature. This study aimed to investigate the effect of different conditions of temperature and storage (time and recipient) of poultry meat, intended for the final consumer, affect the plasmid transfer between pathogenic (harboring the IncB/O-plasmid) and non-pathogenic Escherichia coli organisms. The determination of minimal inhibitory concentrations (MIC) of ampicillin, cephalexin, cefotaxime, and ceftazidime was performed before and after the conjugation assay. It was possible to recover transconjugants in the poultry meat at all the treatments, also these bacteria showed a significant increase of the MIC for all antimicrobials tested. Our results show that a non-pathogenic E. coli can acquire an IncB/O-plasmid through a conjugation process in poultry meat, even stored at low temperatures. Once acquired, the resistance genes endanger public health especially when it is about critically and highly important antimicrobials to human medicine.
Collapse
Affiliation(s)
- Isabella C Campos
- Department of Pathology, Reproduction, and One Health from the School of Agriculture and Veterinarian Sciences, Sao Paulo State University (FCAV-Unesp), Jaboticabal, SP, 14884-900, Brazil
| | - Mauro M S Saraiva
- Department of Pathology, Reproduction, and One Health from the School of Agriculture and Veterinarian Sciences, Sao Paulo State University (FCAV-Unesp), Jaboticabal, SP, 14884-900, Brazil.
| | - Valdinete P Benevides
- Department of Pathology, Reproduction, and One Health from the School of Agriculture and Veterinarian Sciences, Sao Paulo State University (FCAV-Unesp), Jaboticabal, SP, 14884-900, Brazil
| | - Taísa S Ferreira
- Department of Pathology, Reproduction, and One Health from the School of Agriculture and Veterinarian Sciences, Sao Paulo State University (FCAV-Unesp), Jaboticabal, SP, 14884-900, Brazil
| | - Viviane A Ferreira
- Department of Pathology, Reproduction, and One Health from the School of Agriculture and Veterinarian Sciences, Sao Paulo State University (FCAV-Unesp), Jaboticabal, SP, 14884-900, Brazil
| | - Adriana M Almeida
- Department of Pathology, Reproduction, and One Health from the School of Agriculture and Veterinarian Sciences, Sao Paulo State University (FCAV-Unesp), Jaboticabal, SP, 14884-900, Brazil
| | - Angelo Berchieri Junior
- Department of Pathology, Reproduction, and One Health from the School of Agriculture and Veterinarian Sciences, Sao Paulo State University (FCAV-Unesp), Jaboticabal, SP, 14884-900, Brazil.
| |
Collapse
|
4
|
Koutsoumanis K, Allende A, Bolton D, Bover‐Cid S, Chemaly M, De Cesare A, Herman L, Hilbert F, Lindqvist R, Nauta M, Nonno R, Peixe L, Ru G, Simmons M, Skandamis P, Suffredini E, Fox E, Gosling R(B, Gil BM, Møretrø T, Stessl B, da Silva Felício MT, Messens W, Simon AC, Alvarez‐Ordóñez A. Persistence of microbiological hazards in food and feed production and processing environments. EFSA J 2024; 22:e8521. [PMID: 38250499 PMCID: PMC10797485 DOI: 10.2903/j.efsa.2024.8521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024] Open
Abstract
Listeria monocytogenes (in the meat, fish and seafood, dairy and fruit and vegetable sectors), Salmonella enterica (in the feed, meat, egg and low moisture food sectors) and Cronobacter sakazakii (in the low moisture food sector) were identified as the bacterial food safety hazards most relevant to public health that are associated with persistence in the food and feed processing environment (FFPE). There is a wide range of subtypes of these hazards involved in persistence in the FFPE. While some specific subtypes are more commonly reported as persistent, it is currently not possible to identify universal markers (i.e. genetic determinants) for this trait. Common risk factors for persistence in the FFPE are inadequate zoning and hygiene barriers; lack of hygienic design of equipment and machines; and inadequate cleaning and disinfection. A well-designed environmental sampling and testing programme is the most effective strategy to identify contamination sources and detect potentially persistent hazards. The establishment of hygienic barriers and measures within the food safety management system, during implementation of hazard analysis and critical control points, is key to prevent and/or control bacterial persistence in the FFPE. Once persistence is suspected in a plant, a 'seek-and-destroy' approach is frequently recommended, including intensified monitoring, the introduction of control measures and the continuation of the intensified monitoring. Successful actions triggered by persistence of L. monocytogenes are described, as well as interventions with direct bactericidal activity. These interventions could be efficient if properly validated, correctly applied and verified under industrial conditions. Perspectives are provided for performing a risk assessment for relevant combinations of hazard and food sector to assess the relative public health risk that can be associated with persistence, based on bottom-up and top-down approaches. Knowledge gaps related to bacterial food safety hazards associated with persistence in the FFPE and priorities for future research are provided.
Collapse
|
5
|
Arnaboldi S, Benincà E, Evers EG. Improvement of quantitative microbiological risk assessment (QMRA) methodology through integration with gaenetic data. EFSA J 2023; 21:e211003. [PMID: 38047129 PMCID: PMC10687759 DOI: 10.2903/j.efsa.2023.e211003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023] Open
Abstract
Quantitative microbiological risk assessment (QMRA) methodology aims to estimate and describe the transmission of pathogenic microorganisms from animals and food to humans. In microbiological literature, the availability of whole genome sequencing (WGS) data is rapidly increasing, and incorporating this data into QMRA has the potential to enhance the reliability of risk estimates. This study provides insight into which are the key pathogen properties for incorporating WGS data to enhance risk estimation, through examination of example risk assessments for important foodborne pathogens: Listeria monocytogenes (Lm), Salmonella, Campylobacter and Shiga toxin-producing Escherichia coli. By investigating the relationship between phenotypic pathogen properties and genetic traits, a better understanding was gained regarding their impact on risk assessment. Virulence of Lm was identified as a promising property for associating different symptoms observed in humans with specific genotypes. Data from a genome-wide association study were used to correlate lineages, serotypes, sequence types, clonal complexes and the presence or absence of virulence genes of each strain with patient's symptoms. We also investigated the effect of incorporating WGS data into a QMRA model including relevant genomic traits of Lm, focusing on the dose-response phase of the risk assessment model, as described with the case/exposure ratio. The results highlighted that WGS studies which include phenotypic information must be encouraged, so as to enhance the accuracy of QMRA models. This study also underscores the importance of executing more risk assessments that consider the ongoing advancements in OMICS technologies, thus allowing for a closer investigation of different bacterial subtypes relevant to human health.
