1
|
Yao Z, Xie T, Deng H, Xiao S, Yang T. Directed Evolution of Microbial Communities in Fermented Foods: Strategies, Mechanisms, and Challenges. Foods 2025; 14:216. [PMID: 39856881 PMCID: PMC11764801 DOI: 10.3390/foods14020216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/21/2024] [Accepted: 01/10/2025] [Indexed: 01/27/2025] Open
Abstract
Directed Evolution of Microbial Communities (DEMC) offers a promising approach to enhance the functional attributes of microbial consortia in fermented foods by mimicking natural selection processes. This review details the application of DEMC in fermented foods, focusing on optimizing community traits to improve both fermentation efficiency and the sensory quality of the final products. We outline the core techniques used in DEMC, including the strategic construction of initial microbial communities, the systematic introduction of stress factors to induce desirable traits, and the use of artificial selection to cultivate superior communities. Additionally, we explore the integration of genomic tools and dynamic community analysis to understand and guide the evolutionary trajectories of these communities. While DEMC shows substantial potential for refining fermented food products, it faces challenges such as maintaining genetic diversity and functional stability of the communities. Looking ahead, the integration of advanced omics technologies and computational modeling is anticipated to significantly enhance the predictability and control of microbial community evolution in food fermentation processes. By systematically improving the selection and management of microbial traits, DEMC serves as a crucial tool for enhancing the quality and consistency of fermented foods, directly contributing to more robust and efficient food production systems.
Collapse
Affiliation(s)
| | | | | | | | - Tao Yang
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| |
Collapse
|
2
|
Pan T, Li M, Guo J, Zhao D, Liu X, Huang H, Wang N, Yu S, Guan J, Liu M, Zhang S, Wang C, Yang G. Bacillus safensis from Sauerkraut Alleviates Acute Lung Injury Induced by Methicillin-Resistant Staphylococcus aureus through the Regulation of M2 Macrophage Polarization via Its Metabolite Esculin. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:409-424. [PMID: 39723899 DOI: 10.1021/acs.jafc.4c05508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Sauerkraut contains various fermentative microorganisms that produce active metabolites, enhancing immunity and resistance to infections. However, its effects on methicillin-resistant Staphylococcus aureus (MRSA)-induced acute lung injury (ALI) remain unclear. Using RAW264.7 cells and a mouse model, we demonstrated that Bacillus safensis SK14 (BS SK14), an understudied fermentative bacterium, has an immunomodulatory effect on MRSA-induced ALI. BS SK14 significantly reduced the inflammatory responses. Supplementation with live BS SK14 or its culture supernatant increased survival rates, reduced lung damage, and attenuated inflammation in ALI model mice. LC-MS/MS analysis identified esculin as the key metabolite responsible for these effects. BS SK14 produces esculin via the gut-lung axis, inhibiting the TLR2-MyD88-NF-κB pathway, reducing Keap1 levels, and activating the Nrf2-ARE pathway. This decreased MRSA-induced M1 polarization and increased M2 polarization, enhancing antioxidant and anti-inflammatory activities in mice. Collectively, these results reveal that BS SK14 and its metabolite esculin exert therapeutic effects on MRSA-induced ALI through a multifactorial strategy.
Collapse
Affiliation(s)
- Tianxu Pan
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, Jilin 130018, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, and Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, Jilin 130018, China
- Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, Jilin 130018, China
| | - Minghan Li
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, Jilin 130018, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, and Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, Jilin 130018, China
- Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, Jilin 130018, China
| | - Jialin Guo
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, Jilin 130018, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, and Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, Jilin 130018, China
- Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, Jilin 130018, China
| | - Dongyu Zhao
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, Jilin 130018, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, and Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, Jilin 130018, China
- Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, Jilin 130018, China
| | - Xin Liu
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, Jilin 130018, China
| | - Haibin Huang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, Jilin 130018, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, and Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, Jilin 130018, China
- Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, Jilin 130018, China
| | - Nan Wang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, Jilin 130018, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, and Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, Jilin 130018, China
- Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, Jilin 130018, China
| | - Shuyuan Yu
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, Jilin 130018, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, and Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, Jilin 130018, China
- Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, Jilin 130018, China
| | - Jiayao Guan
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, Jilin 130018, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, and Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, Jilin 130018, China
- Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, Jilin 130018, China
| | - Mingxiao Liu
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, Jilin 130018, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, and Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, Jilin 130018, China
- Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, Jilin 130018, China
| | - Shumin Zhang
- Jilin Provincial Engineering Research Center of Animal Probiotics, and Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, Jilin 130018, China
- Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, Jilin 130018, China
| | - Chunfeng Wang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, Jilin 130018, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, and Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, Jilin 130018, China
- Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, Jilin 130018, China
| | - Guilian Yang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, Jilin 130018, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, and Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, Jilin 130018, China
- Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, Jilin 130018, China
| |
Collapse
|
3
|
Utama GL, Sahab NRM, Nurmilah S, Yarlina VP, Subroto E, Balia RL. Unveiling microbial dynamics in terasi spontaneous fermentation: Insights into glutamate and GABA production. Curr Res Food Sci 2024; 10:100950. [PMID: 39760015 PMCID: PMC11699049 DOI: 10.1016/j.crfs.2024.100950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 12/03/2024] [Accepted: 12/07/2024] [Indexed: 01/07/2025] Open
Abstract
Terasi, a traditional Indonesian seafood product made from shrimp, undergoes fermentation facilitated by a consortium of microorganisms, including Lactic Acid Bacteria (LAB) and yeast, which contribute to its distinctive umami flavor. This study investigates the microbial dynamics and production of key metabolites, including γ-aminobutyric acid (GABA), during terasi fermentation. Total Plate Count (TPC) and High-Performance Liquid Chromatography (HPLC) were used to monitor changes in glutamate and GABA levels, with glutamate increasing from 105.18 mg/mL on day 3-139.19 mg/mL on day 14, and GABA rising from 90.49 mg/mL to 106.98 mg/mL over the same period. Metagenomic analysis using high-throughput sequencing of bacterial 16 S rRNA identified Firmicutes, Proteobacteria, Actinobacteria, and Bacteroidota as dominant phyla. While LAB populations remained relatively stable, yeast became detectable from day 4. Notably, core bacterial genera such as Vibrio, Macrococcus, Staphylococcus, Exiguobacterium, Jeotgalicoccus, Prevotella, Salinicoccus, Bacillus, Pseudarthrobacter, and Vagococcus were highly abundant and played significant roles in GABA production, likely due to their glutamate decarboxylase activity. These findings reveal a clear correlation between microbial succession and metabolite production, offering valuable insights into the fermentation process of terasi. This study enhances the understanding of traditional food fermentation and presents opportunities to optimize beneficial compounds in terasi products.
Collapse
Affiliation(s)
- Gemilang Lara Utama
- Faculty of Agro-Industrial Technology, Universitas Padjadjaran, Sumedang, Indonesia
- Centre for Environment and Sustainability Science, Universitas Padjadjaran, Bandung, Indonesia
| | | | - Siti Nurmilah
- Faculty of Agro-Industrial Technology, Universitas Padjadjaran, Sumedang, Indonesia
| | - Vira Putri Yarlina
- Faculty of Agro-Industrial Technology, Universitas Padjadjaran, Sumedang, Indonesia
| | - Edy Subroto
- Faculty of Agro-Industrial Technology, Universitas Padjadjaran, Sumedang, Indonesia
| | - Roostita L. Balia
- Veterinary Study Program, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| |
Collapse
|
4
|
Zhang L, Zhang Z, Huang J, Zhou R, Wu C. Revealing salt concentration for microbial balance and metabolite enrichment in secondary fortified fermented soy sauce: A multi-omics perspective. Food Chem X 2024; 23:101722. [PMID: 39229615 PMCID: PMC11369399 DOI: 10.1016/j.fochx.2024.101722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/05/2024] [Accepted: 08/07/2024] [Indexed: 09/05/2024] Open
Abstract
This study examined the impact of varying salt concentrations on microbiota, physicochemical properties, and metabolites in a secondary fortified fermentation process using multi-omics techniques. It aimed to determine the influence of salt stress on microbiota shifts and metabolic activities. The findings demonstrated that moderate salt reduction (MS) was found to enhance moromi's flavor and quality, while mitigating the negative effects of excessive low salt (LS). MS samples had 1.22, 1.13, and 2.92 times more amino acid nitrogen (AAN), non-volatiles, and volatiles, respectively, than high salt (HS) samples. In contrast, lactic acid and biogenic amines in LS samples were 1.56 g/100 g and 4115.11 mg/kg, respectively, decreasing to 0.15 g/100 g and 176.76 mg/kg in MS samples. Additionally, the contents of ethanol and small peptides increased in MS due to the growth of specific functional microorganisms such as Staphylococcus gallinarum, Weissella confusa, and Zygosaccharomyces rouxii, while food-borne pathogens were inhibited. Network analysis revealed that the core microbial interactions were enhanced in MS samples, promoting a balanced fermentation environment. Redundancy analysis (RDA) and correlation analyses underscored that the physicochemical properties significantly impacted bacterial community structure and the correlations between key microbes and flavor compounds. These findings provided a theoretical foundation for developing innovative reduced-salt fermentation techniques, contributing to the sustainable production of high-quality soy sauce.
Collapse
Affiliation(s)
- Lin Zhang
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Zhu Zhang
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Jun Huang
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Rongqing Zhou
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Chongde Wu
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
5
|
Tang J, Wu X, Lv D, Huang S, Zhang Y, Kong F. Effect of salt concentration on the quality and microbial community during pickled peppers fermentation. Food Chem X 2024; 23:101594. [PMID: 39040148 PMCID: PMC11261264 DOI: 10.1016/j.fochx.2024.101594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/17/2024] [Accepted: 06/24/2024] [Indexed: 07/24/2024] Open
Abstract
This work aimed to investigate the effect of salt concentration on the quality and microbial community of pickled peppers during fermentation, and the cross-correlation between microorganisms and quality was also revealed. The results showed that 9 volatile flavor compounds were unique to the low salt concentration group (D group), which also contained higher content of FAA, lactic acid and acetic acid than high salt concentration group (G group). Meanwhile, the samples of D2 group have a better texture properties. Firmicutes, Proteobacteria, Ascomycota, Lactobacillus, Pectobacterium, and Pseudomonas were detected as the main microbial community during the fermentation with different salt concentrations. Furthermore, the correlations analysis results indicated that the salt concentration has a significant effect on the microbial community of pickled peppers (p < 0.001), and Pediococcus, Lactobacillus, Cedecca, Issatchenkia, Pichia, Kazachstania, and Hanseniaspora were significantly correlated with flavors, which played crucial roles in the unique flavor formation of pickled peppers.
