1
|
Zhang C, Luo Y, Deng Z, Du R, Han M, Wu J, Zhao W, Guo R, Hou Y, Wang S. Recent advances in cold plasma technology for enhancing the safety and quality of meat and meat products: A comprehensive review. Food Res Int 2025; 202:115701. [PMID: 39967157 DOI: 10.1016/j.foodres.2025.115701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 12/30/2024] [Accepted: 01/05/2025] [Indexed: 02/20/2025]
Abstract
Meat and meat products constitute an important component of the diet for several populations around the world and fulfill various nutritional requirements of the human body. However, owing to the inherent characteristics of meat - including its susceptibility to oxidation and contamination with foodborne pathogens - meat and meat products perish easily. In recent years, with improvements in living standards and increased focus on nutrition and health among consumers, non-thermal food processing technologies have received increasing attention. Among these strategies, cold plasma (CP) technology has emerged as a promising and novel processing technique with substantial potential in preserving meat and meat products. In this review, we discussed and analyzed the effects of CP on the nutritional value, sensory quality, and safety of meat and meat products, particularly, the potential toxicological hazards. Furthermore, we provided a detailed introduction to the mechanisms about how CP affects microorganisms, highlighting its role in inducing apoptosis and inhibiting quorum sensing. In the base of these theoretical foundations, this paper proposed several practical recommendations in order to optimize CP technology. Finally, we summarized the potential applications of CP in meat preservation, aiming to establish a theoretical framework for further research and application of this technology.
Collapse
Affiliation(s)
- Changyan Zhang
- School of Food Science and Engineering, Ningxia University, Yinchuan 750021 PR China
| | - Yulong Luo
- School of Food Science and Engineering, Ningxia University, Yinchuan 750021 PR China.
| | - Ziyao Deng
- School of Food Science and Engineering, Ningxia University, Yinchuan 750021 PR China
| | - Rui Du
- Yinchuan Agricultural Product Quality Testing Center, Yinchuan Agriculture and Rural Bureau, Yinchuan 750021 PR China
| | - Mei Han
- School of Food Science and Engineering, Ningxia University, Yinchuan 750021 PR China
| | - Junqin Wu
- School of Food Science and Engineering, Ningxia University, Yinchuan 750021 PR China
| | - Wenxiu Zhao
- School of Food Science and Engineering, Ningxia University, Yinchuan 750021 PR China
| | - Rong Guo
- School of Food Science and Engineering, Ningxia University, Yinchuan 750021 PR China
| | - Yanru Hou
- School of Food Science and Engineering, Ningxia University, Yinchuan 750021 PR China
| | - Songlei Wang
- School of Food Science and Engineering, Ningxia University, Yinchuan 750021 PR China
| |
Collapse
|
2
|
Li Y, Huang X, Yang Y, Mulati A, Hong J, Wang J. The Effects of Cold-Plasma Technology on the Quality Properties of Fresh-Cut Produce: A Review. Foods 2025; 14:149. [PMID: 39856816 PMCID: PMC11764547 DOI: 10.3390/foods14020149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 12/30/2024] [Accepted: 01/05/2025] [Indexed: 01/27/2025] Open
Abstract
With improving economic conditions, consumer demand for fresh-cut produce is rising. The development of the fresh-cut industry has been hindered by pathogenic contamination and quality deterioration. Scientific communities have developed novel preservation technologies for fresh-cut produce. As an innovative non-thermal processing method, cold plasma effectively preserves the nutritional value and inactivates pathogens in fresh-cut produce. This review delineates the principles of cold-plasma generation and concludes with the primary factors influencing its efficacy. These factors include the specifications and parameters of the equipment utilized, the properties of the conductive gas utilized, the method of treatment, and the intrinsic properties of a sample subjected to treatment. Furthermore, this review delineates various scenarios for cold-plasma applications. This review focuses on its effects on enzymatic activities (including peroxidase, polyphenol oxidase, and pectin methylesterase), pathogenic microorganisms, and nutritional value. This review concludes with the potential application of cold-plasma technology in the processing of fresh-cut products. This study proposes advancing plasma technology in fresh-cut produce processing by (1) optimizing cold-plasma parameters for diverse fruit and vegetable varieties and (2) scaling up to facilitate industrial application.