Collapse
Affiliation(s)
- Sara Arnaboldi
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna (IZSLER)Italy
| | - Elisa Benincà
- Rijksinstituut voor Volksgezondheid en Milieu (RIVM)the Netherlands
| | - Eric G. Evers
- Rijksinstituut voor Volksgezondheid en Milieu (RIVM)the Netherlands
| |
Collapse
|
6
|
Pang X, Hu X, Du X, Lv C, Yuk HG. Biofilm formation in food processing plants and novel control strategies to combat resistant biofilms: the case of Salmonella spp. Food Sci Biotechnol 2023; 32:1703-1718. [PMID: 37780596 PMCID: PMC10533767 DOI: 10.1007/s10068-023-01349-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 04/27/2023] [Accepted: 05/17/2023] [Indexed: 10/03/2023] Open
Abstract
Salmonella is one of the pathogens that cause many foodborne outbreaks throughout the world, representing an important global public health problem. Salmonella strains with biofilm-forming abilities have been frequently isolated from different food processing plants, especially in poultry industry. Biofilm formation of Salmonella on various surfaces can increase their viability, contributing to their persistence in food processing environments and cross-contamination of food products. In recent years, increasing concerns arise about the antimicrobial resistant and disinfectant tolerant Salmonella, while adaptation of Salmonella in biofilms to disinfectants exacerbate this problem. Facing difficulties to inhibit or remove Salmonella biofilms in food industry, eco-friendly and effective strategies based on chemical, biotechnological and physical methods are in urgent need. This review discusses biofilm formation of Salmonella in food industries, with emphasis on the current available knowledge related to antimicrobial resistance, together with an overview of promising antibiofilm strategies for controlling Salmonella in food production environments.
Collapse
Affiliation(s)
- Xinyi Pang
- College of Food Science and Engineering , Nanjing University of Finance and Economics , Nanjing, 210023 Jiangsu Province China
| | - Xin Hu
- College of Food Science and Engineering , Nanjing University of Finance and Economics , Nanjing, 210023 Jiangsu Province China
| | - Xueying Du
- College of Food Science and Engineering , Nanjing University of Finance and Economics , Nanjing, 210023 Jiangsu Province China
| | - Chenglong Lv
- College of Food Science and Engineering , Nanjing University of Finance and Economics , Nanjing, 210023 Jiangsu Province China
| | - Hyun-Gyun Yuk
- Department of Food Science and Technology, National University of Transportation, 61 Daehak-ro Jeungpyeong-gun, Chungbuk, 27909 Republic of Korea
| |
Collapse
|
7
|
Finn L, Onyeaka H, O’Neill S. Listeria monocytogenes Biofilms in Food-Associated Environments: A Persistent Enigma. Foods 2023; 12:3339. [PMID: 37761048 PMCID: PMC10529182 DOI: 10.3390/foods12183339] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/31/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023] Open
Abstract
Listeria monocytogenes (LM) is a bacterial pathogen responsible for listeriosis, a foodborne illness associated with high rates of mortality (20-30%) and hospitalisation. It is particularly dangerous among vulnerable groups, such as newborns, pregnant women and the elderly. The persistence of this organism in food-associated environments for months to years has been linked to several devastating listeriosis outbreaks. It may also result in significant costs to food businesses and economies. Currently, the mechanisms that facilitate LM persistence are poorly understood. Unravelling the enigma of what drives listerial persistence will be critical for developing more targeted control and prevention strategies. One prevailing hypothesis is that persistent strains exhibit stronger biofilm production on abiotic surfaces in food-associated environments. This review aims to (i) provide a comprehensive overview of the research on the relationship between listerial persistence and biofilm formation from phenotypic and whole-genome sequencing (WGS) studies; (ii) to highlight the ongoing challenges in determining the role biofilm development plays in persistence, if any; and (iii) to propose future research directions for overcoming these challenges.
Collapse
Affiliation(s)
| | - Helen Onyeaka
- School of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, UK
| | | |
Collapse
|
8
|
Jiang Z, Li D, Liu Z, Dong X, Liu Z, Cui D, Yan S, Zhu L. Genomic typing and virulence gene profile analysis of Salmonella Derby from different sources. Microb Pathog 2023; 182:106248. [PMID: 37423493 DOI: 10.1016/j.micpath.2023.106248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 07/07/2023] [Accepted: 07/07/2023] [Indexed: 07/11/2023]
Abstract
Salmonella enterica serovar Derby (S. Derby) is one of the most common Salmonella serovars which can infect poultry, swine, and humans. With the reduction of the sequencing cost and the improvement of sequencing technology, whole genome sequencing (WGS) has become an important method for bacterial determination, molecular investigation, and pathogenic tracing analysis. In this study, we investigated S. Derby isolates from different sources in China using in-silico multilocus sequence typing (MLST), core genome MLST (cgMLST) and whole genome MLST (wgMLST) analysis based on WGS. The results showed that 21 S. Derby strains were divided into 3 STs using MLST analysis, including ST40 (n = 19, accounting for 90.48%), ST71 (n = 1, accounting for 4.76%) and ST8016 (n = 1, accounting for 4.76%). cgMLST and wgMLST analysis categorized the tested strains into 13 cgSTs and 21 wgSTs, respectively. The minimum spanning trees of cgMLST and wgMLST both divided these strains into 3 clusters and 4 singletons. In addition, virulence gene profiles of S. Derby isolates were also analyzed, and a total of 174 virulence genes belonged to 8 categories were identified. In summary, we studied genomic typing, phylogenetic relationship and virulence gene profiles of S. Derby strains from different sources in China. These findings were beneficial for the epidemiology and pathogenesis of Salmonella.