Collapse
Affiliation(s)
- Jianbo Tang
- Guizhou Food Processing Institute, Guizhou, Academy of Agricultural Sciences, Guiyang, 550006, China
- Guizhou Key Laboratory of Agricultural Biotechnology, Guiyang, 550006, China
| | - Xiaomeng Wu
- School of Food Science and Technology, Dalian Polytechnic University, Liaoning, 116000, China
| | - Du Lv
- Guizhou Food Processing Institute, Guizhou, Academy of Agricultural Sciences, Guiyang, 550006, China
- Guizhou Key Laboratory of Agricultural Biotechnology, Guiyang, 550006, China
| | - Shan Huang
- Guizhou Food Processing Institute, Guizhou, Academy of Agricultural Sciences, Guiyang, 550006, China
- Guizhou Key Laboratory of Agricultural Biotechnology, Guiyang, 550006, China
| | - Yu Zhang
- Guizhou Food Processing Institute, Guizhou, Academy of Agricultural Sciences, Guiyang, 550006, China
- Guizhou Key Laboratory of Agricultural Biotechnology, Guiyang, 550006, China
| | - Fanhua Kong
- School of Food Science and Technology, Dalian Polytechnic University, Liaoning, 116000, China
| |
Collapse
|
6
|
Li X, Wu X, Han Y, Wang C, Li L, Zhang X. Effects of Various Flavors of Baijiu on the Microbial Communities, Metabolic Pathways, and Flavor Structures of Dongbei Suancai. Foods 2024; 13:2015. [PMID: 38998520 PMCID: PMC11241251 DOI: 10.3390/foods13132015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/19/2024] [Accepted: 06/24/2024] [Indexed: 07/14/2024] Open
Abstract
This study aimed to assess the effects of Chinese Baijiu with different flavors as supplementary material on microbial communities and flavor formation during inoculated fermentation of Chinese Dongbei Suancai. The results showed that the addition of Fen flavor Baijiu significantly increased the relative abundance of Candida, Luzhou flavor Baijiu increased the relative abundance of Pedobacter and Hannaella, while Maotai flavor Baijiu increased the Chryseobacterium and Kazachstania. A total of 226 volatile metabolites were detected in Suancai fermented when adding different flavors of Baijiu. Furthermore, the significantly upregulated metabolites (p < 0.01) of Suancai after adding Baijiu increased by 328.57%, whereas the significantly downregulated metabolites decreased by 74.60%. Simultaneously, the addition of Baijiu promoted the synthesis and decomposition of amino acids and short-chain fatty acids in the early and middle stages of fermentation. Further, Maotai flavor Baijiu improved the diversification of metabolic pathways in the late stage of Suancai fermentation. The E-nose response showed that sulfur-organic, broad-alcohol, sulfur-chlor was the principal differential flavor in Suancai caused by adding Baijiu with different flavors. Simultaneously, Fen flavor Baijiu and Luzhou flavor Baijiu accelerated the formation of the Suancai flavor. These results indicated that Baijiu with different flavors had significant effects on the flavor formation of inoculated fermented Suancai.
Collapse
Affiliation(s)
- Xiao Li
- Institute of Food and Processing, Liaoning Academy of Agricultural Sciences, Shenyang 110161, China
| | - Xingzhuang Wu
- Institute of Food and Processing, Liaoning Academy of Agricultural Sciences, Shenyang 110161, China
| | - Yanqiu Han
- Institute of Food and Processing, Liaoning Academy of Agricultural Sciences, Shenyang 110161, China
| | - Chen Wang
- Institute of Food and Processing, Liaoning Academy of Agricultural Sciences, Shenyang 110161, China
| | - Lifeng Li
- Institute of Food and Processing, Liaoning Academy of Agricultural Sciences, Shenyang 110161, China
| | - Xiaoli Zhang
- Institute of Food and Processing, Liaoning Academy of Agricultural Sciences, Shenyang 110161, China
| |
Collapse
|
7
|
Shi J, Zhang G, Ke W, Pan Y, Hou M, Chang C, Sa D, Lv M, Liu Y, Lu Q. Effect of endogenous sodium and potassium ions in plants on the quality of alfalfa silage and bacterial community stability during fermentation. FRONTIERS IN PLANT SCIENCE 2023; 14:1295114. [PMID: 38205017 PMCID: PMC10777314 DOI: 10.3389/fpls.2023.1295114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/20/2023] [Indexed: 01/12/2024]
Abstract
This study investigated the impact of endogenous sodium and potassium ions in plants on the quality of alfalfa silage, as well as the stability of bacterial communities during fermentation. Silage was produced from the fermented alfalfa, and the chemical composition, fermentation characteristics, and microbiome were analyzed to understand their interplay and impact on silage fermentation quality. The alfalfa was cultivated under salt stress with the following: (a) soil content of <1‰ (CK); (b) 1‰-2‰ (LP); (c) 2‰-3‰ (MP); (d) 3‰-4‰ (HP). The results revealed that the pH of silage was negatively correlated with the lactic acid content. With the increase of lactic acid (LA) content increased (26.3-51.0 g/kg DM), the pH value decreased (4.9-5.3). With the increase of salt stress, the content of Na+ in silage increased (2.2-5.4 g/kg DM). The presence of endogenous Na+ and K+ ions in plants significantly affected the quality of alfalfa silage and the dynamics of bacterial communities during fermentation. Increased salt stress led to changes in microbial composition, with Lactococcus and Pantoea showing a gradual increase in abundance, especially under high salt stress. Low pH inhibited the growth of certain bacterial genera, such as Pantoea and Pediococcus. The abundance of Escherichia-Shigella and Comamonas negatively correlated with crude protein (CP) content, while Enterococcus and Lactococcus exhibited a positive correlation. Furthermore, the accumulation of endogenous Na+ in alfalfa under salt stress suppressed bacterial proliferation, thereby reducing protein degradation during fermentation. The pH of the silage was high, and the LA content was also high. Silages from alfalfa under higher salt stress had higher Na+ content. The alpha diversity of bacterial communities in alfalfa silages showed distinct patterns. Desirable genera like Lactococcus and Lactobacillus predominated in silages produced from alfalfa under salt stress, resulting in better fermentation quality.
Collapse
Affiliation(s)
- Jinhong Shi
- College of Forestry and Prataculture, Ningxia University, Yinchuan, China
| | - Guijie Zhang
- College of Forestry and Prataculture, Ningxia University, Yinchuan, China
| | - Wencan Ke
- College of Forestry and Prataculture, Ningxia University, Yinchuan, China
| | - Yongxiang Pan
- College of Forestry and Prataculture, Ningxia University, Yinchuan, China
| | - Meiling Hou
- College of Life Science, Baicheng Normal University, Baicheng, China
| | - Chun Chang
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, China
| | - Duowen Sa
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, China
| | - Mingju Lv
- Inner Mongolia Agriculture and Animal Husbandry Extension Center, Hohhot, China
| | - Yinghao Liu
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, China
| | - Qiang Lu
- College of Forestry and Prataculture, Ningxia University, Yinchuan, China
| |
Collapse
|
8
|
Tan X, Cui F, Wang D, Lv X, Li X, Li J. Fermented Vegetables: Health Benefits, Defects, and Current Technological Solutions. Foods 2023; 13:38. [PMID: 38201066 PMCID: PMC10777956 DOI: 10.3390/foods13010038] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/17/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
This review summarizes current studies on fermented vegetables, analyzing the changes in nutritional components during pickling, the health benefits of fermented vegetables, and their safety concerns. Additionally, the review provides an overview of the applications of emergent non-thermal technologies for addressing these safety concerns during the production and processing of fermented vegetables. It was found that vitamin C would commonly be lost, the soluble protein would degrade into free amino acids, new nutrient compositions would be produced, and the flavor correlated with the chemical changes. These changes would be influenced by the variety/location of raw materials, the original bacterial population, starter cultures, fermentation conditions, seasoning additions, and post-fermentation processing. Consuming fermented vegetables benefits human health, including antibacterial effects, regulating intestinal bacterial populations, and promoting health (anti-cancer effects, anti-diabetes effects, and immune regulation). However, fermented vegetables have chemical and biological safety concerns, such as biogenic amines and the formation of nitrites, as well as the existence of pathogenic microorganisms. To reduce hazardous components and control the quality of fermented vegetables, unique starter cultures, high pressure, ultrasound, cold plasma, photodynamic, and other technologies can be used to solve these problems.
Collapse
Affiliation(s)
- Xiqian Tan
- College of Food Science and Technology, Bohai University, Jinzhou 121013, China (X.L.); (J.L.)
- National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou 121013, China
| | - Fangchao Cui
- College of Food Science and Technology, Bohai University, Jinzhou 121013, China (X.L.); (J.L.)
- National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou 121013, China
| | - Dangfeng Wang
- College of Food Science and Technology, Bohai University, Jinzhou 121013, China (X.L.); (J.L.)
- National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou 121013, China
| | - Xinran Lv
- College of Food Science and Technology, Bohai University, Jinzhou 121013, China (X.L.); (J.L.)
- National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou 121013, China
| | - Xuepeng Li
- College of Food Science and Technology, Bohai University, Jinzhou 121013, China (X.L.); (J.L.)
- National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou 121013, China
| | - Jianrong Li
- College of Food Science and Technology, Bohai University, Jinzhou 121013, China (X.L.); (J.L.)
- National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou 121013, China
| |
Collapse
|
9
|
Li X, Han Y, Wu X, Li L, Zhang R. Effects of inoculation with a binary mixture of Lactobacillus plantarum and Leuconostoc citreum on cell wall components of Chinese Dongbei suancai. Food Res Int 2023; 173:113458. [PMID: 37803783 DOI: 10.1016/j.foodres.2023.113458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 09/08/2023] [Accepted: 09/10/2023] [Indexed: 10/08/2023]
Abstract
This study aimed to investigate the effects of inoculation with a starter culture consisting of Lactobacillus plantarum LNJ002 and Leuconostoc citreum BNCC 194779 on microbial community, cell wall polysaccharide characteristics, cell wall degrading enzymes, and microstructure during Chinese Dongbei suancai fermentation. The results showed that Lactobacillus (98.75%) was the dominant genus during fermentation of Dongbei suancai. The principal coordinates analysis (PCoA) suggested that inoculation with Lactobacillus promoted the stability of microbial community structure during Chinese Dongbei suancai fermentation. Besides, the lower content in cellulose (80.28 ± 2.61 ug/mg) and pectin (53.56 ± 2.67 ug/mg) observed in the inoculated fermented suancai. Simultaneously, the inoculated fermented suancai had the most decreases in SR 1 (70.35%) and SR 3 (72.06%) and the most increase in SR 2 (950%), which suggested that inoculation intensified the decrease of the linearity and the RG-1 branching degree of pectin. The contents of polygalacturonase (PG) and pectin methylesterase (PME) in inoculated fermented suancai were 21.06% and 21.86% higher than those in naturally fermented suancai. In addition, the surface of suancai leaves gradually changed from smooth to rough during fermentation, which was accelerated by inoculation. Moreover, Lactobacillus, Aspergillus, Wallemia and Mucor were all negatively correlated with cellulose and GalA. These results revealed that inoculation promoted the formation of dominant genus structure during suancai fermentation, changed the effects of enzymes on the degradation of cell wall components, thereby accelerated the formation of Chinese Dongbei suancai texture.
Collapse
Affiliation(s)
- Xiao Li
- Institute of Food and Processing, Liaoning Academy of Agricultural Sciences, Shenyang 110161, China.
| | - Yanqiu Han
- Institute of Food and Processing, Liaoning Academy of Agricultural Sciences, Shenyang 110161, China
| | - Xingzhuang Wu
- Institute of Food and Processing, Liaoning Academy of Agricultural Sciences, Shenyang 110161, China
| | - Lifeng Li
- Institute of Food and Processing, Liaoning Academy of Agricultural Sciences, Shenyang 110161, China
| | - Rui Zhang
- Institute of Food and Processing, Liaoning Academy of Agricultural Sciences, Shenyang 110161, China
| |
Collapse
|
10
|
Wang J, Sui Y, Lu J, Dong Z, Liu H, Kong B, Chen Q. Exploring potential correlations between bacterial communities, organic acids, and volatile metabolites of traditional fermented sauerkraut collected from different regions of Heilongjiang Province in Northeast China. Food Chem X 2023; 19:100840. [PMID: 37680758 PMCID: PMC10480550 DOI: 10.1016/j.fochx.2023.100840] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/31/2023] [Accepted: 08/15/2023] [Indexed: 09/09/2023] Open
Abstract
In this study, the bacterial communities and flavor metabolites of 27 traditional naturally fermented sauerkraut samples collected from nine regions of Heilongjiang Province in Northeast China were investigated. The dominant genera were Lactobacillus, Pseudomonas, Alcaligenes, Arcobacter, Pseudarcobacter, Lactococcus, Comamonas, Pediococcus, Prevotella, and Insolitispirillum. A total of 148 volatile compounds were detected in seven categories; esters and acids were the most abundant volatiles. Additionally, the highest content (15.96 mg/g) of lactic acid was detected in YC1. Acetic acid, oleic acid, palmitic acid, elaidic acid, and dehydroacetic acid were the key differential volatile compounds, which may be related to the bacterial communities. Spearman's correlation analysis revealed that Lactococcus and Lactobacillus were significantly positively correlated with flavor metabolites, suggesting that they may play a more significant role in flavor formation. The results of this study can help in the development of better quality of fermented vegetables.
