1
|
Laqui-Estaña J, Obreque-Slier E, García-Nauto N, Saldaña E. Advances in Grape Seed Oil Extraction Techniques and Their Applications in Food Products: A Comprehensive Review and Bibliometric Analysis. Foods 2024; 13:3561. [PMID: 39593976 PMCID: PMC11592970 DOI: 10.3390/foods13223561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/15/2024] [Accepted: 09/27/2024] [Indexed: 11/28/2024] Open
Abstract
Global wine production has grown, resulting in an increase in waste within the industry. This has raised concerns among producers and scientists worldwide, prompting them to seek solutions for its management. The aim is to explore the latest advancements in using grape seed oil as a byproduct and its applications within the food industry. To achieve this, a bibliometric analysis was conducted using the Scopus database covering the period from 1990 to 2023. Additionally, a comprehensive literature review was conducted on extraction techniques, compositions, properties, and innovative applications in food. A bibliometric analysis revealed that interest in grape seed oil has grown over the past fifteen years. The majority of research on this grape byproduct is concentrated in Asian countries. Grape seed oil is a rich source of lipophilic compounds, including fatty acids, phytosterols, and vitamin E, which provide antioxidant and antimicrobial properties. The literature indicates that only oil obtained through pressing is used in food products, such as meat products, dairy drinks, and chocolates, either directly or in emulsions. These findings suggest that further research and innovation are needed to explore how this waste can be used in new food sources, particularly in countries with high wine production.
Collapse
Affiliation(s)
- Jaime Laqui-Estaña
- Faculdade de Engenharia de Alimentos, Universidade de Campinas, rua Monteiro Lobato, 80, Campinas 13083-862, Brazil; (J.L.-E.); (N.G.-N.)
- Facultad de Ciencias Agropecuarias, Universidad Nacional de Trujillo, Av. Juan Pablo II s/n, Trujillo 13011, Peru
| | - Elías Obreque-Slier
- Department of Agro–Industry and Enology, Faculty of Agronomical Sciences, University of Chile, Santiago P.O. Box 1004, Chile;
| | - Nidia García-Nauto
- Faculdade de Engenharia de Alimentos, Universidade de Campinas, rua Monteiro Lobato, 80, Campinas 13083-862, Brazil; (J.L.-E.); (N.G.-N.)
- Facultad de Ciencias Agropecuarias, Universidad Nacional de Trujillo, Av. Juan Pablo II s/n, Trujillo 13011, Peru
- Escuela Profesional de Ingeniería Agroindustrial, Universidad Nacional de Moquegua, Calle Ancash s/n, Moquegua 18001, Peru
| | - Erick Saldaña
- Sensory Analysis and Consumer Study Group, Escuela Profesional de Ingeniería Agroindustrial, Universidad Nacional de Moquegua, Prolongación Calle Ancash s/n, Moquegua 18001, Peru
| |
Collapse
|
2
|
Abstract
This review discusses fundamental concepts of fat crystallization and how various processing conditions such as crystallization temperature, cooling rate, and shear or agitation affect this process. Traditional methods used to process fats, such as the use of scraped surface heat exchangers, fractionation, and interesterification, are described. Parameters that affect fat crystallization in these systems, such as shear, crystallization temperature, type of fat, and type of process, are discussed. In addition, the use of minor components to induce or delay fat crystallization based on their chemical composition is presented. The use of novel technologies, such as high-intensity ultrasound, oleogelation, and high-pressure crystallization is also reviewed. In these cases, acoustic and high-pressure process parameters, the various types of oleogels, and the use of oleogelators of differing chemical compositions are discussed. The combination of all these techniques and future trends is also presented.