Collapse
Affiliation(s)
- Zhaoxu Jiang
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Donghui Li
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Zhenhai Liu
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Xiaorui Dong
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Zijun Liu
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Daoshi Cui
- Qilu Animal Health Products Co., Ltd, Jinan, 250100, China
| | - Shigan Yan
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China.
| | - Liping Zhu
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China.
| |
Collapse
|
9
|
Manafi L, Aliakbarlu J, Dastmalchi Saei H. Susceptibility of Salmonella serotypes isolated from meat and meat contact surfaces to thermal, acidic, and alkaline treatments and disinfectants. Food Sci Nutr 2023; 11:1882-1890. [PMID: 37051333 PMCID: PMC10084953 DOI: 10.1002/fsn3.3221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 12/13/2022] [Accepted: 12/28/2022] [Indexed: 01/11/2023] Open
Abstract
The present study was conducted to evaluate the response of 29 Salmonella isolates to exposure to thermal (60°C for 2 min), acidic (pH 2.9 for 30 min), and alkaline (pH 11 for 60 min) treatments and investigate the susceptibility of the isolates and their biofilms to disinfectants. The reductions of Salmonella isolates populations subjected to each treatment were analyzed according to their isolation source, serotype, antibiotic resistance pattern, and biofilm formation ability. Median reductions for all of Salmonella isolates populations after thermal, acidic, and alkaline treatments were 1.8, 2.1, and 0.7 log CFU/ml, respectively. The isolates behavior under stress conditions were not related to their isolation source, serotype, or biofilm formation ability. The median reduction after alkaline treatment in non-MDR (multidrug- resistant) isolates populations was significantly (p < .05) higher than MDR isolates. The median reduction in biofilms of moderate biofilm producers by disinfectants was significantly (p < .05) higher than that of strong biofilm producers. In conclusion, Salmonella isolates showed the highest susceptibility to acidic treatment and MDR isolates were more resistant to alkaline treatment than non-MDR ones. The current study also revealed that the strong biofilm producer isolates were more resistant to disinfectants than moderate biofilm producers. This study facilitated the understanding of the relationship between Salmonella characteristics (isolation source, serotype, antibiotic resistance pattern, and biofilm formation ability) and its susceptibility to thermal, acidic, and alkaline treatments and disinfectants. The findings are helpful for the prevention and control of Salmonella.
Collapse
Affiliation(s)
- Leila Manafi
- Faculty of Veterinary Medicine, Department of Food Hygiene and Quality ControlUrmia UniversityUrmiaIran
| | - Javad Aliakbarlu
- Faculty of Veterinary Medicine, Department of Food Hygiene and Quality ControlUrmia UniversityUrmiaIran
| | | |
Collapse
|
10
|
Rasamsetti S, Shariat NW. Biomapping salmonella serovar complexity in broiler carcasses and parts during processing. Food Microbiol 2023; 110:104149. [DOI: 10.1016/j.fm.2022.104149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 09/06/2022] [Accepted: 09/16/2022] [Indexed: 11/16/2022]
|
11
|
Gabana ADA, Núncio ASP, Lopes BC, de Oliveira JA, da Silva Monteiro L, de Menezes Coppola M, Furian TQ, Borges KA, Rodrigues LB, Mayer FQ. Different Multidrug-Resistant Salmonella spp. Serovars Isolated from Slaughter Calves in Southern Brazil. Curr Microbiol 2022; 80:11. [PMID: 36459239 DOI: 10.1007/s00284-022-03136-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 11/28/2022] [Indexed: 12/04/2022]
Abstract
Bovines are carriers of Salmonella spp., a relevant foodborne pathogen, acting as contamination sources in slaughterhouses. Calves are prone to infection, and antimicrobial resistance may occur in such bacteria. This study aimed to determine the prevalence and virulence determinants of Salmonella spp. recovered from calves in the Rio Grande do Sul state, Brazil. Eighty-five calves' carcasses were evaluated (leather and veal meat). Thirteen Salmonella spp. isolates (8%) from 11 animals (13%) were obtained only from leather, indicating that contamination occurred before slaughter and that the meat was safe regarding this aspect. The serotypes S. Minnesota, S. Abony, S. Cerro, and S. Gafsa were identified, and all isolates were multidrug-resistant. The isolates had at least 19 virulence-related genes, and the blaOXA-48 resistance gene was detected in three (23%). The data suggest that treating infections caused by these bacteria may be difficult in animals from these farms and can also be an extended human health problem.
Collapse
Affiliation(s)
- Alex Dall Agnol Gabana
- Centro de Pesquisa em Saúde Animal, Departamento de Diagnóstico e Pesquisa Agropecuária, Instituto de Pesquisas Veterinárias Desidério Finamor, Secretaria da Agricultura, Pecuária e Desenvolvimento Rural, Estrada Municipal do Conde, 6000, Sans Souci, Eldorado do Sul, RS, 92990-000, Brazil
| | - Adriana Souto Pereira Núncio
- Faculdade de Agronomia e Medicina Veterinária, Programa de Pós-Graduação em Bioexperimentação, Universidade de Passo Fundo, BR 285, Campus I, São José, Passo Fundo, RS, 99052-900, Brazil
| | - Bruna Correa Lopes
- Centro de Pesquisa em Saúde Animal, Departamento de Diagnóstico e Pesquisa Agropecuária, Instituto de Pesquisas Veterinárias Desidério Finamor, Secretaria da Agricultura, Pecuária e Desenvolvimento Rural, Estrada Municipal do Conde, 6000, Sans Souci, Eldorado do Sul, RS, 92990-000, Brazil
| | - Júlia Alves de Oliveira
- Centro de Pesquisa em Saúde Animal, Departamento de Diagnóstico e Pesquisa Agropecuária, Instituto de Pesquisas Veterinárias Desidério Finamor, Secretaria da Agricultura, Pecuária e Desenvolvimento Rural, Estrada Municipal do Conde, 6000, Sans Souci, Eldorado do Sul, RS, 92990-000, Brazil
| | - Luana da Silva Monteiro
- Centro de Pesquisa em Saúde Animal, Departamento de Diagnóstico e Pesquisa Agropecuária, Instituto de Pesquisas Veterinárias Desidério Finamor, Secretaria da Agricultura, Pecuária e Desenvolvimento Rural, Estrada Municipal do Conde, 6000, Sans Souci, Eldorado do Sul, RS, 92990-000, Brazil
| | - Mario de Menezes Coppola
- Centro de Pesquisa em Saúde Animal, Departamento de Diagnóstico e Pesquisa Agropecuária, Instituto de Pesquisas Veterinárias Desidério Finamor, Secretaria da Agricultura, Pecuária e Desenvolvimento Rural, Estrada Municipal do Conde, 6000, Sans Souci, Eldorado do Sul, RS, 92990-000, Brazil
| | - Thales Quedi Furian
- Centro de Diagnóstico e Pesquisa em Patologia Aviária, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, 9090, Agronomia, Porto Alegre, RS, 91540-000, Brazil
| | - Karen Apellanis Borges
- Centro de Diagnóstico e Pesquisa em Patologia Aviária, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, 9090, Agronomia, Porto Alegre, RS, 91540-000, Brazil
| | - Laura Beatriz Rodrigues
- Faculdade de Agronomia e Medicina Veterinária, Programa de Pós-Graduação em Bioexperimentação, Universidade de Passo Fundo, BR 285, Campus I, São José, Passo Fundo, RS, 99052-900, Brazil
| | - Fabiana Quoos Mayer
- Centro de Pesquisa em Saúde Animal, Departamento de Diagnóstico e Pesquisa Agropecuária, Instituto de Pesquisas Veterinárias Desidério Finamor, Secretaria da Agricultura, Pecuária e Desenvolvimento Rural, Estrada Municipal do Conde, 6000, Sans Souci, Eldorado do Sul, RS, 92990-000, Brazil. .,Departamento de Biologia Molecular e Biotecnologia, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, 9500 - Agronomia, Porto Alegre, RS, 91501-970, Brazil.