Collapse
Affiliation(s)
- Jiawang Wang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Yumeng Sui
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Jiasheng Lu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Zhiming Dong
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Haotian Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Baohua Kong
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Qian Chen
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| |
Collapse
|
11
|
Li H, Guan H, Zhang X, Xing S, Liu W, Kim IC, Gong H. The Impact of Different Cooking Methods on the Flavor Profile of Fermented Chinese Spicy Cabbage. Molecules 2023; 28:6539. [PMID: 37764317 PMCID: PMC10535354 DOI: 10.3390/molecules28186539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/01/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Chinese spicy cabbage (CSC) is a common traditional fermented vegetable mainly made of Chinese cabbage. In addition to eating raw, boiling and stir-frying are the most common cooking methods for CSC. To identify the impacts of boiling or stir-frying on the quality of CSC, the physicochemical properties, flavor compounds, and sensory properties of CSC were analyzed. A total of 47 volatile flavor compounds (VFCs) were detected by gas chromatography-mass spectrometry. Sulfide was determined as the main flavor compound of CSC, mainly contributed by cabbage, garlic, and onion odors. The content of sulfide decreased significantly after cooking. Nonanal, geranyl acetate, and linalool were newly generated after boiling with odor activity value (OAV) > 1, and contributed fatty, sweet, fruity, and floral odors to BL-CSC. 1-Octen-3-one, 1-octen-3-ol, octanal, nonanal, and (E)-2-nonenal were newly generated after stir-frying with OAV > 1, and contributed mushroom, fatty, and green odors to SF-CSC. Diallyl trisulfide, nonanal, (E)-β-ionone, β-sesquiphellandrene, and (E)-2-decenal were considered as the potential key aroma compounds (KACs) to distinguish the CSCs after different heat treatment. After cooking, the total titratable acidity of CSC increased and the sensory properties changed significantly. This study provides valuable information and guidance on the sensory and flavor changes of thermal processing fermented vegetables.
Collapse
Affiliation(s)
- Huamin Li
- School of Food Engineering, Ludong University, Yantai 264025, China
- Yantai Key Laboratory of Nanoscience and Technology for Prepared Food, Ludong University, Yantai 264025, China
- Yantai Engineering Research Center of Green Food Processing and Quality Control, Ludong University, Yantai 264025, China
| | - Hui Guan
- School of Food Engineering, Ludong University, Yantai 264025, China
| | - Xiru Zhang
- School of Food Engineering, Ludong University, Yantai 264025, China
| | - Shaohua Xing
- School of Food Engineering, Ludong University, Yantai 264025, China
| | - Wenli Liu
- School of Food Engineering, Ludong University, Yantai 264025, China
- Department of Food Engineering, Mokpo National University, Jeonnam 534729, Republic of Korea
| | - In-Cheol Kim
- Department of Food Engineering, Mokpo National University, Jeonnam 534729, Republic of Korea
| | - Hansheng Gong
- School of Food Engineering, Ludong University, Yantai 264025, China
- Yantai Key Laboratory of Nanoscience and Technology for Prepared Food, Ludong University, Yantai 264025, China
- Yantai Engineering Research Center of Green Food Processing and Quality Control, Ludong University, Yantai 264025, China
| |
Collapse
|
12
|
Lingjuan J, Yu C, Zeyuan D, Bing Z, Hongyan L. Evaluation and comparison of physicochemical properties, volatile substances, and microbial communities of leaf mustard (Brassica juncea var. multiceps) under natural and inoculated fermentation. J Food Sci 2023. [PMID: 37421355 DOI: 10.1111/1750-3841.16687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 06/07/2023] [Accepted: 06/09/2023] [Indexed: 07/10/2023]
Abstract
Due to the uncontrolled fermentation process and unstable quality of naturally fermented leaf mustard, inoculated fermentation is receiving more attention. Here, the physicochemical properties, volatile compounds, and microbial community in leaf mustard under natural fermentation (NF) and inoculated fermentation (IF) were analyzed and compared. The contents of total acid, crude fiber, and nitrite of leaf mustard were measured. Headspace-solid phase microextraction-gas chromatography-mass spectrometry and orthogonal projection on latent structure-discriminant analysis were used to analyze the differences of volatile compounds in NF and IF leaf mustard. Moreover, Illumina MiSeq high-throughput sequencing technology was employed to reveal the composition of microbiota. The results showed that the nitrite content in leaf mustard after IF (3.69 mg/kg) was significantly lower than that after NF (4.43 mg/kg). A total of 31 and 25 kinds of volatile components were identified in IF and NF, respectively. Among the detected compounds, 11 compounds caused the differences between IF and NF leaf mustard. The results of inter-group difference analysis showed that there were significant differences in fungal flora between IF and NF samples. Saccharomycetes, Kazachstania, and Ascomycota were the landmark microorganisms in IF leaf mustard and the landmark microorganisms in NF were Mortierellomycota, Sordariomycetes, and Eurotiomycetes. The abundance of probiotics (such as Lactobacillus) in IF leaf mustard (51.22%) was higher than that in NF (35.20%) and the abundance of harmful molds (such as Mortierella and Aspergillus) was opposite. Therefore, IF leaf mustard showed the potential to reduce the content of nitrite and harmful molds and increase the beneficial volatile compounds and probiotics. PRACTICAL APPLICATION: Leaf mustard of inoculated fermentation (IF) showed better fermented characteristics than natural fermentation in terms of lower nitrite content, greater beneficial volatile substances, and better potential for increasing probiotics and reducing harmful molds. These results provided a theoretical basis for IF leaf mustard and contributed to the industrial production of fermented leaf mustard.
Collapse
Affiliation(s)
- Jiang Lingjuan
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China
| | - Cao Yu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China
| | - Deng Zeyuan
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China
| | - Zhang Bing
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China
| | - Li Hongyan
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
13
|
Fiorino GM, Tlais AZA, Losito I, Filannino P, Gobbetti M, Di Cagno R. Triacylglycerols hydrolysis and hydroxy- and epoxy-fatty acids release during lactic fermentation of plant matrices: An extensive study showing inter- and intra-species capabilities of lactic acid bacteria. Food Chem 2023; 412:135552. [PMID: 36716627 DOI: 10.1016/j.foodchem.2023.135552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 01/16/2023] [Accepted: 01/21/2023] [Indexed: 01/24/2023]
Abstract
This study aims to show that lactic fermentation by selected starters can enrich plant matrices with hydroxy- and oxo-fatty acids. The behavior of 31 lactic acid bacteria strains was investigated during the fermentation of Persian walnut, which was selected as a model growth substrate due to its inherent lipids content. The content of the following free fatty acids increased in the majority of the fermented walnut samples: linoleic, α-linolenic, palmitic, and oleic acids. The increase of diacylglycerols and, especially, monoacylglycerols levels in fermented walnuts confirmed that strain-specific bacterial lipolytic activities hydrolyzed triacylglycerols during walnut fermentation. Twelve hydroxylated or epoxidized derivatives arising from oleic, linoleic, and linolenic fatty acids, in five groups of isomeric compounds, were also identified. In addition to the better-known lactobacilli, certain strains of Weissella cibaria, Leuconostoc mesenteroides, and Enterococcus faecalis emerged for their lipolytic activities and ability to release hydroxy- and epoxy-fatty acids during walnut fermentation.
Collapse
Affiliation(s)
| | | | - Ilario Losito
- Department of Chemistry and SMART Inter-department Research Center, University of Bari Aldo Moro, 70126 Bari, Italy
| | - Pasquale Filannino
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, 70126 Bari, Italy.
| | - Marco Gobbetti
- Faculty of Sciences and Technology, Libera Università di Bolzano, 39100 Bolzano, Italy
| | - Raffaella Di Cagno
- Faculty of Sciences and Technology, Libera Università di Bolzano, 39100 Bolzano, Italy
| |
Collapse
|
14
|
Li X, Gao Y, Han Y, Zhang R, Wang C, Wu X. Microbial communities and metabolite profiles during the fermentation of Chinese Dongbei suancai with Chinese baijiu as supplementary material. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:3521-3530. [PMID: 36799142 DOI: 10.1002/jsfa.12510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 01/11/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND In industrial production of suancai, baijiu is commonly used to inhibit the spoilage bacteria and enhance the flavor. However, the effects of baijiu on the microbial diversity and metabolic pathways of suancai are rarely reported in the literature. This study aimed to explore the microbial community, its predicted functional roles, and the metabolites formed during fermentation of Chinese Dongbei suancai fermented using a mixed starter with Chinese baijiu as supplementary material. RESULTS Results showed that Lactobacillus, Enterobacter, and Leuconostoc were the major bacterial genera in the Dongbei suancai fermented by adding baijiu. Linear discriminant analysis effect size indicated that Leuconostoc was the major biomarker in the early stage of fermentation, whereas Lactococcus, Weissella, and Lactobacillus plantarum were biomarkers in the middle and later stages of fermentation. A total of 638 metabolites were detected in suancai fermented by adding baijiu. However, the principal component analysis showed that baijiu significantly affected the metabolites of suancai in the early and later stages of fermentation. Furthermore, 58, 22, and 26 significantly differential metabolites (P < 0.01) were found on day 0, day 2, and day 30 of fermentation respectively. Moreover, Lactobacillus, Lactococcus, and Enterobacter had positive correlations with amino acids, nucleotides, organic acids, alcohols, and esters. Functional analysis implied that carbohydrate, amino acid, energy, and nucleotide metabolism were the major determinants of the characteristics of suancai fermented with baijiu as supplementary material. CONCLUSION Baijiu changed the metabolites of inoculated fermented Dongbei suancai. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiao Li
- Institute of Food and Processing, Liaoning Academy of Agricultural Sciences, Shenyang, China
| | - Ya Gao
- Institute of Food and Processing, Liaoning Academy of Agricultural Sciences, Shenyang, China
| | - Yanqiu Han
- Institute of Food and Processing, Liaoning Academy of Agricultural Sciences, Shenyang, China
| | - Rui Zhang
- Institute of Food and Processing, Liaoning Academy of Agricultural Sciences, Shenyang, China
| | - Chen Wang
- Institute of Food and Processing, Liaoning Academy of Agricultural Sciences, Shenyang, China
| | - Xingzhuang Wu
- Institute of Food and Processing, Liaoning Academy of Agricultural Sciences, Shenyang, China
| |
Collapse
|
15
|
Zhang S, Zhang Y, Wu L, Zhang L, Wang S. Characterization of microbiota of naturally fermented sauerkraut by high-throughput sequencing. Food Sci Biotechnol 2023; 32:855-862. [PMID: 37041807 PMCID: PMC10082884 DOI: 10.1007/s10068-022-01221-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/28/2022] [Accepted: 12/01/2022] [Indexed: 12/24/2022] Open
Abstract
Sauerkraut is a traditionally fermented cabbage, with a unique taste and beneficial properties, in northeast China. The taste and flavor of sauerkraut vary from region to region, owing to the differences in microorganisms. Illumina MiSeq sequencing was used to identify and quantify the microbial community composition of the broth and leaves of the naturally fermented Suan-cai collected from northeast China. The alpha and beta diversity of the samples from three areas in Heilongjiang province shown that the complexity of bacterial diversity of the three samples was C, A and B in turn. The Lactobacillus widely existed in fermented sauerkraut, of these, Latilactobacillus sakei, Loigolactobacillus coryniformis subsp. torquens, Lactiplantibacillus plantarum subsp. plantarum, and Secundilactobacillus malefermentans were more abundant in the sauerkraut leaves than in fermentation broth. Other genera of lactic acid bacteria Pediococcus and Leuconostoc, which have potential probiotic properties, were also present. However, some harmful bacteria such as Arcobacter and Acinetobacter were also detected.