Collapse
Affiliation(s)
- Thais Lomonaco Teodoro da Silva
- Department of Nutrition, Dietetics and Food Sciences, Utah State University, Logan, Utah, USA;
- Department of Food Science, Federal University of Lavras, Lavras, Minas Gerais, Brazil
| | - Silvana Martini
- Department of Nutrition, Dietetics and Food Sciences, Utah State University, Logan, Utah, USA;
| |
Collapse
|
3
|
Phuah ET, Lee YY, Tang TK, Akoh C, Cheong LZ, Tan CP, Wang Y, Lai OM. Nonconventional Technologies in Lipid Modifications. Annu Rev Food Sci Technol 2024; 15:409-430. [PMID: 38134384 DOI: 10.1146/annurev-food-072023-034440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2023]
Abstract
Lipid modifications play a crucial role in various fields, including food science, pharmaceuticals, and biofuel production. Traditional methods for lipid modifications involve physical and chemical approaches or enzymatic reactions, which often have limitations in terms of specificity, efficiency, and environmental impact. In recent years, nonconventional technologies have emerged as promising alternatives for lipid modifications. This review provides a comprehensive overview of nonconventional technologies for lipid modifications, including high-pressure processing, pulsed electric fields, ultrasound, ozonation, and cold plasma technology. The principles,mechanisms, and advantages of these technologies are discussed, along with their applications in lipid modification processes. Additionally, the challenges and future perspectives of nonconventional technologies in lipid modifications are addressed, highlighting the potential and challenges for further advancements in this field. The integration of nonconventional technologies with traditional methods has the potential to revolutionize lipid modifications, enabling the development of novel lipid-based products with enhanced functional properties and improved sustainability profiles.
Collapse
Affiliation(s)
- Eng-Tong Phuah
- Food Science and Technology, School of Applied Sciences and Mathematics, Universiti Teknologi Brunei, Bandar Seri Begawan, Brunei, Darussalam
| | - Yee-Ying Lee
- School of Science, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
- Monash-Industry Plant Oils Research Laboratory, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
| | - Teck-Kim Tang
- Malaysian Palm Oil Board, Kajang, Selangor, Malaysia
| | - Casimir Akoh
- Department of Food Science and Technology, University of Georgia, Athens, Georgia, USA
| | - Ling-Zhi Cheong
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, University of Melbourne, Melbourne, Australia
| | - Chin-Ping Tan
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Yong Wang
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Department of Food Science and Engineering, Jinan University, Guangzhou, China
| | - Oi-Ming Lai
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia;
- International Joint Laboratory on Plant Oils Processing and Safety, JNU-UPM, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| |
Collapse
|
4
|
Sampaio RSL, Pereira RLS, Coutinho HDM, Almeida-Bezerra JW, Bezerra Morais-Braga MF, Santana MDS, Silva MEPD, Santos ATLD, Fonseca VJA, Costa AR, Silva VBD, Rodrigues FC, Bezerra JJL, Raposo A, Lima JPMD, Barros LM. Chemical composition and antimicrobial potential of Acrocomia aculeata (Jacq.) Lodd. ex Mart. and Syagrus cearensis Noblick (Arecaceae). Microb Pathog 2023; 180:106147. [PMID: 37169312 DOI: 10.1016/j.micpath.2023.106147] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/06/2023] [Accepted: 05/08/2023] [Indexed: 05/13/2023]
Abstract
This study aimed to evaluate the antibiotic effects of the fixed oils of Acrocomia aculeata (FOAA) and Syagrus cearenses (FOSC) against the bacterial strains and the fungi strains of the genus Candida spp. The method of serial microdilution using different concentrations was used for measuring the individual biological activity of the fixed oils. The fixed oil of A. aculeata showed the presence of oleic acid (24.36%), while the oil of S. cearensis displayed the content of myristic acid (18.29%), compounds detected in high concentration. The combination FOAA + Norfloxacin, and FOSC + Norfloxacin showed antibacterial activity against E. coli and S. aureus strains, demonstrating possible synergism and potentiation of the antibiotic action against multidrug-resistant strains. The combination FOAA + Fluconazole displayed a significant effect against Candida albicans (IC50 = 15.54), C. krusei (IC50 = 78.58), and C. tropicalis (IC50 = 1588 μg/mL). Regarding FOSC + Fluconazole, it was also observed their combined effect against the strains of C. albicans (IC50 = 3385 μg/mL), C. krusei (IC50 = 26.67 μg/mL), and C. tropicalis (IC50 = 1164 μg/mL). The findings of this study showed a significant synergism for both fixed oils tested when combined with the antibiotic.