| |
Collapse
|
12
|
Okidi L, Ongeng D, Muliro PS, Matofari JW. Agroecology influences Salmonella food contamination with high exposure risk among children in Karamoja sub-region: A high diarrhoea prevalent locality in Uganda. Heliyon 2022; 8:e11703. [DOI: 10.1016/j.heliyon.2022.e11703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/15/2022] [Accepted: 11/11/2022] [Indexed: 11/21/2022] Open
|
13
|
Tomalok CDCG, Wlodarkievicz ME, Puton BMS, Colet R, Zeni J, Steffens C, Backes GT, Cansian RL. Organic acids as an alternative method to control
Salmonella enterica
serotype Choleraesuis and
Listeria monocytogenes
in pork jowl fat. J Food Saf 2022. [DOI: 10.1111/jfs.12999] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
| | | | | | - Rosicler Colet
- Food Engineering Department URI ‐ Campus of Erechim Erechim Brazil
| | - Jamile Zeni
- Food Engineering Department URI ‐ Campus of Erechim Erechim Brazil
| | - Clarice Steffens
- Food Engineering Department URI ‐ Campus of Erechim Erechim Brazil
| | | | | |
Collapse
|
14
|
Regional Salmonella Differences in United States Broiler Production from 2016 to 2020 and the Contribution of Multiserovar Populations to Salmonella Surveillance. Appl Environ Microbiol 2022; 88:e0020422. [PMID: 35384708 DOI: 10.1128/aem.00204-22] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Poultry remains a considerable source of foodborne salmonellosis despite significant reduction of Salmonella incidence during processing. There are multiple entry points for Salmonella during production that can lead to contamination during slaughter, and it is important to distinguish the serovars present between the different stages to enact appropriate controls. National Salmonella data from the U.S. Department of Agriculture-Food Safety Inspection Service (USDA-FSIS) monitoring of poultry processing was analyzed from 2016 to 2020. The overall Salmonella incidence at processing in broiler carcasses and intact parts (parts) decreased from 9.00 to 6.57% over this period. The incidence in parts was higher (11.15%) than in carcasses (4.78%). Regional differences include higher proportions of serovars Infantis and Typhimurium in the Atlantic and higher proportion of serovar Schwarzengrund in the Southeast. For Georgia, the largest broiler-producing state, USDA-FSIS data were compared to Salmonella monitoring data from breeder flocks over the same period, revealing serovar Kentucky as the major serovar in breeders (67.91%) during production but not at processing, suggesting that it is more effectively removed during antimicrobial interventions. CRISPR-SeroSeq was performed on breeder samples collected between 2020 and 2021 to explain the incongruence between pre- and postharvest and showed that 32% of samples contain multiple serovars, with up to 11 serovars found in a single flock. High-resolution sequencing identifies serovar patterns at the population level and can provide insight to develop targeted controls. The work presented may apply to other food production systems where Salmonella is a concern, since it overcomes limitations associated with conventional culture. IMPORTANCE Salmonella is a leading cause of bacterial foodborne illness in the United States, with poultry as a significant Salmonella reservoir. We show the relative decrease in Salmonella over a 5-year period from 2016 to 2020 in processed chicken parts and highlight regional differences with respect to the prevalence of clinically important Salmonella serovars. Our results show that the discrepancy between Salmonella serovars found in pre- and postharvest poultry during surveillance are due in part by the limited detection depth offered by traditional culture techniques. Despite the reduction of Salmonella at processing, the number of human salmonellosis cases has remained stable, which may be attributed to differences in virulence among serovars and their associated risk. When monitoring for Salmonella, it is imperative to identify all serovars present to appropriately assess public health risk and to implement the most effective Salmonella controls.
Collapse
|
15
|
Pang X, Song X, Chen M, Tian S, Lu Z, Sun J, Li X, Lu Y, Yuk HG. Combating biofilms of foodborne pathogens with bacteriocins by lactic acid bacteria in the food industry. Compr Rev Food Sci Food Saf 2022; 21:1657-1676. [PMID: 35181977 DOI: 10.1111/1541-4337.12922] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 12/30/2021] [Accepted: 01/07/2022] [Indexed: 12/17/2022]
Abstract
Most foodborne pathogens have biofilm-forming capacity and prefer to grow in the form of biofilms. Presence of biofilms on food contact surfaces can lead to persistence of pathogens and the recurrent cross-contamination of food products, resulting in serious problems associated with food safety and economic losses. Resistance of biofilm cells to conventional sanitizers urges the development of natural alternatives to effectively inhibit biofilm formation and eradicate preformed biofilms. Lactic acid bacteria (LAB) produce bacteriocins which are ribosomally synthesized antimicrobial peptides, providing a great source of nature antimicrobials with the advantages of green and safe properties. Studies on biofilm control by newly identified bacteriocins are increasing, targeting primarily onListeria monocytogenes, Staphylococcus aureus, Salmonella, and Escherichia coli. This review systematically complies and assesses the antibiofilm property of LAB bacteriocins in controlling foodborne bacterial-biofilms on food contact surfaces. The bacteriocin-producing LAB genera/species, test method (inhibition and eradication), activity spectrum and surfaces are discussed, and the antibiofilm mechanisms are also argued. The findings indicate that bacteriocins can effectively inhibit biofilm formation in a dose-dependent manner, but are difficult to disrupt preformed biofilms. Synergistic combination with other antimicrobials, incorporation in nanoconjugates and implementation of bioengineering can help to strengthen their antibiofilm activity. This review provides an overview of the potential and application of LAB bacteriocins in combating bacterial biofilms in food processing environments, assisting in the development and widespread use of bacteriocin as a promising antibiofilm-agent in food industries.