Collapse
Affiliation(s)
| | | | | | | | | | - Jiayi Wang
- College of Life Science and Technology, Xinjiang University, Urumqi 830046, China; (Y.L.); (X.H.); (Y.Y.); (A.M.); (J.H.)
| |
Collapse
|
3
|
Zhou Y, Zuo H, Dai Z, Guo Z, Holman BWB, Ding Y, Shi J, Ding X, Huang M, Mao Y. Changes to Pork Bacterial Counts and Composition After Dielectric Barrier Discharge Plasma Treatment and Storage in Modified-Atmosphere Packaging. Foods 2024; 13:4162. [PMID: 39767103 PMCID: PMC11675310 DOI: 10.3390/foods13244162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/14/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025] Open
Abstract
The aim of this study was to compare the succession of natural microbiota in pork held under refrigerated storage for up to 10 days after dielectric barrier discharge (DBD) plasma treatment. Two methods were used to assess the impact of DBD on microorganisms. Firstly, traditional selective media (SM) were employed to detect the bactericidal effects of DBD on Pseudomonas spp., Enterobacteriaceae, Lactic acid bacteria (LAB), and Brochothrix thermosphacta. Secondly, the thin agar layer (TAL) method was used to further evaluate the bactericidal effects of DBD. In addition, the Baranyi and Roberts model was applied to explore the kinetic parameters of Pseudomonas spp., Enterobacteriaceae, LAB, and B. thermosphacta during storage. Finally, the modified Lotka-Volterra model was used to describe the interactions between each microorganism. The study found that when using traditional selective media (SM), 85 kV DBD had a significant bactericidal effect on Pseudomonas spp., Enterobacteriaceae, LAB, and Brochothrix thermosphacta. However, when using the thin agar layer (TAL) method, the results suggested that DBD had no significant bactericidal effect, suggesting that DBD caused sublethal damage to the natural microorganisms on pork. Analysis with the Baranyi and Roberts model showed that DBD treatment significantly extended the lag phase of these four types of microorganisms and significantly reduced the μmax of all microorganisms except LAB. The analysis results of the modified Lotka-Volterra model showed that LAB had a greater impact on Pseudomonas spp., Enterobacteriaceae, and B. thermosphacta (a21 > a12). In conclusion, DBD treatment was shown to have a significant sublethal bactericidal effect that impacted both the count and composition of natural microorganisms found on pork.
Collapse
Affiliation(s)
- Yi Zhou
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai’an 271018, China; (Y.Z.); (H.Z.); (J.S.); (X.D.); (Y.M.)
| | - Huixin Zuo
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai’an 271018, China; (Y.Z.); (H.Z.); (J.S.); (X.D.); (Y.M.)
| | - Zhaoqi Dai
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China;
| | - Zonglin Guo
- College of Food Science, South China Agricultural University, Guangzhou 510642, China;
| | - Benjamin W. B. Holman
- Wagga Wagga Agricultural Institute, NSW Department of Primary Industries, Wagga Wagga, NSW 2650, Australia;
| | - Yanqin Ding
- College of Biotechnology, Shandong Agricultural University, Tai’an 271018, China;
| | - Jingying Shi
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai’an 271018, China; (Y.Z.); (H.Z.); (J.S.); (X.D.); (Y.M.)
| | - Xiaoxiao Ding
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai’an 271018, China; (Y.Z.); (H.Z.); (J.S.); (X.D.); (Y.M.)
| | - Mingming Huang
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai’an 271018, China; (Y.Z.); (H.Z.); (J.S.); (X.D.); (Y.M.)
| | - Yanwei Mao
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai’an 271018, China; (Y.Z.); (H.Z.); (J.S.); (X.D.); (Y.M.)