Collapse
Affiliation(s)
- Shuang Zhang
- Food Science College, Northeast Agricultural University, Harbin, 150030 People’s Republic of China
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, 150030 People’s Republic of China
| | - Yichen Zhang
- Food Science College, Northeast Agricultural University, Harbin, 150030 People’s Republic of China
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, 150030 People’s Republic of China
| | - Lihong Wu
- Food Science College, Northeast Agricultural University, Harbin, 150030 People’s Republic of China
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, 150030 People’s Republic of China
| | - Lili Zhang
- Food Science College, Northeast Agricultural University, Harbin, 150030 People’s Republic of China
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, 150030 People’s Republic of China
| | - Song Wang
- Food Science College, Northeast Agricultural University, Harbin, 150030 People’s Republic of China
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, 150030 People’s Republic of China
| |
Collapse
|
16
|
Profiling the composition and metabolic functions of microbial community in pellicle-forming radish paocai. Int J Food Microbiol 2023; 388:110087. [PMID: 36689828 DOI: 10.1016/j.ijfoodmicro.2023.110087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/29/2022] [Accepted: 01/08/2023] [Indexed: 01/15/2023]
Abstract
Pellicle formation is an obvious indicator of spoilage and is followed by a loss of flavor in a variety of fermented vegetables. In this study, the pellicle-forming microorganisms were isolated using culture-dependent approaches, then a comparative analysis between the pellicle-forming (PF) radish paocai and normal fermented paocai in the diversity and function of microbial community was conducted by metagenome sequencing. Based on a pairwise t-test and OPLS-DA analysis, diallyl sulfide, (z)-1-allyl-2-(prop-1-en-1-yl) disulfane, and terpineol were considered to be the main components responsible for the unpleasant flavor of PF paocai. Yarrowia spp., Enterobacter spp., and Pichia spp. were the main pellicle-forming microorganisms. All 17 isolated Enterobacter strains showed pectinase-producing and cellulase-producing abilities, and 3 isolated Pichia strains showed gas-producing capacity. According to LEfSe analysis based on metagenomes, unclassified_g__Citrobacter and Yarrowia lipolytica were the uppermost biomarkers that distinguished the PF paocai from normal paocai. Unclassified_g__Lactobacillus and Lactobacillus plantarum were found to be actively engaged in starch and sucrose metabolism, cysteine and methionine metabolism, galactose metabolism, fructose and mannose metabolism, lysine biosynthesis, fatty acid biosynthesis, and arginine biosynthesis, all of which contributed to the flavor formation of paocai. Combining the results of metagenome sequencing with the data obtained based on the culture-dependent method, we could deduce that the growth of Yarrowia lipolytica first promoted the increase of pH and the formation of pellicle, which provided a suitable niche for the growth of some harmful bacteria such as Enterobacter, Citrobacter, and Serratia. These hazardous bacteria then worked in concert to induce the odorous stench and texture softening of paocai, as well as more pellicle formation.
Collapse
|
17
|
Regulation of the nitrite, biogenic amine and flavor quality of Cantonese pickle by selected lactic acid bacteria. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
|
18
|
Zhao Y, Zhao Z, Gao Y, Yang G, Liu X, Huang R, Liang W, Li S. Assessment of autochthonous lactic acid bacteria as starter culture for improving traditional Chinese Dongbei Suancai fermentation. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
19
|
Effects of Low-Temperature and Low-Salt Fermentation on the Physicochemical Properties and Volatile Flavor Substances of Chinese Kohlrabi Using Gas Chromatography–Ion Mobility Spectrometry. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9020146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
To explore the effect of low-temperature and low-salt fermentation on the volatile flavor substances of Chinese kohlrabi, low-temperature and low-salt fermented Chinese kohlrabi (LSCK) and traditional high-salt fermented Chinese kohlrabi (HSCK) were produced. The physicochemical and texture properties of the two kinds of Chinese kohlrabies were evaluated. Headspace gas chromatography-ion mobility spectrometry (GC-IMS) and electronic nose (E-nose) were used to analyze the volatile flavor substances of the kohlrabi. The results showed that the total acid content significantly decreased (p < 0.05), while protein and reducing sugar contents significantly increased (p < 0.05) by low-temperature and low-salt fermentation. A total of 114 volatile flavor substances were identified. The alcohol, ketone, pyrazine, ether, and nitrile contents in LSCK were significantly higher than those in HSCK (p < 0.05). Moreover, the unpleasant flavor from the 3-methylbutyric acid formation was effectively depressed in LSCK. The principal component analysis (PCA) and orthogonal partial least squares discrimination analysis (OPLS-DA) models established by multivariate statistical analysis significantly distinguished the two types of kohlrabies. Multivariate statistical analysis suggested that 16 volatile flavor substances with VIP >1, including tetrahydrothiophene, ethyl 3-(methylthio)propanoate, 3-methylbutyric acid, hexanenitrile, and 3-methyl-3-buten-1-ol, could be used as potential biomarkers for identifying LSCK and HSCK. The E-nose analysis further demonstrated that there was a significant difference in overall flavor between the LSCK and HSCK. The present study provides support for the development of green processing technology and new low-salt Chinese kohlrabi products.
Collapse
|
20
|
Zhang X, Guan H, Zhao Q, Gong H, Wang D, Wang P, Li H, Liu W. Effect of thermal treatment on the flavor quality of Chinese spicy cabbage. Food Control 2023. [DOI: 10.1016/j.foodcont.2022.109338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
21
|
Zhang S, Xiao Y, Jiang Y, Wang T, Cai S, Hu X, Yi J. Effects of Brines and Containers on Flavor Production of Chinese Pickled Chili Pepper ( Capsicum frutescens L.) during Natural Fermentation. Foods 2022; 12:foods12010101. [PMID: 36613316 PMCID: PMC9818826 DOI: 10.3390/foods12010101] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/13/2022] [Accepted: 12/16/2022] [Indexed: 12/28/2022] Open
Abstract
The effects of (fresh/aged) brine and (pool/jar) containers on the flavor characteristics of pickled chili peppers were investigated based on a multivariate analysis integrated with kinetics modeling. The results showed that the effect of brine on organic acid, sugar, and aroma was more dominant than that of containers, while free amino acids production was more affected by containers than brines. Chili pepper fermented using aged brine exhibited higher acidity (3.71−3.92) and sugar (7.92−8.51 mg/g) than that using fresh brine (respective 3.79−3.96; 6.50−9.25 mg/g). Besides, chili peppers fermented using pool containers showed higher free amino acids content (424.74−478.82 mg/100 g) than using a jar (128.77−242.90 mg/100 g), particularly with aged brine. As for aroma, the number of volatiles in aged brine was higher (88−96) than that in fresh brine (76−80). The contents of the esters, alcohols, and ketones were significantly higher in the aged brine samples than those in fresh brine (p < 0.05), while terpenes in chili pepper fermented using the pool were higher than those using the jar. In general, jar fermentation with aged brine contributed more flavor to pickled chili peppers than other procedures.
Collapse
Affiliation(s)
- Shiyao Zhang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Engineering Research Center for Fruit & Vegetable Products, Kunming 650500, China
| | - Yue Xiao
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Engineering Research Center for Fruit & Vegetable Products, Kunming 650500, China
| | - Yongli Jiang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Engineering Research Center for Fruit & Vegetable Products, Kunming 650500, China
| | - Tao Wang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Engineering Research Center for Fruit & Vegetable Products, Kunming 650500, China
| | - Shengbao Cai
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Engineering Research Center for Fruit & Vegetable Products, Kunming 650500, China
| | - Xiaosong Hu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Engineering Research Center for Fruit & Vegetable Products, Kunming 650500, China
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Junjie Yi
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Engineering Research Center for Fruit & Vegetable Products, Kunming 650500, China
- Correspondence: ; Tel.: +86-15810687441
| |
Collapse
|
22
|
Mu S, Dou L, Ye Y, Chi D, Zhang K. Effects of Household Processing on Residues of the Chiral Fungicide Mandipropamid in Four Common Vegetables. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:15543. [PMID: 36497615 PMCID: PMC9735481 DOI: 10.3390/ijerph192315543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/19/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
The study aimed to detect the content of mandipropamid enantiomers in unprocessed and processed tomato, cucumber, Chinese cabbage, and cowpea samples and assess the health risks to Chinese consumers. Data showed that washing and soaking with an acidic solution reduced the mandipropamid residue from vegetable samples by 54.1-82.2%. The pickling process resulted in a 6.2-65.2% loss of mandipropamid from cucumber, Chinese cabbage, and cowpea samples. Peeling and juicing were the best removing techniques for mandipropamid residues in tomato and cucumber (removal rate (RR) value > 91%), and cooking for 5 min could effectively reduce the levels of mandipropamid in Chinese cabbage and cowpea (RR values of 81.4-99.7%). The values of processing factor for the processed vegetable samples are all less than one. No significant enantioselectivity of mandipropamid was found in the vegetables during processing. Health risk data showed that samples of four types of mandipropamid-contaminated vegetables were safe for consumption after processing.
Collapse
|
23
|
Liu Z, Xiao M, Xu Y, Li D, Zhu W, Huang T, Peng F, Guan Q, Peng Z, Xie M, Xiong T. Effect of homo‐ and hetero‐fermentative lactic acid bacteria on physicochemical properties, amino acid, and volatile flavor compounds during paocai fermentation by pure culture. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.17052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Zhanggen Liu
- State Key Laboratory of Food Science & Technology, No. 235 Nanjing East Road 330047 Nanchang Jiangxi PR China
- School of Food Science & Technology Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047 PR China
| | - Muyan Xiao
- State Key Laboratory of Food Science & Technology, No. 235 Nanjing East Road 330047 Nanchang Jiangxi PR China
- School of Food Science & Technology Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047 PR China
| | - Yazhou Xu
- State Key Laboratory of Food Science & Technology, No. 235 Nanjing East Road 330047 Nanchang Jiangxi PR China
- School of Food Science & Technology Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047 PR China
| | - Danyang Li
- State Key Laboratory of Food Science & Technology, No. 235 Nanjing East Road 330047 Nanchang Jiangxi PR China
- School of Food Science & Technology Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047 PR China
| | - Wenhuan Zhu
- Food Science Program McGill University 3415 McTavish Street, Montreal, Quebec, H3A 0C8 Canada
| | - Tao Huang
- State Key Laboratory of Food Science & Technology, No. 235 Nanjing East Road 330047 Nanchang Jiangxi PR China
- School of Food Science & Technology Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047 PR China
| | - Fei Peng
- State Key Laboratory of Food Science & Technology, No. 235 Nanjing East Road 330047 Nanchang Jiangxi PR China
- School of Food Science & Technology Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047 PR China
| | - Qianqian Guan
- State Key Laboratory of Food Science & Technology, No. 235 Nanjing East Road 330047 Nanchang Jiangxi PR China
- School of Food Science & Technology Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047 PR China
| | - Zhen Peng
- State Key Laboratory of Food Science & Technology, No. 235 Nanjing East Road 330047 Nanchang Jiangxi PR China
- School of Food Science & Technology Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047 PR China
| | - Mingyong Xie
- State Key Laboratory of Food Science & Technology, No. 235 Nanjing East Road 330047 Nanchang Jiangxi PR China
- School of Food Science & Technology Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047 PR China
| | - Tao Xiong
- State Key Laboratory of Food Science & Technology, No. 235 Nanjing East Road 330047 Nanchang Jiangxi PR China
- School of Food Science & Technology Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047 PR China
| |
Collapse
|
24
|
Ghamry M, Ghazal AF, Al-Maqtqri QA, Li L, Zhao W. Impact of a novel probiotic Lactobacillus strain isolated from the bee gut on GABA content, antioxidant activity, and potential cytotoxic activity against HT-29 cell line of rice bran. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2022; 59:3031-3042. [PMID: 35872742 PMCID: PMC9304478 DOI: 10.1007/s13197-022-05512-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 05/06/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
UNLABELLED Rice bran was fermented with Lactobacillus apis, isolated from the bee gut as a novel probiotic strain, and Saccharomyces cerevisiae to investigate the relationship between its metabolites and antioxidant activity, nutraceutical value, and cytotoxic activity against the HT-29 cell line. The findings showed that L. apis improved the antioxidant activity (DPPH of 37.73%) and antioxidant capacity (ABTS of 37.62 mg Trolox/g,), as well as, hydroxyl radical-scavenging activity (91.55%) of rice bran compared to S. cerevisiae. The metabolic analysis of volatile compounds revealed an increase of alcohols and lactones in the samples fermented with S. cerevisiae. While the samples fermented with L. apis displayed an increase of ketones, esters, and thiazoles. On the other hand, L. apis and S. cerevisiae exhibited a significant ability to increase γ-aminobutyric acid during different fermentation times. Compared with non-fermented samples (18.54%), L. apis increased the cytotoxic activity of rice bran against the HT-29 cell line to 34.17%, and S. cerevisiae to 31.34%. These results suggest that the fermentation of rice bran with S. cerevisiae and L. apis provides a promising strategy to improve the antioxidant activity and nutraceuticals of rice bran, and a potential source for plant-based pharmaceutical products. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13197-022-05512-2.