Collapse
Affiliation(s)
- Xinyi Pang
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, China
| | - Xiaoye Song
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, China
| | - Minjie Chen
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Shuhua Tian
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, China
| | - Zhaoxin Lu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Jing Sun
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, China
| | - Xiangfei Li
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, China
| | - Yingjian Lu
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, China
| | - Hyun-Gyun Yuk
- Department of Food Science and Technology, Korea National University of Transportation, Chungbuk, Republic of Korea
| |
Collapse
|
16
|
Dos Santos Bersot L, Carbonera NR, Rodrigues Valcanaia CD, Viana C, Nero LA. Multidrug-Resistant and Extended-Spectrum β-Lactamase-Producing Salmonella enterica Serotype Heidelberg Is Widespread in a Poultry Processing Facility in Southern Brazil. J Food Prot 2021; 84:2053-2058. [PMID: 34324677 DOI: 10.4315/jfp-21-140] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 07/16/2021] [Indexed: 11/11/2022]
Abstract
ABSTRACT This study was conducted to characterize the distribution of Salmonella isolates in a poultry processing facility and to identify their antibiotic resistance profiles. Salmonella enterica was detected in 146 samples (66.7%), and 125 isolates were identified as Salmonella Heidelberg (n = 123), Salmonella Abony (n = 1), and Salmonella O:4,5 (n = 1). Salmonella Heidelberg isolates were subjected to XbaI macrorestriction analysis and pulsed-field gel electrophoresis. The 66 pulsotypes obtained were grouped into four major clusters, indicating cross-contamination and persistence of this serotype in the processing facility. Selected S. enterica isolates were characterized by their antibiotic resistance, and most (n = 122, 97.6%) were multidrug resistant. Resistance to third-generation cephalosporins ceftazidime (84 isolates, 67.2%) and cefotaxime and ceftriaxone (91 isolates, 72.8%) was particularly prevalent. Production of extended-spectrum β-lactamases (ESBL) was identified in 24 isolates (19.2%), and ESBL-producing isolates were resistant to at least eight antibiotics. This study revealed the high prevalence of Salmonella Heidelberg in the poultry chain, providing insight into the ecology of this pathogen in this facility. The high prevalence of multidrug-resistant S. enterica is a concern due to the potential consequences for public health. HIGHLIGHTS
Collapse
Affiliation(s)
- Luciano Dos Santos Bersot
- LACOMA - Laboratório de Inspeção e Controle de Qualidade de Alimentos e Água, Universidade Federal do Paraná, Setor Palotina, Departamento de Ciências Veterinárias, Rua Pioneiro, 2153, Jardim Dallas, 85950-000, Palotina, PR, Brazil
| | - Neila Rita Carbonera
- LACOMA - Laboratório de Inspeção e Controle de Qualidade de Alimentos e Água, Universidade Federal do Paraná, Setor Palotina, Departamento de Ciências Veterinárias, Rua Pioneiro, 2153, Jardim Dallas, 85950-000, Palotina, PR, Brazil
| | - Carolina Dias Rodrigues Valcanaia
- LACOMA - Laboratório de Inspeção e Controle de Qualidade de Alimentos e Água, Universidade Federal do Paraná, Setor Palotina, Departamento de Ciências Veterinárias, Rua Pioneiro, 2153, Jardim Dallas, 85950-000, Palotina, PR, Brazil
| | - Cibeli Viana
- InsPOA - Laboratório de Inspeção de Produtos de Origem Animal, Universidade Federal de Viçosa, Departamento de Veterinária, Avenida PH Rolfs, s/n, Campus Universitário, 36570-900, Viçosa, MG, Brazil
| | - Luís Augusto Nero
- InsPOA - Laboratório de Inspeção de Produtos de Origem Animal, Universidade Federal de Viçosa, Departamento de Veterinária, Avenida PH Rolfs, s/n, Campus Universitário, 36570-900, Viçosa, MG, Brazil
| |
Collapse
|
17
|
Obe T, Richards AK, Shariat NW. Differences in biofilm formation of Salmonella serovars on two surfaces under two temperature conditions. J Appl Microbiol 2021; 132:2410-2420. [PMID: 34821433 DOI: 10.1111/jam.15381] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 10/25/2021] [Accepted: 11/04/2021] [Indexed: 12/20/2022]
Abstract
AIMS Salmonella is extremely diverse, with >2500 serovars that are genetically and phenotypically diverse. The aim of this study was to build a collection of Salmonella isolates that are genetically diverse and to evaluate their ability to form biofilm under different conditions relevant to a processing environment. METHODS AND RESULTS Twenty Salmonella isolates representative of 10 serovars were subtyped using Clustered regularly interspaced short palindromic repeats (CRISPR)-typing to assess the genetic diversity between isolates of each serovar. Biofilm formation of the isolates on both plastic and stainless-steel surfaces at 25 and 15°C was assessed. At 25°C, 8/20 isolates each produced strong and moderate biofilm on plastic surface compared to stainless-steel (3/20 and 13/20 respectively). At 15°C, 5/20 produced strong biofilm on plastic surface and none on stainless-steel. Several isolates produced weak biofilm on plastic (11/20) and stainless-steel (16/20) surfaces. Serovar Schwarzengrund consistently produced strong biofilm while serovars Heidelberg and Newport produced weak biofilm. CONCLUSION These results suggest that Salmonellae differ in their attachment depending on the surface and temperature conditions encountered, which may influence persistence in the processing environment. SIGNIFICANCE AND IMPACT OF STUDY These differences in biofilm formation could provide useful information for mitigation of Salmonella in processing environments.