| |
Collapse
|
4
|
Liu D, Sierens J, Haydamous C, Nikiforov A, De Geyter N, De Meulenaer B. Impact of Nonthermal Plasma Treatment on the Oxidation of Lipids with Different Unsaturation Degrees. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:20037-20047. [PMID: 39190011 DOI: 10.1021/acs.jafc.4c04365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Nonthermal plasma (NTP) treatment of food presents a new technology for the industry but raises concerns about lipid oxidation due to the presence of reactive species. Considering the critical role of the degree of unsaturation in lipid oxidation, this study investigates NTP-induced oxidation across various unsaturated lipids. These lipids are six oil samples primarily containing one of the following methylesters: oleate, linoleate, linolenate, arachidonate, eicosapentaenoate, and docosahexaenoate. Samples were treated with a nonthermal surface dielectric barrier discharge. Plasma-induced effects were first examined by classical lipid oxidation indicators, such as the peroxide value and p-anisidine value. The specific volatile oxidation products, including hexanal, nonanal, trans-2-hexenal, and methyl 9-oxononanoate, were determined to further elucidate the impact of ozone-related oxidation. Monitoring the production of selected nonvolatile oxidation products, such as epoxy-, oxo-, and hydroxy fatty acid methylesters, confirmed that plasma treatment facilitated the decomposition of lipid hydroperoxide. Generally, the level of plasma-induced oxidation increased in parallel with the unsaturation degree of the studied samples, except for the quantity of individual volatile carbonyls. The long-term effect of NTP treatment was investigated by a stability test, revealing that the oxidative stability depended on the input gas of plasma treatment, the sensitivity of the treated sample, and the presence of antioxidants. Except for the focus on the NTP impact, this study offered a case study of a comprehensive investigation into lipid oxidation.
Collapse
Affiliation(s)
- Danyang Liu
- Research Group NutriFOODchem, Department of Food Technology, Safety and Health, Ghent University, Coupure Links 653, Ghent 9000, Belgium
| | - Joke Sierens
- Research Group NutriFOODchem, Department of Food Technology, Safety and Health, Ghent University, Coupure Links 653, Ghent 9000, Belgium
| | - Christelle Haydamous
- Research Group NutriFOODchem, Department of Food Technology, Safety and Health, Ghent University, Coupure Links 653, Ghent 9000, Belgium
| | - Anton Nikiforov
- Research Unit Plasma Technology (RUPT), Department of Applied Physics, Ghent University, Sint-Pietersnieuwstraat 41, Ghent 9000, Belgium
| | - Nathalie De Geyter
- Research Unit Plasma Technology (RUPT), Department of Applied Physics, Ghent University, Sint-Pietersnieuwstraat 41, Ghent 9000, Belgium
| | - Bruno De Meulenaer
- Research Group NutriFOODchem, Department of Food Technology, Safety and Health, Ghent University, Coupure Links 653, Ghent 9000, Belgium
| |
Collapse
|
5
|
Mohseni P, Ghorbani A, Fariborzi N. Exploring the potential of cold plasma therapy in treating bacterial infections in veterinary medicine: opportunities and challenges. Front Vet Sci 2023; 10:1240596. [PMID: 37720476 PMCID: PMC10502341 DOI: 10.3389/fvets.2023.1240596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 08/21/2023] [Indexed: 09/19/2023] Open
Abstract
Cold plasma therapy is a novel approach that has shown significant promise in treating bacterial infections in veterinary medicine. Cold plasma possesses the potential to eliminate various bacteria, including those that are resistant to antibiotics, which renders it a desirable substitute for traditional antibiotics. Furthermore, it can enhance the immune system and facilitate the process of wound healing. However, there are some challenges associated with the use of cold plasma in veterinary medicine, such as achieving consistent and uniform exposure to the affected area, determining optimal treatment conditions, and evaluating the long-term impact on animal health. This paper explores the potential of cold plasma therapy in veterinary medicine for managing bacterial diseases, including respiratory infections, skin infections, and wound infections such as Clostridium botulinum, Clostridium perfringens, Bacillus cereus, and Bacillus subtilis. It also shows the opportunities and challenges associated with its use. In conclusion, the paper highlights the promising potential of utilizing cold plasma in veterinary medicine. However, to gain a comprehensive understanding of its benefits and limitations, further research is required. Future studies should concentrate on refining treatment protocols and assessing the long-term effects of cold plasma therapy on bacterial infections and the overall health of animals.