Collapse
Affiliation(s)
- Mohamed Ghamry
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122 Jiangsu China
- Food Technology Department, Faculty of Agriculture, Benha University, Moshtohor, 13736 Egypt
| | - Ahmed Fathy Ghazal
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122 Jiangsu China
| | - Qais Ali Al-Maqtqri
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122 Jiangsu China
| | - Li Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122 Jiangsu China
| | - Wei Zhao
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122 Jiangsu China
| |
Collapse
|
25
|
Natural Environmental Variation Determines Microbial Diversity Patterns in Serofluid Dish, a Traditional Chinese Fermented Vegetable Food. Curr Microbiol 2022; 79:270. [PMID: 35881202 DOI: 10.1007/s00284-022-02965-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 07/06/2022] [Indexed: 11/03/2022]
Abstract
Serofluid dish is a traditional fermented food that contains rich microbial populations. To gain insight into the environmental variables shaping the microbial diversity patterns, serofluid dish samples were collected from different areas, and 16S rRNA sequencing was performed. Analyses revealed both species and community diversity, including phylotype richness, Shannon index and phylogenetic diversity, were mostly influenced by pH. Additionally, such effects were corroborated by the Mantel test of pairwise UniFrac distances and variable selection of multiple linear regression models. Eventually, correlations between dominant lineages and the pH of serofluid dish other than geographical distance explained a large portion of the changes in microbial composition and diversity. Lactobacillus and related genera, Pediococcus and Acetobacter were largely driven by the variability of pH, and higher richness was observed under moderate pH ranges. Collectively, the results demonstrated that a microbial diversity pattern in serofluid dish is predictable by natural environmental variation and can be better understood through pH conditions.
Collapse
|
26
|
Li X, Zhang X, Wu X, Han Y, Wang C, Gao Y, Li L. Effect of Chinese Baijiu coupled with a ternary mixed starter on the flavor component structure of Chinese Dongbei suancai. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xiao Li
- Institute of Food and Processing Liaoning Academy of Agricultural Sciences Shenyang China
| | - Xiaoli Zhang
- Institute of Food and Processing Liaoning Academy of Agricultural Sciences Shenyang China
| | - Xingzhuang Wu
- Institute of Food and Processing Liaoning Academy of Agricultural Sciences Shenyang China
| | - Yanqiu Han
- Institute of Food and Processing Liaoning Academy of Agricultural Sciences Shenyang China
| | - Chen Wang
- Institute of Food and Processing Liaoning Academy of Agricultural Sciences Shenyang China
| | - Ya Gao
- Institute of Food and Processing Liaoning Academy of Agricultural Sciences Shenyang China
| | - Lifeng Li
- Institute of Food and Processing Liaoning Academy of Agricultural Sciences Shenyang China
| |
Collapse
|
27
|
Xu X, Miao Y, Wang H, Ye P, Li T, Li C, Zhao R, Wang B, Shi X. A Snapshot of Microbial Succession and Volatile Compound Dynamics in Flat Peach Wine During Spontaneous Fermentation. Front Microbiol 2022; 13:919047. [PMID: 35847119 PMCID: PMC9277550 DOI: 10.3389/fmicb.2022.919047] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
Flat peaches possess characteristic flavors and are rich in nutrients. The fermentation of flat peaches to produce wine through complex biochemical reactions is an effective method to overcome their seasonal defects. Spontaneously fermented flat peach wine has plentiful and strong flavors, but the microbiota of fermentation are still unknown. In this study, the microbial succession and volatile compound dynamics of spontaneous fermentation in Xinjiang flat peach wine were investigated using high-throughput sequencing (HTS) and headspace solid phase microextraction (HS-SPME) coupled with gas chromatography-mass spectrometry (GC-MS) technology, respectively, to better understand the microbiota involved. Multivariate data analysis was used to predict the relationship between microorganisms and volatile chemicals. The results showed that Kazachstania, Pichia, Aspergillus, Fructobacillus, Leuconostoc, and Lactobacillus were the dominant genera during the spontaneous fermentation of flat peach wine. Furthermore, ethyl hexanoate, 3-hexen-1-yl acetate, ethyl caprate, ethyl caprylate, phenethyl acetate, ethanol, γ-decalactone, decanal, 1-hexanoic acid, and octanoic acid endued flat peach wine with a strong fruity and fatty aroma. The core functional microbiota (primarily consisting of 11 bacterial and 14 fungal taxa) was strongly associated with the production of 27 volatile compounds in the spontaneously fermented flat peach wine, according to multivariate data analysis. Some alcohols and esters were positively linked with the presence of Kazachstania and Pichia. Meanwhile, the presence of Fructobacillus, Leuconostoc, Lactobacillus, and Weissella was significantly correlated with 2-non-anol, ethanol, 3-methyl-1-butanol, octyl formate, isoamyl lactate, and ethyl lactate. This snapshot of microbial succession and volatile compound dynamics provides insights into the microorganisms involved in flat peach wine fermentation and could guide the production of flat peach wine with desirable characteristics.
Collapse
|
28
|
Abstract
Fermented foods and beverages have become a part of daily diets in several societies around the world. Emitted volatile organic compounds play an important role in the determination of the chemical composition and other information of fermented foods and beverages. Electronic nose (E-nose) technologies enable non-destructive measurement and fast analysis, have low operating costs and simplicity, and have been employed for this purpose over the past decades. In this work, a comprehensive review of the recent progress in E-noses is presented according to the end products of the main fermentation types, including alcohol fermentation, lactic acid fermentation, acetic acid fermentation and alkaline fermentation. The benefits, research directions, limitations and challenges of current E-nose systems are investigated and highlighted for fermented foods and beverage applications.
Collapse
|
29
|
Lu H, Huang C, Yu K, Liu Z. Effects of mixed inoculation of Leuconostoc citreum and Lactobacillus plantarum on suansun (Sour bamboo shoot) fermentation. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
30
|
Chang L, Mu G, Wang M, Zhao T, Tuo Y, Zhu X, Qian F. Microbial Diversity and Quality-Related Physicochemical Properties of Spicy Cabbage in Northeastern China and Their Correlation Analysis. Foods 2022; 11:1511. [PMID: 35627081 PMCID: PMC9141884 DOI: 10.3390/foods11101511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/14/2022] [Accepted: 05/14/2022] [Indexed: 02/05/2023] Open
Abstract
Chinese spicy cabbage (CSC) is a popular special fermented food in Northeast China. The bacterial community and quality of CSC from different regions of northeastern China (Group_J: Jilin province, Group_L: Liaoning province, Group_H: Heilongjiang province) at retail (Group_P) and home-made (Group_C) were investigated in this study. The determination of the microbial community was achieved using high-throughput sequencing and the quality-related physicochemical characteristics included pH, salinity, total acid (TA), amino acid nitrogen (AAN), reducing sugar (RS), nitrite, and biogenic amines (BAs). Based on OPLS-DA analysis, there was a difference between the quality of Group_C and Group_P. No significant difference was observed in province grouping. Proteobacteria and Firmicutes were the dominant phyla, and the dominant genera were Lactobacillus, Pantoea, Weissella, and Pseudomonas. All groups had significant differences in community structure (p < 0.05). Compared with Group_C, the relative abundance of opportunistic pathogens (Pseudomonas and Serratia) in Group_P was lower. Pseudomonas and Serratia were the biomarkers in Group_H. At the genus level, Lactobacilluss and Weissella had a positive correlation with pH, Cadaverrine, and salinity (p < 0.05), however, they were negatively related to tryptamine. Pseudomonas was negatively correlated with salinity (p < 0.05). Bacterial community and physicochemical parameters of CSC, as well as the correlation between them, were discussed in this study, providing a reference for future studies on CSC inoculation and fermentation.
Collapse
Affiliation(s)
- Lixuan Chang
- School of Food Science and Technology, Dalian Polytechnic University, No. 1 Qinggongyuan, Ganjingzi District, Dalian 116034, China; (L.C.); (G.M.); (M.W.); (Y.T.); (X.Z.)
| | - Guangqing Mu
- School of Food Science and Technology, Dalian Polytechnic University, No. 1 Qinggongyuan, Ganjingzi District, Dalian 116034, China; (L.C.); (G.M.); (M.W.); (Y.T.); (X.Z.)
| | - Mingxu Wang
- School of Food Science and Technology, Dalian Polytechnic University, No. 1 Qinggongyuan, Ganjingzi District, Dalian 116034, China; (L.C.); (G.M.); (M.W.); (Y.T.); (X.Z.)
| | - Tong Zhao
- Dalian Center for Certification and Food and Drug Control, Dalian 116021, China;
| | - Yanfeng Tuo
- School of Food Science and Technology, Dalian Polytechnic University, No. 1 Qinggongyuan, Ganjingzi District, Dalian 116034, China; (L.C.); (G.M.); (M.W.); (Y.T.); (X.Z.)
| | - Xuemei Zhu
- School of Food Science and Technology, Dalian Polytechnic University, No. 1 Qinggongyuan, Ganjingzi District, Dalian 116034, China; (L.C.); (G.M.); (M.W.); (Y.T.); (X.Z.)
| | - Fang Qian
- School of Food Science and Technology, Dalian Polytechnic University, No. 1 Qinggongyuan, Ganjingzi District, Dalian 116034, China; (L.C.); (G.M.); (M.W.); (Y.T.); (X.Z.)
| |
Collapse
|
31
|
Li Z, Xie S, Sun B, Zhang Y, Liu K, Liu L. Effect of
KCl
replacement of
NaCl
on fermentation kinetics, organic acids and sensory quality of sauerkraut from Northeast China. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Zhi Li
- College of Food Science Northeast Agricultural University Harbin China
| | - Shuangyu Xie
- College of Food Science Northeast Agricultural University Harbin China
| | - Bo Sun
- College of Food Science Northeast Agricultural University Harbin China
| | - Yu Zhang
- College of Food Science Northeast Agricultural University Harbin China
| | - Kai Liu
- College of Food Science Northeast Agricultural University Harbin China
| | - Li Liu
- Heilongjiang Institute for Drug Control affiliated to Heilongjiang Medical Products Administration Heilongjiang Province People’s Government Harbin China
| |
Collapse
|
32
|
Chelliah R, Banan-MwineDaliri E, Khan I, Wei S, Elahi F, Yeon SJ, Selvakumar V, Ofosu FK, Rubab M, Ju HH, Rallabandi HR, Madar IH, Sultan G, Oh DH. A review on the application of bioinformatics tools in food microbiome studies. Brief Bioinform 2022; 23:bbac007. [PMID: 35189636 DOI: 10.1093/bib/bbac007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/20/2021] [Accepted: 01/05/2022] [Indexed: 12/12/2022] Open
Abstract
There is currently a transformed interest toward understanding the impact of fermentation on functional food development due to growing consumer interest on modified health benefits of sustainable foods. In this review, we attempt to summarize recent findings regarding the impact of Next-generation sequencing and other bioinformatics methods in the food microbiome and use prediction software to understand the critical role of microbes in producing fermented foods. Traditionally, fermentation methods and starter culture development were considered conventional methods needing optimization to eliminate errors in technique and were influenced by technical knowledge of fermentation. Recent advances in high-output omics innovations permit the implementation of additional logical tactics for developing fermentation methods. Further, the review describes the multiple functions of the predictions based on docking studies and the correlation of genomic and metabolomic analysis to develop trends to understand the potential food microbiome interactions and associated products to become a part of a healthy diet.