Collapse
Affiliation(s)
- Tomi Obe
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Amber K Richards
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Nikki W Shariat
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
18
|
Global Spread and Molecular Characterization of CTX-M-Producing Salmonella Typhimurium Isolates. Antibiotics (Basel) 2021; 10:antibiotics10111417. [PMID: 34827355 PMCID: PMC8614702 DOI: 10.3390/antibiotics10111417] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/11/2021] [Accepted: 11/17/2021] [Indexed: 11/24/2022] Open
Abstract
This study aimed to determine the global prevalence and molecular characterization of CTX-M-producing Salmonella Typhimurium isolates. A total of 330 (15.2%, 330/21779) blaCTX-M-positive S. Typhimurium were obtained from the public databases in July 2021. Thirteen variants were found in the 330 members of the blaCTX-M group, and blaCTX-M-9 (26.4%, 88/330) was the most prevalent. The majority of blaCTX-M-positive S. Typhimurium were obtained from humans (59.7%, 197/330) and animals (31.5%, 104/330). The number of blaCTX-M-positive S. Typhimurium increased annually (p < 0.0001). These isolates were primarily found from China, the United Kingdom, Australia, the USA, and Germany. In addition, these isolates possessed 14 distinct sequence types (ST), and three predominated: ST34 (42.7%, 141/330), ST19 (37.0%, 122/330), and ST313 (10.3%, 34/330). The majority of ST34 S. Typhimurium isolates were distributed in China and mainly from swine. However, the majority of ST19 were distributed in the United Kingdom and Australia. Analysis of contigs showed that the major type of blaCTX-M-carrying plasmid was identified as IncI plasmid (52.9%, 27/51) and IncHI2 plasmid (17.6%, 9/51) in 51 blaCTX-M-positive S. Typhimurium isolates. In addition, WGS analysis further revealed that blaCTX-M co-existed with nine antibiotic-resistant genes with a detection rate over 50%, conferring resistance to five classes of antimicrobials. The 154 virulence genes were detected among these isolates, of which 107 virulence genes were highly common. This study revealed that China has been severely contaminated by blaCTX-M-positive S. Typhimurium isolates, these isolates possessed numerous ARGs and virulence genes, and highlighted that continued vigilance for blaCTX-M-positive S. Typhimurium in animals and humans is urgently needed.
Collapse
|
19
|
Agostinho Davanzo EF, dos Santos RL, Castro VHDL, Palma JM, Pribul BR, Dallago BSL, Fuga B, Medeiros M, Titze de Almeida SS, da Costa HMB, Rodrigues DDP, Lincopan N, Perecmanis S, Santana AP. Molecular characterization of Salmonella spp. and Listeria monocytogenes strains from biofilms in cattle and poultry slaughterhouses located in the federal District and State of Goiás, Brazil. PLoS One 2021; 16:e0259687. [PMID: 34767604 PMCID: PMC8589217 DOI: 10.1371/journal.pone.0259687] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 10/23/2021] [Indexed: 10/26/2022] Open
Abstract
Listeria monocytogenes and Salmonella spp. are considered important foodborne pathogens that are commonly associated with foods of animal origin. The aim of this study was to perform molecular characterization of L. monocytogenes and Salmonella spp. isolated from biofilms of cattle and poultry slaughterhouses located in the Federal District and State of Goiás, Brazil. Fourteen L. monocytogenes isolates and one Salmonella sp. were detected in poultry slaughterhouses. No isolates were detected in cattle slaughterhouses. All L. monocytogenes isolates belonged to lineage II, and 11 different pulsotypes were detected. Pulsed-field gel electrophoresis analysis revealed the dissemination of two strains within one plant, in addition to the regional dissemination of one of them. The Salmonella isolate was identified via whole genome sequencing as Salmonella enterica serovar Minnesota ST548. In the sequence analysis, no premature stop codons were detected in the inlA gene of Listeria. All isolates demonstrated the ability to adhere to Caco-2 cells, while 50% were capable of invading them. Antimicrobial resistance was detected in 57.1% of the L. monocytogenes isolates, and resistance to sulfonamide was the most common feature. The tetC, ermB, and tetM genes were detected, and four isolates were classified as multidrug-resistant. Salmonella sp. was resistant to nine antimicrobials and was classified as multidrug-resistant. Resistance genes qnrB19, blaCMY-2, aac(6')-Iaa, sul2, and tetA, and a mutation in the parC gene were detected. The majority (78.5%) of the L. monocytogenes isolates were capable of forming biofilms after incubation at 37°C for 24 h, and 64.3% were capable of forming biofilms after incubation at 12°C for 168 h. There was no statistical difference in the biofilm-forming capacity under the different evaluated conditions. Salmonella sp. was capable of forming biofilms at both tested temperatures. Biofilm characterization was confirmed by collecting the samples consistently, at the same sampling points, and by assessing biofilm formation in vitro. These results highlight the potential risk of cross-contamination in poultry slaughterhouses and the importance of surveillance and pathogen control maintenance programs within the meat production industry.