Collapse
Affiliation(s)
- Parvin Mohseni
- Department of Pathobiology, Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Abozar Ghorbani
- Nuclear Agriculture Research School, Nuclear Science and Technology Research Institute (NSTRI), Karaj, Iran
| | - Niloofar Fariborzi
- Department of Biology and Control of Diseases Vector, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
6
|
Liu Y, Sun Y, Wang Y, Zhao Y, Duan M, Wang H, Dai R, Liu Y, Li X, Jia F. Inactivation mechanisms of atmospheric pressure plasma jet on Bacillus cereus spores and its application on low-water activity foods. Food Res Int 2023; 169:112867. [PMID: 37254316 DOI: 10.1016/j.foodres.2023.112867] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/15/2023] [Accepted: 04/18/2023] [Indexed: 06/01/2023]
Abstract
Bacillus cereus spore is one of the most easily contaminated bacterial spores in low-water activity foods such as black pepper. Atmospheric-pressure plasma jet (APPJ) has emerged as an emerging and promising method for microbial inactivation in food processing. This study aimed to investigate the efficacy of APPJ in inactivating spores under various treatment parameters and to examine the resulting alterations in spore structures and internal membrane properties. Meanwhile, the practical application of APPJ for spore inactivation in black pepper was also evaluated. The results indicated that air-APPJ had superior spore inactivation capability compared to N2 and O2-APPJ. After 20 min of APPJ treatment (50 L/min, 800 W, and 10 cm), the reduction in spore count (>2 log CFU/g) was significantly greater than that achieved by heat treatment (80℃). The damage of inner membranes was considered as the major reason of the dried spore inactivation by APPJ treatment. Moreover, it achieved a reduction in spore count of > 1 log CFU/g on inoculated black pepper without significantly affecting its color and flavor. Although the antioxidant activity of black pepper was slightly reduced, the overall quality of the product was not considerably affected by plasma treatment. This study concluded that APPJ is an effective technique for spore inactivation, offering promising potential for application in the decontamination of low-water activity foods.
Collapse
Affiliation(s)
- Yana Liu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yingying Sun
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yuhan Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yijie Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Miaolin Duan
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Han Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Ruitong Dai
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yi Liu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Xingmin Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Fei Jia
- Department of Biological and Agricultural Engineering, University of Arkansas, Fayetteville, AR, 72701, USA.
| |
Collapse
|
7
|
Munir MT, Mtimet N, Guillier L, Meurens F, Fravalo P, Federighi M, Kooh P. Physical Treatments to Control Clostridium botulinum Hazards in Food. Foods 2023; 12:foods12081580. [PMID: 37107375 PMCID: PMC10137509 DOI: 10.3390/foods12081580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 03/30/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
Clostridium botulinum produces Botulinum neurotoxins (BoNTs), causing a rare but potentially deadly type of food poisoning called foodborne botulism. This review aims to provide information on the bacterium, spores, toxins, and botulisms, and describe the use of physical treatments (e.g., heating, pressure, irradiation, and other emerging technologies) to control this biological hazard in food. As the spores of this bacterium can resist various harsh environmental conditions, such as high temperatures, the thermal inactivation of 12-log of C. botulinum type A spores remains the standard for the commercial sterilization of food products. However, recent advancements in non-thermal physical treatments present an alternative to thermal sterilization with some limitations. Low- (<2 kGy) and medium (3-5 kGy)-dose ionizing irradiations are effective for a log reduction of vegetative cells and spores, respectively; however, very high doses (>10 kGy) are required to inactivate BoNTs. High-pressure processing (HPP), even at 1.5 GPa, does not inactivate the spores and requires heat combination to achieve its goal. Other emerging technologies have also shown some promise against vegetative cells and spores; however, their application to C. botulinum is very limited. Various factors related to bacteria (e.g., vegetative stage, growth conditions, injury status, type of bacteria, etc.) food matrix (e.g., compositions, state, pH, temperature, aw, etc.), and the method (e.g., power, energy, frequency, distance from the source to target, etc.) influence the efficacy of these treatments against C. botulinum. Moreover, the mode of action of different physical technologies is different, which provides an opportunity to combine different physical treatment methods in order to achieve additive and/or synergistic effects. This review is intended to guide the decision-makers, researchers, and educators in using physical treatments to control C. botulinum hazards.