Collapse
Affiliation(s)
- Raimundo Samuel Leite Sampaio
- Laboratory of Plant Ecophysiology - LECOV, Regional University of Cariri (URCA), 1161 Cel. Antonio Luiz Avenue, Crato, 63105-000, CE, Brazil.
| | - Raimundo Luiz Silva Pereira
- Laboratory of Microbiology and Molecular Biology-LMBM, Regional University of Cariri-URCA, 1161 Cel. Antonio Luiz Avenue, Crato, 63105-000, CE, Brazil.
| | - Henrique Douglas Melo Coutinho
- Laboratory of Microbiology and Molecular Biology-LMBM, Regional University of Cariri-URCA, 1161 Cel. Antonio Luiz Avenue, Crato, 63105-000, CE, Brazil.
| | - José Weverton Almeida-Bezerra
- Cariri Applied Mycology Laboratory - LMAC, Regional University of Cariri-URCA, 1161 Cel. Antonio Luiz Avenue, Crato, 63105-000, CE, Brazil.
| | | | - Mariana Dos Santos Santana
- Cariri Applied Mycology Laboratory - LMAC, Regional University of Cariri-URCA, 1161 Cel. Antonio Luiz Avenue, Crato, 63105-000, CE, Brazil.
| | - Maria Elenilda Paulino da Silva
- Cariri Applied Mycology Laboratory - LMAC, Regional University of Cariri-URCA, 1161 Cel. Antonio Luiz Avenue, Crato, 63105-000, CE, Brazil.
| | - Antonia Thassya Lucas Dos Santos
- Cariri Applied Mycology Laboratory - LMAC, Regional University of Cariri-URCA, 1161 Cel. Antonio Luiz Avenue, Crato, 63105-000, CE, Brazil.
| | - Victor Juno Alencar Fonseca
- Cariri Applied Mycology Laboratory - LMAC, Regional University of Cariri-URCA, 1161 Cel. Antonio Luiz Avenue, Crato, 63105-000, CE, Brazil.
| | - Adrielle Rodrigues Costa
- Laboratory of Plant Ecophysiology - LECOV, Regional University of Cariri (URCA), 1161 Cel. Antonio Luiz Avenue, Crato, 63105-000, CE, Brazil.
| | - Viviane Bezerra da Silva
- Department of Botany, Federal University of Pernambuco - UFPE, s/n, Rua Professor Moraes Rego, Recife, Pernambuco, 50.670-901, Brazil.
| | - Felicidade Caroline Rodrigues
- Department of Botany, Federal University of Pernambuco - UFPE, s/n, Rua Professor Moraes Rego, Recife, Pernambuco, 50.670-901, Brazil.
| | - José Jailson Lima Bezerra
- Department of Botany, Federal University of Pernambuco - UFPE, s/n, Rua Professor Moraes Rego, Recife, Pernambuco, 50.670-901, Brazil.
| | - Antonio Raposo
- CBIOS (Research Center for Biosciences and Health Technologies), Universidade Lusófona de Humanidades e Tecnologias, Campo Grande 376, 1749-024, Lisboa, Portugal
| | | | - Luiz Marivando Barros
- Laboratory of Plant Ecophysiology - LECOV, Regional University of Cariri (URCA), 1161 Cel. Antonio Luiz Avenue, Crato, 63105-000, CE, Brazil.