Collapse
Affiliation(s)
| | | | | | - Joana Marchesini Palma
- Faculty of Agronomy and Veterinary Medicine, University of Brasília (UnB), Brasília, DF, Brazil
| | - Bruno Rocha Pribul
- National Reference Laboratory for Bacterial Enteric Infections, Oswaldo Cruz Institute, Manguinhos, Rio de Janeiro, RJ, Brazil
| | | | - Bruna Fuga
- Laboratory of Bacterial Resistance and Therapeutic Alternatives, Biomedical Sciences Institute, University of São Paulo, São Paulo, SP, Brazil
| | - Margareti Medeiros
- Faculty of Agronomy and Veterinary Medicine, University of Brasília (UnB), Brasília, DF, Brazil
| | | | | | - Dália dos Prazeres Rodrigues
- National Reference Laboratory for Bacterial Enteric Infections, Oswaldo Cruz Institute, Manguinhos, Rio de Janeiro, RJ, Brazil
| | - Nilton Lincopan
- Laboratory of Bacterial Resistance and Therapeutic Alternatives, Biomedical Sciences Institute, University of São Paulo, São Paulo, SP, Brazil
| | - Simone Perecmanis
- Faculty of Agronomy and Veterinary Medicine, University of Brasília (UnB), Brasília, DF, Brazil
| | - Angela Patrícia Santana
- Faculty of Agronomy and Veterinary Medicine, University of Brasília (UnB), Brasília, DF, Brazil
| |
Collapse
|
20
|
Uelze L, Bloch A, Borowiak M, Grobbel M, Deneke C, Fischer M, Malorny B, Pietsch M, Simon S, Szabó I, Tausch SH, Fischer J. What WGS Reveals about Salmonella enterica subsp. enterica in Wildlife in Germany. Microorganisms 2021; 9:1911. [PMID: 34576806 PMCID: PMC8471515 DOI: 10.3390/microorganisms9091911] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 08/26/2021] [Accepted: 09/06/2021] [Indexed: 11/28/2022] Open
Abstract
The aim of this study was to gain an overview of the genetic diversity of Salmonella found in wildlife in Germany. We were particularly interested in exploring whether wildlife acts as a reservoir of certain serovars/subtypes or antimicrobial resistance (AMR) genes. Moreover, we wanted to explore the potential of Salmonella in spreading from wildlife to livestock and humans. To answer these questions, we sequenced 260 Salmonella enterica subsp. enterica isolates sampled between 2002 and 2020 from wildlife across Germany, using short-read whole genome sequencing. We found, consistent with previous findings, that some Salmonella sequence types are associated with certain animal species, such as S. Choleraesuis ST145 with wild boar and S. Enteritidis ST183 with hedgehogs. Antibiotic resistance was detected in 14.2% of all isolates, with resistance against important WATCH group antibiotics present in a small number of isolates. We further found that wildlife isolates do not form separate phylogenetic clusters distant to isolates from domestic animals and foodstuff, thus indicating frequent transmission events between these reservoirs. Overall, our study shows that Salmonella in German wildlife are diverse, with a low AMR burden and close links to Salmonella populations of farm and food-production environments.
Collapse
Affiliation(s)
- Laura Uelze
- Department of Biological Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589 Berlin, Germany; (L.U.); (A.B.); (M.B.); (M.G.); (C.D.); (M.F.); (B.M.); (I.S.); (S.H.T.)
| | - Angelina Bloch
- Department of Biological Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589 Berlin, Germany; (L.U.); (A.B.); (M.B.); (M.G.); (C.D.); (M.F.); (B.M.); (I.S.); (S.H.T.)
| | - Maria Borowiak
- Department of Biological Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589 Berlin, Germany; (L.U.); (A.B.); (M.B.); (M.G.); (C.D.); (M.F.); (B.M.); (I.S.); (S.H.T.)
| | - Mirjam Grobbel
- Department of Biological Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589 Berlin, Germany; (L.U.); (A.B.); (M.B.); (M.G.); (C.D.); (M.F.); (B.M.); (I.S.); (S.H.T.)
| | - Carlus Deneke
- Department of Biological Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589 Berlin, Germany; (L.U.); (A.B.); (M.B.); (M.G.); (C.D.); (M.F.); (B.M.); (I.S.); (S.H.T.)
| | - Matthias Fischer
- Department of Biological Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589 Berlin, Germany; (L.U.); (A.B.); (M.B.); (M.G.); (C.D.); (M.F.); (B.M.); (I.S.); (S.H.T.)
| | - Burkhard Malorny
- Department of Biological Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589 Berlin, Germany; (L.U.); (A.B.); (M.B.); (M.G.); (C.D.); (M.F.); (B.M.); (I.S.); (S.H.T.)
| | - Michael Pietsch
- Unit for Enteropathogenic Bacteria and Legionella (FG11)/National Reference Centre for Salmonella and Other Bacterial Enteric Pathogens, Robert Koch Institute (RKI), Burgstr. 37, 38855 Wernigerode, Germany; (M.P.); (S.S.)
| | - Sandra Simon
- Unit for Enteropathogenic Bacteria and Legionella (FG11)/National Reference Centre for Salmonella and Other Bacterial Enteric Pathogens, Robert Koch Institute (RKI), Burgstr. 37, 38855 Wernigerode, Germany; (M.P.); (S.S.)
| | - István Szabó
- Department of Biological Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589 Berlin, Germany; (L.U.); (A.B.); (M.B.); (M.G.); (C.D.); (M.F.); (B.M.); (I.S.); (S.H.T.)
| | - Simon H. Tausch
- Department of Biological Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589 Berlin, Germany; (L.U.); (A.B.); (M.B.); (M.G.); (C.D.); (M.F.); (B.M.); (I.S.); (S.H.T.)
| | - Jennie Fischer
- Department of Biological Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589 Berlin, Germany; (L.U.); (A.B.); (M.B.); (M.G.); (C.D.); (M.F.); (B.M.); (I.S.); (S.H.T.)
| |
Collapse
|
21
|
Barroug S, Chaple S, Bourke P. Combination of Natural Compounds With Novel Non-thermal Technologies for Poultry Products: A Review. Front Nutr 2021; 8:628723. [PMID: 34169086 PMCID: PMC8217606 DOI: 10.3389/fnut.2021.628723] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 03/18/2021] [Indexed: 11/13/2022] Open
Abstract
Ensuring safe, fresh, and healthy food across the shelf life of a commodity is an ongoing challenge, with the driver to minimize chemical additives and their residues in the food processing chain. High-value fresh protein products such as poultry meat are very susceptible to spoilage due to oxidation and bacterial contamination. The combination of non-thermal processing interventions with nature-based alternatives is emerging as a useful tool for potential adoption for safe poultry meat products. Natural compounds are produced by living organisms that are extracted from nature and can be used as antioxidant, antimicrobial, and bioactive agents and are often employed for other existing purposes in food systems. Non-thermal technology interventions such as high-pressure processing, pulsed electric field, ultrasound, irradiation, and cold plasma technology are gaining increasing importance due to the advantages of retaining low temperatures, nutrition profiles, and short treatment times. The non-thermal unit process can act as an initial obstacle promoting the reduction of microflora, while natural compounds can provide an active obstacle either in addition to processing or during storage time to maintain quality and inhibit and control growth of residual contaminants. This review presents the application of natural compounds along with emerging non-thermal technologies to address risks in fresh poultry meat.