Collapse
Affiliation(s)
- Muhammad Tanveer Munir
- EnvA, Unit of Hygiene, Quality and Food Safety, 94700 Maisons-Alfort, France
- Anses, Laboratory of Food Safety, 94700 Maisons-Alfort, France
| | - Narjes Mtimet
- EnvA, Unit of Hygiene, Quality and Food Safety, 94700 Maisons-Alfort, France
- Anses, Laboratory of Food Safety, 94700 Maisons-Alfort, France
| | | | - François Meurens
- INRAE, Oniris, BIOEPAR, 44307 Nantes, France
- Swine and Poultry Infectious Diseases Research Center, Faculty of Veterinary Medicine, University of Montreal, St-Hyacinthe, QC J2S 2M2, Canada
| | - Phillipe Fravalo
- Chaire Agroalimentaire du Cnam, Conservatoire des Arts et Métiers, EPN7, 22440 Ploufragan, France
| | - Michel Federighi
- EnvA, Unit of Hygiene, Quality and Food Safety, 94700 Maisons-Alfort, France
- Anses, Laboratory of Food Safety, 94700 Maisons-Alfort, France
| | - Pauline Kooh
- Anses, Unit UERALIM, 94700 Maisons-Alfort, France
| |
Collapse
|
8
|
Chen H, Xiong Z, Zhang A, Ge C, Chang F. Improving the Production of Antitumor Calicheamicin by the Micromonospora echinospora Mutant Coupled with in situ Resin Adsorption in Fermentation Process. APPL BIOCHEM MICRO+ 2022. [DOI: 10.1134/s0003683822100040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
|
9
|
Zhou R, Rezaeimotlagh A, Zhou R, Zhang T, Wang P, Hong J, Soltani B, Mai-Prochnow A, Liao X, Ding T, Shao T, Thompson EW, Ostrikov K(K, Cullen PJ. In-package plasma: From reactive chemistry to innovative food preservation technologies. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2021.12.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
10
|
Pina-Pérez MC, Úbeda-Manzanaro M, Beyrer M, Martínez A, Rodrigo D. In vivo Assessment of Cold Atmospheric Pressure Plasma Technology on the Bioactivity of Spirulina. Front Microbiol 2022; 12:781871. [PMID: 35140692 PMCID: PMC8819064 DOI: 10.3389/fmicb.2021.781871] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 12/24/2021] [Indexed: 11/13/2022] Open
Abstract
The present study challenges the in vivo assessment of cold atmospheric pressure plasma (CAPP) technology on the bioactive activity (antioxidant/antiaging and antimicrobial potential) of Spirulina powder, using Caenorhabditis elegans as an animal model. Surface microdischarge cold atmospheric pressure plasma (SMD-CAPP) treatment was 3.3 W discharge power for 7 min. C. elegans lifespan and egg laying were used as indicators of antioxidant/antiaging potential of Spirulina (1 mg/mL), when grown with Spirulina CP-treated [E_SCP] and untreated [E_S], compared with a control [E_0] (non-supplemented with Spirulina). According to our results, under both Spirulina supplemented media [E_SCP and E_S] and for the first 17 days, nematodes experienced an increase in lifespan but without significant differences (p > 0.05) between control and Spirulina CP-treated. Regarding the in vivo assay of the antimicrobial potential of Spirulina against Salmonella enterica serovar Typhimurium (infected worms), no significant differences (p > 0.05) were found between the three exposure scenarios (control [S_0]; Spirulina supplemented media [S_S]; CP-treated Spirulina supplemented media [S_SCP]). According to present results, CAPP-treatment do not influence negatively the lifespan of C. elegans but a reduction in the Spirulina antiaging potential was found. No in vivo modifications in antimicrobial activity seem to be linked to CAPP-processed Spirulina.