| |
Collapse
|
5
|
Emerging Lipids from Arecaceae Palm Fruits in Brazil. Molecules 2022; 27:molecules27134188. [PMID: 35807433 PMCID: PMC9268242 DOI: 10.3390/molecules27134188] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/26/2022] [Accepted: 06/26/2022] [Indexed: 02/05/2023] Open
Abstract
Arecaceae palm tree fruits (APTFs) with pulp or kernel rich in oil are widely distributed in six Brazilian biomes. APTFs represent a great potential for the sustainable exploitation of products with high added value, but few literature studies have reported their properties and industrial applications. The lack of information leads to underutilization, low consumption, commercialization, and processing of these fruit species. This review presents and discusses the occurrence of 13 APTFs and the composition, physicochemical properties, bioactive compounds, and potential applications of their 25 oils and fats. The reported studies showed that the species present different lipid profiles. Multivariate analysis based on principal component analysis (PCA) and hierarchical cluster analysis (HCA) indicated a correlation between the composition of pulp and kernel oils. Myristic, caprylic, capric, and lauric acids are the main saturated fatty acids, while oleic acid is the main unsaturated. Carotenoids and phenolic compounds are the main bioactive compounds in APTFs, contributing to their high oxidative stability. The APTFs oils have a potential for use as foods and ingredients in the cosmetic, pharmaceutical, and biofuel industries. However, more studies are still necessary to better understand and exploit these species.
Collapse
|
6
|
Duarte FLM, da Silva BP, Grancieri M, Sant'Ana CT, Toledo RCL, de São José VPB, Pacheco S, Duarte Martino HS, Ribeiro de Barros FA. Macauba ( Acrocomia aculeata) kernel has good protein quality and improves the lipid profile and short chain fatty acids content in Wistar rats. Food Funct 2022; 13:11342-11352. [DOI: 10.1039/d2fo02047e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Macauba kernel can be indicated as a complementary source for a healthy diet and as an ingredient in the elaboration of food products, and can contribute to the continued growth of the plant-based food market.
Collapse
Affiliation(s)
| | | | - Mariana Grancieri
- Department of Nutrition and Health, Federal University of Viçosa, Viçosa, MG, Brazil
| | - Cíntia Tomaz Sant'Ana
- Department of Food Technology, Federal University of Viçosa, Viçosa, MG, 36570-000, Brazil
| | | | | | - Sidney Pacheco
- Liquid Chromatography Laboratory, Embrapa Food Agroindustry, Rio de Janeiro, RJ, Brazil
| | | | | |
Collapse
|
7
|
Flores M, Avendaño V, Bravo J, Valdés C, Forero-Doria O, Quitral V, Vilcanqui Y, Ortiz-Viedma J. Edible Oil Parameters during Deterioration Processes. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2021; 2021:7105170. [PMID: 34568484 PMCID: PMC8463213 DOI: 10.1155/2021/7105170] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 08/03/2021] [Accepted: 08/18/2021] [Indexed: 11/18/2022]
Abstract
With the continuous increase in research on lipids, technologies and the development of chemical-analytical methods associated with the characterization and monitoring of different processes that involve modifications in edible fats are increasing. The beneficial effect of lipids, especially those essential for the health of the population, is widely known. However, degradation compounds are also produced that eventually have negative effects. In this dual context, the monitoring of the changes suffered by nutritional compounds can be obtained thanks to the development of technologies and analytical methods applied to the study of lipids. The modifications that lipids undergo can be followed by a wide variety of methods, ranging from the basic ones associated with simple chemical titrations to the more complex ones associated with sophisticated laboratory equipment. These determinations involve chemical and/or physical quantification of lipids to know an initial condition on the major and minor components. In addition to technologies that allow monitoring during more complex processes such as thermal deterioration, in multiple conditions depending on the objective of the study, this review could benefit a comprehensive understanding of lipid deterioration for future developments and research in the study of fats and oils for human consumption.