Collapse
Affiliation(s)
- Soukaina Barroug
- School of Biosystems and Food Engineering, University College Dublin, Dublin, Ireland
| | - Sonal Chaple
- School of Biosystems and Food Engineering, University College Dublin, Dublin, Ireland
| | - Paula Bourke
- School of Biosystems and Food Engineering, University College Dublin, Dublin, Ireland
- School of Biological Sciences, Institute Global Food Security, The Queens University Belfast, Belfast, United Kingdom
| |
Collapse
|
22
|
Koutsoumanis K, Allende A, Álvarez‐Ordóñez A, Bolton D, Bover‐Cid S, Chemaly M, Davies R, De Cesare A, Herman L, Hilbert F, Lindqvist R, Nauta M, Ru G, Simmons M, Skandamis P, Suffredini E, Argüello H, Berendonk T, Cavaco LM, Gaze W, Schmitt H, Topp E, Guerra B, Liébana E, Stella P, Peixe L. Role played by the environment in the emergence and spread of antimicrobial resistance (AMR) through the food chain. EFSA J 2021; 19:e06651. [PMID: 34178158 PMCID: PMC8210462 DOI: 10.2903/j.efsa.2021.6651] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The role of food-producing environments in the emergence and spread of antimicrobial resistance (AMR) in EU plant-based food production, terrestrial animals (poultry, cattle and pigs) and aquaculture was assessed. Among the various sources and transmission routes identified, fertilisers of faecal origin, irrigation and surface water for plant-based food and water for aquaculture were considered of major importance. For terrestrial animal production, potential sources consist of feed, humans, water, air/dust, soil, wildlife, rodents, arthropods and equipment. Among those, evidence was found for introduction with feed and humans, for the other sources, the importance could not be assessed. Several ARB of highest priority for public health, such as carbapenem or extended-spectrum cephalosporin and/or fluoroquinolone-resistant Enterobacterales (including Salmonella enterica), fluoroquinolone-resistant Campylobacter spp., methicillin-resistant Staphylococcus aureus and glycopeptide-resistant Enterococcus faecium and E. faecalis were identified. Among highest priority ARGs bla CTX -M, bla VIM, bla NDM, bla OXA -48-like, bla OXA -23, mcr, armA, vanA, cfr and optrA were reported. These highest priority bacteria and genes were identified in different sources, at primary and post-harvest level, particularly faeces/manure, soil and water. For all sectors, reducing the occurrence of faecal microbial contamination of fertilisers, water, feed and the production environment and minimising persistence/recycling of ARB within animal production facilities is a priority. Proper implementation of good hygiene practices, biosecurity and food safety management systems is very important. Potential AMR-specific interventions are in the early stages of development. Many data gaps relating to sources and relevance of transmission routes, diversity of ARB and ARGs, effectiveness of mitigation measures were identified. Representative epidemiological and attribution studies on AMR and its effective control in food production environments at EU level, linked to One Health and environmental initiatives, are urgently required.
Collapse
|
23
|
Li W, Li H, Zheng S, Wang Z, Sheng H, Shi C, Shi X, Niu Q, Yang B. Prevalence, Serotype, Antibiotic Susceptibility, and Genotype of Salmonella in Eggs From Poultry Farms and Marketplaces in Yangling, Shaanxi Province, China. Front Microbiol 2020; 11:1482. [PMID: 32903897 PMCID: PMC7438954 DOI: 10.3389/fmicb.2020.01482] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 06/08/2020] [Indexed: 01/31/2023] Open
Abstract
Poultry products such as eggs provide essential nutrients to the human body and thus play vital roles in the human food network. Salmonella is one of the most notorious foodborne pathogens and has been found to be prevalent in eggs. To better understand the characteristics of Salmonella in eggs, we investigated the prevalence of Salmonella spp. in 814 fresh eggs collected from poultry farms and retail marketplaces in Yangling, Shaanxi Province, China. The serotype, genotype, and antibiotic susceptibilities of 61 Salmonella isolates recovered from the eggs were analyzed. The average detection rate of Salmonella-positive eggs was 5.6%, with 6.6% of the eggs collected from poultry farms and 5.1% from marketplaces. Thirteen serotypes were identified from the 61 isolates, among which Salmonella Typhimurium (24.5%) and Salmonella Indiana (22.9%) were the most prevalent serotypes. Other dominant serotypes included Salmonella Thompson (13.1%) and Salmonella Enteritidis (11.4%), with the remaining nine serotypes detected at low rates (1.6-4.9%). All the Salmonella isolates tested were resistant to sulfisoxazole (100.0%). The majority (77.1%) of the isolates were resistant to nalidixic acid, amoxicillin-clavulanate, and ampicillin, while nearly two-thirds (63.9-68.9%) were resistant to trimethoprim-sulfamethoxazole, kanamycin, tetracyclines, and chloramphenicol. The rate of resistance to ciprofloxacin was 40.1%; the resistance rates to streptomycin, ceftiofur, and ceftriaxone ranged from 21.3 to 26.2%; and those to gentamicin, amikacin, and cefoxitin were relatively low (3.3-16.4%). Forty-nine (80.3%) Salmonella isolates exhibited resistance to multiple antibiotics, 20 (32.8%) of which were resistant to at least 10 antibiotics. Subtyping by pulse-field gel electrophoresis revealed a close genetic relatedness of Salmonella isolates from poultry farms, in striking contrast to the high diversity of the isolates obtained from marketplaces. Isolates of the same serotype always shared identical genotype and antibiotic resistance profiles, even the ones that were recovered from eggs sampled at different locations and times. These findings indicate that diverse Salmonella spp. with high rates of multidrug resistance are prevalent in fresh eggs in the study area. More attention should be paid to egg production, transportation, and storage to prevent foodborne outbreaks caused by Salmonella.
Collapse
Affiliation(s)
- Wei Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Hao Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Shujuan Zheng
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Zewei Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Huanjing Sheng
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Chunlei Shi
- MOST-USDA Joint Research Center for Food Safety, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Xianming Shi
- MOST-USDA Joint Research Center for Food Safety, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Qinya Niu
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Baowei Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| |
Collapse
|