Collapse
Affiliation(s)
- Ramachandran Chelliah
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, Gangwon-do 24341, Korea
| | - Eric Banan-MwineDaliri
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, Gangwon-do 24341, Korea
| | - Imran Khan
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, Gangwon-do 24341, Korea
- Department of Biotechnology, University of Malakand, Khyber Pakhtunkhwa Pakistan
| | - Shuai Wei
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, Gangwon-do 24341, Korea
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Fazle Elahi
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, Gangwon-do 24341, Korea
| | - Su-Jung Yeon
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, Gangwon-do 24341, Korea
| | - Vijayalakshmi Selvakumar
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, Gangwon-do 24341, Korea
| | - Fred Kwame Ofosu
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, Gangwon-do 24341, Korea
| | - Momna Rubab
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, Gangwon-do 24341, Korea
| | - Hum Hun Ju
- Department of Biological Environment, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, Gangwon-do 24341, Korea
| | - Harikrishna Reddy Rallabandi
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, Gangwon-do 24341, Korea
| | - Inamul Hasan Madar
- Department of Biochemistry, School of Life Science, Bharathidasan, University, Thiruchirappalli, Tamilnadu, India
| | - Ghazala Sultan
- Department of Computer Science, Aligarh Muslim University, Aligarh, Uttar Pradesh, 202002, India
| | - Deog Hwan Oh
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, Gangwon-do 24341, Korea
| |
Collapse
|
33
|
Yang Y, Fan Y, Li T, Yang Y, Zeng F, Wang H, Suo H, Song J, Zhang Y. Microbial composition and correlation between microbiota and quality-related physiochemical characteristics in chongqing radish paocai. Food Chem 2022; 369:130897. [PMID: 34455330 DOI: 10.1016/j.foodchem.2021.130897] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/16/2021] [Accepted: 08/16/2021] [Indexed: 01/21/2023]
Abstract
Chongqing radish paocai (paocai) is produced by fermentation of fresh vegetables. It gained attention for its non-negligible contribution in Sichuan cuisine and potential health benefits. This study explored microbial structures in six home-made paocai using high through-put sequencing. Key microbial communities were identified based on significant correlations with quality-related physiochemical attributes. Results suggest bacterial diversity level significantly decreased during fermentation, while fungal diversity level were inconsistent across different alpha-diversity indexes. Firmicutes and Proteobacteria were the predominant bacterial phylum in all samples. Lactic acid bacteria, namely Lactobacillus and L. plantarum were the predominant bacteria at genus and species levels. Fungi had overall weak correlations with physiochemical attributes, several bacterial species significantly correlated with physiochemical attributes, including Lactobacillus plantarum, Lactobacillus acetotolerans, and Weissella cibaria. Overall, this study identified key microbial communities and discussed their functional roles that could contribute to consistent production of high-quality Chongqing radish paocai.
Collapse
Affiliation(s)
- Yanli Yang
- School of Food Science, Southwest University, Beibei 400700, Chongqing, China; National Teaching Demonstration Center of Food Science and Engineering of Southwest University, Southwest University, Beibei 400700, Chongqing, China
| | - Ying Fan
- General Mills. Inc. Minneapolis, MN 55426, USA
| | - Ting Li
- School of Food Science, Southwest University, Beibei 400700, Chongqing, China
| | - Yang Yang
- School of Food Science, Southwest University, Beibei 400700, Chongqing, China
| | - Fankun Zeng
- School of Food Science, Southwest University, Beibei 400700, Chongqing, China
| | - Hongwei Wang
- School of Food Science, Southwest University, Beibei 400700, Chongqing, China
| | - Huayi Suo
- School of Food Science, Southwest University, Beibei 400700, Chongqing, China
| | - Jiajia Song
- School of Food Science, Southwest University, Beibei 400700, Chongqing, China
| | - Yu Zhang
- School of Food Science, Southwest University, Beibei 400700, Chongqing, China; National Teaching Demonstration Center of Food Science and Engineering of Southwest University, Southwest University, Beibei 400700, Chongqing, China.
| |
Collapse
|
34
|
Han Y, Wang C, Zhang X, Li X, Gao Y. Characteristic volatiles analysis of
Dongbei Suancai
across different fermentation stages based on HS‐GC‐IMS with PCA. J Food Sci 2022; 87:612-622. [DOI: 10.1111/1750-3841.16045] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 11/30/2021] [Accepted: 12/20/2021] [Indexed: 11/30/2022]
Affiliation(s)
- Yanqiu Han
- Institute of Food and Processing Liaoning Academy of Agricultural Sciences Shenyang Liaoning People's Republic of China
| | - Chen Wang
- Institute of Food and Processing Liaoning Academy of Agricultural Sciences Shenyang Liaoning People's Republic of China
| | - Xiaoli Zhang
- Institute of Food and Processing Liaoning Academy of Agricultural Sciences Shenyang Liaoning People's Republic of China
| | - Xiao Li
- Institute of Food and Processing Liaoning Academy of Agricultural Sciences Shenyang Liaoning People's Republic of China
| | - Ya Gao
- Institute of Food and Processing Liaoning Academy of Agricultural Sciences Shenyang Liaoning People's Republic of China
| |
Collapse
|
35
|
ZHANG L, YANG Y, FENG S, LUO G, ZHANG M. Correlation between microbial communities changes and physicochemical indexes of Dazu Dongcai during different fermentation periods. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.93522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Ling ZHANG
- Chongqing University of Arts and Sciences, China; Chongqing Three Gorges University, China
| | - Yan YANG
- Chongqing University of Arts and Sciences, China; Chongqing Three Gorges University, China
| | - Shunxin FENG
- Chongqing University of Arts and Sciences, China
| | - Gen LUO
- Chongqing University of Arts and Sciences, China
| | - Meixia ZHANG
- Chongqing University of Arts and Sciences, China
| |
Collapse
|
36
|
Wang M, Wang C, Yang C, Peng L, Xie Q, Zheng R, Dai Y, Liu S, Peng X. Effects of Lactobacillus plantarum C7 and Staphylococcus warneri S6 on flavor quality and bacterial diversity of fermented meat rice, a traditional Chinese food. Food Res Int 2021; 150:110745. [PMID: 34865763 DOI: 10.1016/j.foodres.2021.110745] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 09/30/2021] [Accepted: 10/07/2021] [Indexed: 10/20/2022]
Abstract
Fermented meat rice (FMR) is a traditional Chinese fermented food with special flavor and abundant microorganisms. Lactobacillus and Staphylococcus species have been found to be excellent strains in FMR during fermentation. However, their roles in FMR flavor formation remain yet to be elucidated. Here, we investigated the correlation between physicochemical properties and volatile flavor components, as well as the microbial community during FMR fermentation. First, we determined pH, total titratable acids (TTA), proteins, total lipids, organic acids, free amino acids (FAAs), and volatile flavor compounds (VFCs). With increasing fermentation time, inoculation with Lactobacillus plantarum C7+ Staphylococcus warneri S6 (LP + SW) accelerated the decrease in pH, increased TTA, and reduced protein and total lipid content of FMR. In addition, LP + SW inoculation resulted in significantly (P < 0.05) higher contents of β-eudesmol, nerolidol, ethyl caproate, citronellal, lactic acid, and most FAAs (aspartic acid, glutamic acid, alanine, and lysine) in FMR compared to natural fermentation. Second, inoculated fermentation promoted the growth of Lactobacillus plantarum and/or Staphylococcus warneri and inhibited the growth of some potentially pathogenic microorganisms such as Acinetobacter and Enhydrobacter. Lactobacillus and Staphylococcus were found to be highly correlated with the physicochemical properties and VFCs (P < 0.05) of FMR as indicated by redundancy analysis (RDA) and partial least squares (PLS, VIP > 1.0) analysis. Finally, Spearman's correlation (| r | ≥ 0.7, P < 0.05) analysis of SPSS was visualized by the Cytoscape software. The findings suggest that inoculation with L. plantarum C7 and/or S. warneri S6 can significantly improve the flavor quality of FMR.
Collapse
Affiliation(s)
- Man Wang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China
| | - Chengming Wang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China.
| | - Chen Yang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China
| | - Luqiu Peng
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China
| | - Qihui Xie
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China
| | - Runmin Zheng
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China
| | - Yiyi Dai
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China
| | - Shilin Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China
| | - Xitian Peng
- Institute of Agricultural Quality Standards and Testing Technology Research, Hubei Academy of Agricultural Sciences, Wuhan 430070, China
| |
Collapse
|
37
|
Ye H, Lang X, Ji Y, Li S, Xin N, Meng X, Zhang T, Shen X, Zhao C. The interaction between Lactobacillus plantarum SC-5 and its biogenic amine formation with different salt concentrations in Chinese Dongbei Suancai. Food Res Int 2021; 150:110813. [PMID: 34863503 DOI: 10.1016/j.foodres.2021.110813] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 10/25/2021] [Accepted: 11/09/2021] [Indexed: 01/09/2023]
Abstract
Dongbei Suancai (DBSC) - a Chinese cabbage-based sauerkraut is a traditional fermented food which is popular in Asian countries. The biogenic amines that are usually generated during spontaneous fermentation have raised public health concern, while inoculation technology may solve this problem. In the current research, the biogenic amines, as well as their interactions with the microbial community in DBSC inoculated with Lactobacillus plantarum SC-5 or spontaneously fermented without inoculation were systematically investigated throughout 60 d fermentation. High-performance liquid chromatography analysis showed that the predominant biogenic amines in DBSC including putrescine, tyramine, spermidine, cadaverine and histamine increased during fermentation. Inoculated DBSC had a significantly lower content of total biogenic amines than the spontaneously fermented DBSC (216.72-237.33 mg/kg vs. 234.62-266.81 mg/kg) during 60 days' fermentation (P < 0.05). High throughput sequencing based on 16S rDNA identified 70 species in the bacterial community belonging to 7 genera of lactic acid bacteria, of which Lactobacillus, Leuconostoc and Lactococcus were dominant. Furthermore, six common genera of bacteria were positively correlated with biogenic amines based on Spearman's rank correlation test. Notably, the abundance of Lactobacillus plantarum SC-5 was negatively correlated with the content of biogenic amines in DBSC. In conclusion, inoculation of the proper starter like Lactobacillus plantarum SC-5 can reduce total biogenic amines in DBSC possibly by modifying the microbial communities in the fermented sauerkraut, which provides practical guidance for industrial production of high quality DBSC.