Collapse
Affiliation(s)
- María Consuelo Pina-Pérez
- Departamento de Microbiología y Ecología, Universitat de València, Burjassot, Valencia, Spain
- Food Engineering Laboratory, Institute of Life Technologies, University of Applied Sciences and Arts Western-Switzerland (HES-SO) Valais-Wallis, Sion, Switzerland
| | - María Úbeda-Manzanaro
- Departamento Conservación y Calidad, Instituto de Agroquímica y Tecnología de Alimentos IATA - Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| | - Michael Beyrer
- Food Engineering Laboratory, Institute of Life Technologies, University of Applied Sciences and Arts Western-Switzerland (HES-SO) Valais-Wallis, Sion, Switzerland
| | - Antonio Martínez
- Departamento Conservación y Calidad, Instituto de Agroquímica y Tecnología de Alimentos IATA - Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| | - Dolores Rodrigo
- Departamento Conservación y Calidad, Instituto de Agroquímica y Tecnología de Alimentos IATA - Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
- *Correspondence: Dolores Rodrigo,
| |
Collapse
|
11
|
Corona Discharge Power of Plasma Treatment Influence on the Physicochemical and Microbial Quality of Enoki Mushroom (Flammulina velutipes). JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2022. [DOI: 10.22207/jpam.16.1.08] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Plasma treatment was widely known as an effective technology applied for contact-surface decontamination. Enoki (Flammulina velutipes) was an edible-medicinal mushroom with different phytochemicals and bioactive components beneficial for human health. Enoki mushroom had high respiration rate therefore it was highly perishable after harvesting. Moreover, it was greatly susceptible to microbial contamination but it was not feasible to be decontaminated by normal water washing. It’s urgent to extend shelf-life and control microbial criteria on this mushroom in dry manner without aqueous treatment. Corona discharge plasma was among 4 kinds of diverse cold atmospheric pressure plasma sources widely applied in food industry. This study demonstrated the influence of corona discharge plasma power values (control, 120, 150, 180, 210 W) on the physicochemical and microbial characteristics of Enoki mushroom during 10 days of storage at ambient temperature. Results showed that Enoki mushroom should be treated at 150 W of corona discharge plasma power to retain weight loss, total soluble solid, vitamin C in acceptable values while reducing total Aerobic count, Coliform, Enterobacteriaceae as much as possible. At the 10th day of storage, the weight loss, total soluble solid, vitamin C, total Aerobic count, Coliform, Enterobacteriaceae were recorded at 3.35±0.07%, 6.98±0.03 oBrix, 14.81±0.04 mg/100 g, 4.71±0.05 log CFU/g, 3.17±0.02 log CFU/g, 2.13±0.01 CFU/g, respectively. Findings of this research proved that corona discharge plasma pretreatment would be appropriate to maintain physicochemical properties and retard microbial loads on Enoki mushroom during preservation.
Collapse
|
12
|
|
13
|
Kim YE, Min SC. Inactivation of Salmonella in ready-to-eat cabbage slices packaged in a plastic container using an integrated in-package treatment of hydrogen peroxide and cold plasma. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
14
|
Application of cold plasma and ozone technology for decontamination of Escherichia coli in foods- a review. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108338] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
15
|
Braný D, Dvorská D, Strnádel J, Matáková T, Halašová E, Škovierová H. Effect of Cold Atmospheric Plasma on Epigenetic Changes, DNA Damage, and Possibilities for Its Use in Synergistic Cancer Therapy. Int J Mol Sci 2021; 22:ijms222212252. [PMID: 34830132 PMCID: PMC8617606 DOI: 10.3390/ijms222212252] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/06/2021] [Accepted: 11/11/2021] [Indexed: 12/17/2022] Open
Abstract
Cold atmospheric plasma has great potential for use in modern medicine. It has been used in the clinical treatment of skin diseases and chronic wounds, and in laboratory settings it has shown effects on selective decrease in tumour-cell viability, reduced tumour mass in animal models and stem-cell proliferation. Many researchers are currently focusing on its application to internal structures and the use of plasma-activated liquids in tolerated and effective human treatment. There has also been analysis of plasma's beneficial synergy with standard pharmaceuticals to enhance their effect. Cold atmospheric plasma triggers various responses in tumour cells, and this can result in epigenetic changes in both DNA methylation levels and histone modification. The expression and activity of non-coding RNAs with their many important cell regulatory functions can also be altered by cold atmospheric plasma action. Finally, there is ongoing debate whether plasma-produced radicals can directly affect DNA damage in the nucleus or only initiate apoptosis or other forms of cell death. This article therefore summarises accepted knowledge of cold atmospheric plasma's influence on epigenetic changes, the expression and activity of non-coding RNAs, and DNA damage and its effect in synergistic treatment with routinely used pharmaceuticals.