Collapse
Affiliation(s)
- Marcos Flores
- Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad Santo Tomás, Avenida Carlos Schorr 255, Talca, Chile
| | - Victoria Avendaño
- Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad Santo Tomás, Avenida Carlos Schorr 255, Talca, Chile
| | - Jessica Bravo
- Facultad de Medicina, Centro de Investigación Biomédica, Universidad Diego Portales, Ejército 141, Santiago, Chile
| | - Cristian Valdés
- Centro de Investigación de Estudios Avanzados del Maule, Vicerrectoría de Investigación y Postgrado, Universidad Católica del Maule, Talca, Chile
| | - Oscar Forero-Doria
- Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad Santo Tomás, Avenida Carlos Schorr 255, Talca, Chile
| | - Vilma Quitral
- Escuela de Nutrición y Dietética, Facultad de Salud, Universidad Santo Tomás, Ejercito 146, Santiago, Chile
| | - Yesica Vilcanqui
- Escuela de Ingeniería Agroindustrial, Universidad Nacional de Moquegua, Prolongación Calle Ancash S/N, Moquegua, Peru
| | - Jaime Ortiz-Viedma
- Departamento de Ciencia de los Alimentos y Tecnología Química, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Casilla 233, Santiago, Chile
| |
Collapse
|
8
|
Tavares T, Magalhães K, Lorenzo N, Nunes C. Thermal and chemical characterization of fractions from Syagrus romanzoffiana kernel oil. GRASAS Y ACEITES 2021. [DOI: 10.3989/gya.0325201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The Jerivá (Syagrus romanzoffiana) kernel oil (JKO) has a pleasant coconut-like smell, with about 33% lauric acid and 28% oleic acid. The oil also contains bioactive compounds, such as phenolics, carotenoids, and tocopherols. JKO has a solid consistency at low temperatures, but has a low melting point and low solid content at room temperature. Thus, this work aimed to evaluate the thermal properties related to crystallization and fusion, as well as the chemical and oxidative characteristics of JKO fractions, olein and stearin, obtained from dry and solvent fractionation. In general, stearins had higher crystallization and melting temperatures, and higher solid fat content, unlike oleins, which may be associated with the concentration of high melting triglycerides in the stearins. No statistically significant difference was found for fatty acid profile or oxidative stability of the fractions. The type of fractionation influenced the chemical and thermal properties of JKO fractions. The solvent process promoted the most relevant differentiation of fractions. An olein was obtained with 7% less solid fat at 25 °C which remained visually liquid at 2 °C below the oil, as well as a stearin with 17% more solid fat at 25 °C which remained visually solid at 3 °C above the oil.
Collapse
|
9
|
Nunes ÂA, Buccini DF, dos Santos Jaques JA, Portugal LC, Guimarães RCA, Favaro SP, de Araújo Caldas R, Carvalho CME. Effect of dietary Acrocomia aculeata kernel oil rich in medium chain fatty acids on type 2 diabetic rats. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104295] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
10
|
Ji J, Xie W. Removal of aflatoxin B 1 from contaminated peanut oils using magnetic attapulgite. Food Chem 2020; 339:128072. [PMID: 33152867 DOI: 10.1016/j.foodchem.2020.128072] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 09/08/2020] [Accepted: 09/09/2020] [Indexed: 10/23/2022]
Abstract
The efficient magnetic adsorbent (Fe3O4@ATP) was prepared by precipitation through the dispersion of Fe3O4 nanoparticles on the natural attapulgite (ATP) and then tested as an adsorbent for aflatoxin B1 (AFB1) removal from contaminated oils. The adsorbent characterization results revealed that the Fe3O4 were incorporated into the ATP, affording the Fe3O4@ATP composite. This magnetic composite displayed a good ability to eliminate AFB1 from contaminated oils with a removal efficiency of 86.82% using a 0.3% dosage. The Fe3O4@ATP possessed paramagnetic character with a saturation magnetization of 50.86 emu/g, enabling its easy separation from the medium using an external magnet. The adsorption process followed the pseudo-second-order model and fitted the Freundlich isotherm well. Moreover, the thermodynamic studies showed that AFB1 adsorption onto Fe3O4@ATP was exothermic and spontaneous. The novelty of this study lies in the fabrication of magnetic composite adsorbents for AFB1 elimination from oils.