Collapse
Affiliation(s)
- Haiqing Ye
- College of Food Science and Engineering, Jilin University, 5333 Xi'an Road, Changchun 130062, China
| | - Xinsong Lang
- College of Food Science and Engineering, Jilin University, 5333 Xi'an Road, Changchun 130062, China
| | - Yaoyao Ji
- College of Food Science and Engineering, Jilin University, 5333 Xi'an Road, Changchun 130062, China
| | - Shengnan Li
- College of Food Science and Engineering, Jilin University, 5333 Xi'an Road, Changchun 130062, China
| | - Naicheng Xin
- College of Food Science and Engineering, Jilin University, 5333 Xi'an Road, Changchun 130062, China
| | - Xiangren Meng
- School of Food Science and Engineering, Yangzhou University, 196 Huayangxi Road, Yangzhou 225127, China
| | - Tiehua Zhang
- College of Food Science and Engineering, Jilin University, 5333 Xi'an Road, Changchun 130062, China
| | - Xue Shen
- College of Food Science and Engineering, Jilin University, 5333 Xi'an Road, Changchun 130062, China.
| | - Changhui Zhao
- College of Food Science and Engineering, Jilin University, 5333 Xi'an Road, Changchun 130062, China.
| |
Collapse
|
38
|
Valença CAS, Barbosa AAT, Souto EB, Caramão EB, Jain S. Volatile Nitrogenous Compounds from Bacteria: Source of Novel Bioactive Compounds. Chem Biodivers 2021; 18:e2100549. [PMID: 34643327 DOI: 10.1002/cbdv.202100549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 09/27/2021] [Indexed: 11/08/2022]
Abstract
Bacteria can produce nitrogenous compounds via both primary and secondary metabolic processes. Many bacterial volatile nitrogenous compounds produced during the secondary metabolism have been identified and reported for their antioxidant, antibacterial, antifungal, algicidal and antitumor activities. The production of these nitrogenous compounds depends on several factors, including the composition of culture media, growth conditions, and even the organic solvent used for their extraction, thus requiring their identification in specific conditions. In this review, we describe the volatile nitrogenous compounds produced by bacteria especially focusing on their antimicrobial activity. We concentrate on azo-compounds mainly pyrazines and pyrrolo-pyridines reported for their activity against several microorganisms. Whenever significant, extraction and identification methods of these compounds are also mentioned and discussed. To the best of our knowledge, this is first review describing volatile nitrogenous compounds from bacteria focusing on their biological activity.
Collapse
Affiliation(s)
- Camilla A S Valença
- Programa de Pós-Graduação em Biotecnologia Industrial, Universidade Tiradentes, Aracaju, Sergipe, Brazil
| | - Ana A T Barbosa
- Department of Morphology, Universidade Federal de Sergipe, São Cristóvão, Sergipe, Brazil
| | - Eliana B Souto
- CEB - Center of Biological Engineering, Universidade do Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Elina B Caramão
- Programa de Pós-Graduação em Biotecnologia Industrial, Universidade Tiradentes, Aracaju, Sergipe, Brazil.,Instituto Nacional de Ciência e Tecnologia - Energia e Ambiente, Universidade Federal da Bahia, Salvador, Bahia, Brazil
| | - Sona Jain
- Programa de Pós-Graduação em Biotecnologia Industrial, Universidade Tiradentes, Aracaju, Sergipe, Brazil
| |
Collapse
|
39
|
Hua Q, Sun Y, Xu Y, Gao P, Xia W. Bacterial community succession and biogenic amine changes during fermentation of fish‐chili paste inoculated with different commercial starter cultures. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Qian Hua
- State Key Laboratory of Food Science and Technology 1800 Lihu Ave Wuxi Jiangsu 214122 China
- School of Food Science and Technology Jiangnan University 1800 Lihu Ave Wuxi Jiangsu 214122 China
| | - Yingying Sun
- State Key Laboratory of Food Science and Technology 1800 Lihu Ave Wuxi Jiangsu 214122 China
- School of Food Science and Technology Jiangnan University 1800 Lihu Ave Wuxi Jiangsu 214122 China
| | - Yanshun Xu
- State Key Laboratory of Food Science and Technology 1800 Lihu Ave Wuxi Jiangsu 214122 China
- School of Food Science and Technology Jiangnan University 1800 Lihu Ave Wuxi Jiangsu 214122 China
| | - Pei Gao
- State Key Laboratory of Food Science and Technology 1800 Lihu Ave Wuxi Jiangsu 214122 China
- School of Food Science and Technology Jiangnan University 1800 Lihu Ave Wuxi Jiangsu 214122 China
| | - Wenshui Xia
- State Key Laboratory of Food Science and Technology 1800 Lihu Ave Wuxi Jiangsu 214122 China
- School of Food Science and Technology Jiangnan University 1800 Lihu Ave Wuxi Jiangsu 214122 China
| |
Collapse
|
40
|
Tomita S, Watanabe J, Kuribayashi T, Tanaka S, Kawahara T. Metabolomic evaluation of different starter culture effects on water-soluble and volatile compound profiles in nozawana pickle fermentation. FOOD CHEMISTRY. MOLECULAR SCIENCES 2021; 2:100019. [PMID: 35415626 PMCID: PMC8991705 DOI: 10.1016/j.fochms.2021.100019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 02/15/2021] [Accepted: 03/12/2021] [Indexed: 11/28/2022]
Abstract
Metabolomic characterization of a lactic-fermented pickle of nozawana (Brassica rapa L. var. hakabura) was conducted to evaluate the effects of different starter culture strains on the chemical profiles. We compared the profiles of water-soluble and volatile compounds obtained by non-targeted nuclear magnetic resonance and solid-phase microextraction gas chromatography/mass spectrometry analyses. Principal component analyses indicated that the fermented samples differed significantly in terms of the levels of various compounds, including taste- and aroma-active components, such as water-soluble residual sugars, organic acids, mannitol, ethanol, dihydroxyacetone, ornithine, γ-aminobutyric acid, choline, volatile isothiocyanates, 3,4-epithiobutyl cyanide, 2,3-butanedione, acetoin, ethyl acetate, dimethyl trisulfide, and S-methyl thioacetate. Fermentation with a Latilactobacillus curvatus culture was associated with a unique metabolite profile characterized by higher levels of isothiocyanates and hexanoic acid and lower levels of lactic acid, acetic acid, acetoin, and 2,3-butanedione. These variations in the chemical profile might be associated with different qualities in fermented nozawana pickle products.
Collapse
Affiliation(s)
- Satoru Tomita
- Food Research Institute, National Agriculture and Food Research Organization (NARO), 2-1-12 Kannondai, Tsukuba, Ibaraki 305-8642, Japan
| | - Jun Watanabe
- Food Research Institute, National Agriculture and Food Research Organization (NARO), 2-1-12 Kannondai, Tsukuba, Ibaraki 305-8642, Japan
| | - Takeshi Kuribayashi
- Food Technology Department, Nagano Prefecture General Industrial Technology Center, 205-1 Kurita, Nagano, Nagano 380-0921, Japan
| | - Sachi Tanaka
- Faculty of Agriculture, Shinshu University, 8304 Minamiminowa, Kamiina, Nagano 399-4598, Japan
- Academic Assembly School of Science and Technology, Institute of Agriculture, Shinshu University, 8304 Minamiminowa, Kamiina, Nagano 399-4598, Japan
| | - Takeshi Kawahara
- Faculty of Agriculture, Shinshu University, 8304 Minamiminowa, Kamiina, Nagano 399-4598, Japan
- Academic Assembly School of Science and Technology, Institute of Agriculture, Shinshu University, 8304 Minamiminowa, Kamiina, Nagano 399-4598, Japan
| |
Collapse
|
41
|
An F, Sun H, Wu J, Zhao C, Li T, Huang H, Fang Q, Mu E, Wu R. Investigating the core microbiota and its influencing factors in traditional Chinese pickles. Food Res Int 2021; 147:110543. [PMID: 34399520 DOI: 10.1016/j.foodres.2021.110543] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 11/27/2022]
Abstract
Pickles are a type of traditional fermented food in Northeast China that exhibit a broad variety of preparations, flavors and microbial components. Despite their widespread consumption, the core microorganisms in various traditional pickles and the precise impact of ecological variables on the microbiota remains obscure. The present study aims to unravel the microbial diversity in different pickle types collected from household (12 samples) and industrial (10 samples) sources. Among these 22 samples tested, differences were observed in total acid, amino acid nitrogen, nitrite, and salt content. Firmicutes and Ascomycota emerged as the predominant microbial phyla as observed by Illumina MiSeq sequencing. Amongst these, the commonly encountered microorganisms were Lactobacillus, Weissella and yeast. Comparative analysis based on non-metric multidimensional scaling (NMDS), showed that the microbial community in the pickles was affected by external conditions such as major ingredients and manufacturing process. Correlation analysis further showed that the resident core microorganisms in pickles could adapt to the changing internal fermentation environment. The insights gained from this study further our understanding of traditional fermented foods and can be used to guide the isolation of excellent fermented strains.
Collapse
Affiliation(s)
- Feiyu An
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China; Engineering Research Center of Food Fermentation Technology, Liaoning 110866, China; Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang 110866, China
| | - Huijun Sun
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China; Liaoning Agricultural Development Service Center, Shenyang 110034, China
| | - Junrui Wu
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China; Engineering Research Center of Food Fermentation Technology, Liaoning 110866, China; Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang 110866, China
| | - Chunyan Zhao
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Tong Li
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China; Engineering Research Center of Food Fermentation Technology, Liaoning 110866, China; Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang 110866, China
| | - Heting Huang
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Qiang Fang
- Liaoning Provincial Institute of Agricultural Mechanization, Shenyang 110161, China
| | - Endong Mu
- Liaoning Agricultural Development Service Center, Shenyang 110034, China.
| | - Rina Wu
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China; Engineering Research Center of Food Fermentation Technology, Liaoning 110866, China; Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang 110866, China.
| |
Collapse
|
42
|
Reduction of biogenic amine and nitrite production in low-salt Paocai by controlled package during storage: A study comparing vacuum and aerobic package with conventional salt solution package. Food Control 2021. [DOI: 10.1016/j.foodcont.2020.107858] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
43
|
He J, Li F, Wang Y, Wu H, Yang H. Fermentation characteristics and bacterial dynamics during Chinese sauerkraut fermentation by Lactobacillus curvatus LC-20 under varied salt concentrations reveal its potential in low-salt suan cai production. J Biosci Bioeng 2021; 132:33-40. [PMID: 33865692 DOI: 10.1016/j.jbiosc.2021.03.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 11/29/2022]
Abstract
Salt profoundly affects the physicochemical properties and microbial abundance of fermented foods such as suan cai, a popular traditional fermented food in China. It is vital to systematically investigate the effects of salt concentrations on fermented suan cai for high fermentation quality and large-scale production. We elucidated the effects of salt concentrations on Lactobacillus curvatus (LC-20) and suan cai during fermentation, and found that salt (0-1%) favoured an increase in LC-20 growth and a decrease in pH (salt: 0-2%). For suan cai fermentation, the results from sensory scoring judged 1% salt treatment the highest. Salt concentration also affected the nitrite content of the fermentation system with peak nitrite values in low salt treatments being significantly higher on the first day, and gradually decreasing to similar levels. After fermentation, the total titratable acid and lactic acid concentrations in the 0-1% treatments were higher (p < 0.05) than those in 2-5% treatments. The colony forming units of lactic acid bacteria increased initially and then decreased after 6 d of fermentation. At the phylum level, Firmicutes and Proteobacteria were predominant in all treatments, and at the genus level, Lactobacillus dominated the fermentation. Other lactic acid bacteria such as Lactococcus and Weissella were also detected. Quantitative PCR showed DNA concentration of LC-20 at 0.5-2% salt treatments were higher than that in other treatments and L. curvatus was the dominant microorganism during fermentation. Hence, we conclude that L. curvatus could be used for suan cai product at low salt concentrations.