Collapse
Affiliation(s)
- Dušan Braný
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 01 Martin, Slovakia; (D.B.); (J.S.); (E.H.); (H.Š.)
| | - Dana Dvorská
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 01 Martin, Slovakia; (D.B.); (J.S.); (E.H.); (H.Š.)
- Correspondence:
| | - Ján Strnádel
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 01 Martin, Slovakia; (D.B.); (J.S.); (E.H.); (H.Š.)
| | - Tatiana Matáková
- Department of Medical Biochemistry, Jessenius Faculty of Medicine in Martin, Comenius University, Bratislava, 036 01 Martin, Slovakia;
| | - Erika Halašová
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 01 Martin, Slovakia; (D.B.); (J.S.); (E.H.); (H.Š.)
| | - Henrieta Škovierová
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 01 Martin, Slovakia; (D.B.); (J.S.); (E.H.); (H.Š.)
| |
Collapse
|
16
|
Pina-Pérez MC, Rodrigo D, Ellert C, Beyrer M. Surface Micro Discharge-Cold Atmospheric Pressure Plasma Processing of Common House Cricket Acheta domesticus Powder: Antimicrobial Potential and Lipid-Quality Preservation. Front Bioeng Biotechnol 2021; 9:644177. [PMID: 34277580 PMCID: PMC8283276 DOI: 10.3389/fbioe.2021.644177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 05/31/2021] [Indexed: 11/13/2022] Open
Abstract
The growing world population and the need to reduce the environmental impact of food production drive the exploration of novel protein sources. Insects are being cultivated, harvested, and processed to be applied in animal and human nutrition. The inherent microbial contamination of insect matrices requires risk management and decontamination strategies. Thermal sterilization results in unfavorable cooking effects and oxidation of fatty acids. The present study demonstrates the risk management in Acheta domesticus (home cricket) powder with a low-energy (8.7-22.0 mW/cm2, 5 min) semi-direct surface micro discharge (SMD)-cold atmospheric pressure plasma (CAPP). At a plasma power density lower than 22 mW/cm2, no degradation of triglycerides (TG) or increased free fatty acids (FFA) content was detected. For mesophilic bacteria, 1.6 ± 0.1 log10 reductions were achieved, and for Enterobacteriaceae, there were close to 1.9 ± 0.2 log10 reductions in a layer of powder. Colonies of Bacillus cereus, Bacillus subtilis, and Bacillus megaterium were identified via the mass spectral fingerprint analyzed with matrix-assisted laser desorption/ionization time of flight (MALDI-TOF) mass spectrometry (MS). The spores of these Bacillus strains resisted to a plasma power density of 22 mW/cm2. Additional inactivation effects at non-thermal, practically non-oxidative conditions are supposed for low-intensity plasma treatments combined with the powder's fluidization.