Collapse
Affiliation(s)
- Junmin Ji
- College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, PR China
| | - Wenlei Xie
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, PR China.
| |
Collapse
|
11
|
Andrade AC, Marinho JFU, de Souza AC, de Sousa Tavares T, Dias DR, Schwan RF, Nunes CA, Bastos SC. Prebiotic potential of pulp and kernel cake from Jerivá (Syagrus romanzoffiana) and Macaúba palm fruits (Acrocomia aculeata). Food Res Int 2020; 136:109595. [PMID: 32846620 DOI: 10.1016/j.foodres.2020.109595] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 07/22/2020] [Accepted: 07/23/2020] [Indexed: 01/09/2023]
Abstract
The jerivá (Syagrus romanzoffiana) and the macaúba (Acrocomia aculeata) are palm trees of the Arecaceae family, widely distributed in tropical and subtropical areas of Latin America, which have a low production cost and high productivity throughout the year. Due to the high content of lipids, their fruits have been used for oil extraction, which generates byproducts such as the pulps and the kernel cakes, a nutritionally rich byproduct that can be added into human food and, may have prebiotic potential. Therefore, the objective of this work was to characterize and evaluate the prebiotic potential of jerivá pulp (JP), macaúba pulp (MP), jerivá kernel cake (JC) and macaúba kernel cake (MC). For this, the fruits characterization was carried out through proximate composition, phenolic compounds content, and antioxidant activity, besides evaluating the antimicrobial and fermentative capacity of Bifidobacterium lactis, Lactobacillus casei, and Lactobacillus acidophilus against Escherichia coli. Jerivá and macaúba pulps and kernel cakes presented high levels of dietary fiber (20.45% JP, 37.87% JC, 19.95% MP and 35.81% MC) and high antioxidant activity, especially JP, which also showed the high values found for ABTS and DPPH (2498.49 µMTrolox·g-1 fruit and 96.97 g fruit·g-1 DPPH, respectively), has a high total phenolic content (850.62 mg GAE·100 g-1). Also, JP promoted a better growth of probiotic strains and a more relevant pH reduction when compared to the commercial prebiotic FOS. However, MP, JC, and MC were also able to favor the growth of the strains. Probiotic microorganisms were able to use JP, MP, JC, and MC and produced short-chain fatty acids such as lactic, propionic, butyric, and acetic acid, capable of promoting health benefits. Therefore, the byproducts from jerivá and macaúba oil extraction have characteristics that indicate their prebiotic potential, and maybe interesting components to increase the nutritional value of foods.
Collapse
Affiliation(s)
- Amanda Cristina Andrade
- Lavras Federal University, Department of Nutrition, Federal University of Lavras, University Campus, Post Office Box 3037, 37200-900 Lavras, Minas Gerais, Brazil
| | - Júlia Fernanda Urbano Marinho
- Lavras Federal University, Department of Nutrition, Federal University of Lavras, University Campus, Post Office Box 3037, 37200-900 Lavras, Minas Gerais, Brazil
| | - Angélica Cristina de Souza
- Lavras Federal University, Department of Biology, Federal University of Lavras, University Campus, Post Office Box 3037, 37200-900 Lavras, Minas Gerais, Brazil
| | - Talita de Sousa Tavares
- Lavras Federal University, Department of Chemistry, Federal University of Lavras, University Campus, Post Office Box 3037, 37200-900 Lavras, Minas Gerais, Brazil
| | - Disney Ribeiro Dias
- Lavras Federal University, Department of Food Science, Federal University of Lavras, University Campus, Post Office Box 3037, 37200-900 Lavras, Minas Gerais, Brazil
| | - Rosane Freitas Schwan
- Lavras Federal University, Department of Biology, Federal University of Lavras, University Campus, Post Office Box 3037, 37200-900 Lavras, Minas Gerais, Brazil
| | - Cleiton Antônio Nunes
- Lavras Federal University, Department of Food Science, Federal University of Lavras, University Campus, Post Office Box 3037, 37200-900 Lavras, Minas Gerais, Brazil.
| | - Sabrina Carvalho Bastos
- Lavras Federal University, Department of Nutrition, Federal University of Lavras, University Campus, Post Office Box 3037, 37200-900 Lavras, Minas Gerais, Brazil
| |
Collapse
|