Collapse
Affiliation(s)
- Maria C Pina-Pérez
- Departamento de Microbiologia y Ecología, Universitat de València, Valencia, Spain.,School of Engineering, Institute of Life Technologies, University of Applied Sciences and Arts Western Switzerland (HES-SO VS), Sion, Switzerland
| | - Dolores Rodrigo
- Departamento de Conservación y Calidad, Instituto de Agroquimica y Tecnología de Alimentos (IATA-CSIC), Valencia, Spain
| | - Christoph Ellert
- School of Engineering, Institute of Life Technologies, University of Applied Sciences and Arts Western Switzerland (HES-SO VS), Sion, Switzerland
| | - Michael Beyrer
- School of Engineering, Institute of Life Technologies, University of Applied Sciences and Arts Western Switzerland (HES-SO VS), Sion, Switzerland
| |
Collapse
|
17
|
Applications of Cold Atmospheric Pressure Plasma Technology in Medicine, Agriculture and Food Industry. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11114809] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In recent years, cold atmospheric pressure plasma (CAPP) technology has received substantial attention due to its valuable properties including operational simplicity, low running cost, and environmental friendliness. Several different gases (air, nitrogen, helium, argon) and techniques (corona discharge, dielectric barrier discharge, plasma jet) can be used to generate plasma at atmospheric pressure and low temperature. Plasma treatment is routinely used in materials science to modify the surface properties (e.g., wettability, chemical composition, adhesion) of a wide range of materials (e.g., polymers, textiles, metals, glasses). Moreover, CAPP seems to be a powerful tool for the inactivation of various pathogens (e.g., bacteria, fungi, viruses) in the food industry (e.g., food and packing material decontamination, shelf life extension), agriculture (e.g., disinfection of seeds, fertilizer, water, soil) and medicine (e.g., sterilization of medical equipment, implants). Plasma medicine also holds great promise for direct therapeutic treatments in dentistry (tooth bleaching), dermatology (atopic eczema, wound healing) and oncology (melanoma, glioblastoma). Overall, CAPP technology is an innovative, powerful and effective tool offering a broad application potential. However, its limitations and negative impacts need to be determined in order to receive regulatory approval and consumer acceptance.
Collapse
|
18
|
Charoux CMG, Patange A, Lamba S, O'Donnell CP, Tiwari BK, Scannell AGM. Applications of nonthermal plasma technology on safety and quality of dried food ingredients. J Appl Microbiol 2020; 130:325-340. [PMID: 32797725 DOI: 10.1111/jam.14823] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 07/20/2020] [Accepted: 08/06/2020] [Indexed: 12/28/2022]
Abstract
Cold plasma technology is an efficient, environmental-friendly, economic and noninvasive technology; and in recent years these advantages placed this novel technology at the centre of diverse studies for food industry applications. Dried food ingredients including spices, herbs, powders and seeds are an important part of the human diet; and the growing demands of consumers for higher quality and safe food products have led to increased research into alternative decontamination methods. Numerous studies have investigated the effect of nonthermal plasma on dried food ingredients for food safety and quality purposes. This review provides critical review on potential of cold plasma for disinfection of dried food surfaces (spices, herbs and seeds), improvement of functional and rheological properties of dried ingredients (powders, proteins and starches). The review further highlights the benefits of plasma treatment for enhancement of seeds performance and germination yield which could be applied in agricultural sector in near future. Different studies applying plasma technology for control of pathogens and spoilage micro-organisms and modification of food quality and germination of dried food products followed by benefits and current challenges are presented. However, more systemic research needs to be addressed for successful adoption of this technology in food industry.
Collapse
Affiliation(s)
- C M G Charoux
- Food Chemistry and Technology, Teagasc Food Research Centre, Dublin, Ireland.,UCD School of Biosystems and Food Engineering, University College Dublin, Dublin, Ireland
| | - A Patange
- Food Chemistry and Technology, Teagasc Food Research Centre, Dublin, Ireland
| | - S Lamba
- UCD School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - C P O'Donnell
- UCD School of Biosystems and Food Engineering, University College Dublin, Dublin, Ireland
| | - B K Tiwari
- Food Chemistry and Technology, Teagasc Food Research Centre, Dublin, Ireland.,UCD School of Biosystems and Food Engineering, University College Dublin, Dublin, Ireland
| | - A G M Scannell
- UCD School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| |
Collapse
|
19
|
Roh SH, Oh YJ, Lee SY, Kang JH, Min SC. Inactivation of Escherichia coli O157:H7, Salmonella, Listeria monocytogenes, and Tulane virus in processed chicken breast via atmospheric in-package cold plasma treatment. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109429] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|