Collapse
Affiliation(s)
- Jiale He
- College of Life Sciences, Northeast Forestry University, Harbin, Heilongjiang 150036, China
| | - Fengzi Li
- College of Life Sciences, Northeast Forestry University, Harbin, Heilongjiang 150036, China
| | - Yan Wang
- College of Life Sciences, Northeast Forestry University, Harbin, Heilongjiang 150036, China
| | - Hao Wu
- College of Life Sciences, Northeast Forestry University, Harbin, Heilongjiang 150036, China
| | - Hongyan Yang
- College of Life Sciences, Northeast Forestry University, Harbin, Heilongjiang 150036, China.
| |
Collapse
|
44
|
Zhang C, Zhang J, Liu D. Biochemical changes and microbial community dynamics during spontaneous fermentation of Zhacai, a traditional pickled mustard tuber from China. Int J Food Microbiol 2021; 347:109199. [PMID: 33878643 DOI: 10.1016/j.ijfoodmicro.2021.109199] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 03/29/2021] [Accepted: 03/30/2021] [Indexed: 02/06/2023]
Abstract
Zhacai is a traditional fermented vegetable that has been consumed in China for centuries. It is currently manufactured by spontaneous fermentation and therefore mostly relies on the activities of autochthonous microorganisms. Here, we characterized microbial community dynamics and associated biochemical changes in 12% salted Zhacai during a 90-day spontaneous fermentation process using high-throughput sequencing and chromatography-based approaches to identify associations between microorganisms and fermentation characteristics. Amplicon sequencing targeting bacterial 16S rRNA genes revealed that bacterial communities were dominated by halophilic bacteria (HAB, i.e., Halomonas and Idiomarina) and lactic acid bacteria (LAB, i.e., Lactobacillus-related genera and Weissella) after 30 days of fermentation. In addition, the relative abundances of the fungal genera Debaryomyces, Sterigmatomyces, and Sporidiobolus increased as fermentation progressed. Concomitantly, pH decreased while titratable acidity increased during fermentation, along with associated variation in biochemical profiles. Overall, the levels of organic acids (i.e., lactic and acetic acid), free amino acids (i.e., alanine, lysine, and glutamic acid), and volatiles (i.e., alcohols, esters, aldehydes, and ketones) increased in mature Zhacai. In addition, the abundances of Lactobacillus-related species, Halomonas spp., Idiomarina loihiensis, as well as that of the yeast Debaryomyces hansenii, were strongly correlated with increased concentrations of organic acids, amino acids, biogenic amines, and volatiles. This study provides new detailed insights into the succession of microbial communities and their potential roles in Zhacai fermentation.
Collapse
Affiliation(s)
- Chengcheng Zhang
- Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jianming Zhang
- Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Daqun Liu
- Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| |
Collapse
|
45
|
Xiao C, Yang Y, Lu ZM, Chai LJ, Zhang XJ, Wang ST, Shen CH, Shi JS, Xu ZH. Daqu microbiota exhibits species-specific and periodic succession features in Chinese baijiu fermentation process. Food Microbiol 2021; 98:103766. [PMID: 33875202 DOI: 10.1016/j.fm.2021.103766] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 01/08/2021] [Accepted: 02/09/2021] [Indexed: 11/28/2022]
Abstract
Daqu, a brick-shaped product spontaneously fermented under an open environment, has been regarded as the starter of fermentation, raw enzyme preparation and raw materials for baijiu production. However, its contribution in baijiu fermentation has not been fully elaborated yet. Here, the effects of daqu microbiota on baijiu fermentation were investigated under both field-scale and lab-scale conditions. In field-scale baijiu fermentation, the dominant daqu microbes (average relative abundance>10.0%), including unclassified_Leuconostocaceae, Thermoascus, and Thermomyces, tended to dominate the early stage (0-7 d). However, the rare daqu microbes (average relative abundance <0.1%, e.g., Kazachstania) tended to dominate the middle and late stages (11-40 d). In addition, some genera showed differences in species diversity between daqu and fermented grains. The average relative abundance of Lactobacillus was over 75% during baijiu fermentation, and most of them were affiliated with Lactobacillus acetotolerans, while Lactobacillus crustorum dominated the Lactobacillus OTUs in daqu. The similar patterns were also observed during lab-scale baijiu fermentation. The results of function prediction showed the enriched metabolic pathways were associated with glycolysis and long-chain fatty acid esters in baijiu fermentation. These results improved the understanding of daqu microbiota function during baijiu fermentation and provided a basic theory to support the regulation of baijiu production.
Collapse
Affiliation(s)
- Chen Xiao
- Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, PR China; School of Pharmaceutical Science, Jiangnan University, Wuxi, 214122, PR China
| | - Yang Yang
- Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, PR China; National Engineering Research Center of Solid-State Brewing, Luzhou, 646000, PR China
| | - Zhen-Ming Lu
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, 214122, PR China; Jiangsu Engineering Research Center for Bioactive Products Processing Technology, Jiangnan University, Wuxi, 214122, PR China
| | - Li-Juan Chai
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, 214122, PR China
| | - Xiao-Juan Zhang
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, 214122, PR China; Jiangsu Engineering Research Center for Bioactive Products Processing Technology, Jiangnan University, Wuxi, 214122, PR China
| | - Song-Tao Wang
- National Engineering Research Center of Solid-State Brewing, Luzhou, 646000, PR China
| | - Cai-Hong Shen
- National Engineering Research Center of Solid-State Brewing, Luzhou, 646000, PR China
| | - Jin-Song Shi
- School of Pharmaceutical Science, Jiangnan University, Wuxi, 214122, PR China
| | - Zheng-Hong Xu
- Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, PR China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, 214122, PR China; National Engineering Research Center of Solid-State Brewing, Luzhou, 646000, PR China.
| |
Collapse
|
46
|
Song Q, Zhao F, Wang B, Han Y, Zhou Z. Metagenomic insights into Chinese northeast suancai: Predominance and diversity of genes associated with nitrogen metabolism in traditional household suancai fermentation. Food Res Int 2020; 139:109924. [PMID: 33509491 DOI: 10.1016/j.foodres.2020.109924] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/09/2020] [Accepted: 11/22/2020] [Indexed: 10/22/2022]
Abstract
Chinese northeast suancai represents a typical and valuable food product that has been handed down by traditional household procedures over centuries. Nitrite is formed and accumulated during the suancai fermentation process and commonly causes food safety problems. The biogeochemical cycle of nitrite may provide a reference and guidance for the enzymatic degradation of nitrite in fermented food. The potential nitrogen metabolic pathways in the microbially driven suancai fermentation were reasonably inferred through monitoring nitrogen conversions and detecting the genes of different functional enzymes. Complex microbial metabolism is responsible for the unique nitrogen conversions during suancai fermentation. The metagenomic results showed that Pseudomonas with nitrate reductase genes (narG, narH, narI) and nitrite reductase genes (nirB, nirD) contributed the most to both nitrite reduction and nitrate reduction. The majority of the sequences of nitrate reductase and nitrite reductase were derived from the families of Pseudomonadaceae, Erwiniaceae and Yersiniaceae. According to the physicochemical analysis, the nitrite concentration of the fermentation broth reached the peak value (0.48 mM) and gradually decreased to the minimum (0.02 mM). The downward trend of the pH and nitrite concentration were closely associated with the nitrite enzymatic degradation period before the acid degradation period. Our results indicated that nitrite removal in suancai fermentation involved the reduction of nitrite to ammonia and denitrification, which were mainly contributed by the reduction of nitrite to ammonia mediated by the nirB/nirD enzyme (Indentified ECs: 1.7.1.15). This research offers new insights into the metagenome-based bioinformatic roles of the previously unstudied microorganisms in spontaneous suancai fermentation for the enzymatic degradation of nitrite. It provides helpful basis for the detection and even elimination of nitrite in suancai and for improving the safety level of suancai.
Collapse
Affiliation(s)
- Qiaozhi Song
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Fangkun Zhao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Binbin Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Ye Han
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China.
| | - Zhijiang Zhou
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China.
| |
Collapse
|
47
|
GC-MS-Based Metabolomics Analysis of Prawn Shell Waste Co-Fermentation by Lactobacillus plantarum and Bacillus subtilis. POLYSACCHARIDES 2020. [DOI: 10.3390/polysaccharides1010004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
GC-MS-based metabolomics were used to investigate metabolic changes in prawn shell waste during fermentation. Microbial strains Lactobacillus plantarum and Bacillus subtilis were co-fermented in a shake flask comprising of 5% (w/v) prawn shell waste and 20% (w/v) glucose as a carbon source. Analysis of the prawn shell waste fermentation showed a total of 376 metabolites detected in the culture supernatant, including 14 amino acids, 106 organic acids, and 90 antimicrobial molecules. Results show that the liquid fraction of the co-fermentation is promising for harvesting valuable metabolites for probiotics application.
Collapse
|
48
|
Yang X, Hu W, Xiu Z, Jiang A, Yang X, Saren G, Ji Y, Guan Y, Feng K. Effect of salt concentration on microbial communities, physicochemical properties and metabolite profile during spontaneous fermentation of Chinese northeast sauerkraut. J Appl Microbiol 2020; 129:1458-1471. [PMID: 32677269 DOI: 10.1111/jam.14786] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 06/29/2020] [Accepted: 07/12/2020] [Indexed: 11/30/2022]
Abstract
AIM The aim of this study was to study the effects of salt concentrations on the microbial communities, physicochemical properties, metabolome profiles and sensory characteristics during the fermentation of traditional northeast sauerkraut. METHODS AND RESULTS Northeast sauerkraut was spontaneously fermented under four salt concentrations (0·5, 1·5, 2·5 and 3·5%, w/w). The result of microbiological analysis showed that the population of lactic acid bacteria in 2·5%-salted sauerkraut was significantly higher than that in the other samples. Correspondingly, the speed of decrease in pH and accumulation of acids were the highest in 2·5%-salted sauerkraut. The glucose (analysed by HPLC) in 2·5%-salted sauerkraut was consumed more completely to produce higher levels of organic acids compared to those in the other samples. Principle component analysis showed clear differences in the metabolites of sauerkraut according to different salt concentrations. A higher level of volatiles (detected by HS-SPME/GC-MS) was identified in 2·5%-salted sauerkraut, and sensory evaluation demonstrated that 2·5%-salted sauerkraut had the best sensory characteristics. CONCLUSION The best quality of sauerkraut was obtained from fermented under 2·5% salt concentration. SIGNIFICANCE AND IMPACT OF THE STUDY This study facilitated the understanding of the effects of salt on the sauerkraut fermentation and may be useful for developing the quality of sauerkraut.
Collapse
Affiliation(s)
- X Yang
- School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, PR China.,College of Life Science, Dalian Minzu University, Dalian, Liaoning, PR China.,Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian, Liaoning, PR China
| | - W Hu
- College of Life Science, Dalian Minzu University, Dalian, Liaoning, PR China.,Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian, Liaoning, PR China
| | - Z Xiu
- School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, PR China
| | - A Jiang
- College of Life Science, Dalian Minzu University, Dalian, Liaoning, PR China.,Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian, Liaoning, PR China
| | - X Yang
- College of Life Science, Dalian Minzu University, Dalian, Liaoning, PR China.,Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian, Liaoning, PR China
| | - G Saren
- School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, PR China.,College of Life Science, Dalian Minzu University, Dalian, Liaoning, PR China.,Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian, Liaoning, PR China
| | - Y Ji
- School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, PR China.,College of Life Science, Dalian Minzu University, Dalian, Liaoning, PR China.,Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian, Liaoning, PR China
| | - Y Guan
- School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, PR China.,College of Life Science, Dalian Minzu University, Dalian, Liaoning, PR China.,Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian, Liaoning, PR China
| | - K Feng
- College of Life Science, Dalian Minzu University, Dalian, Liaoning, PR China.,Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian, Liaoning, PR China
| |
Collapse
|
49
|
Yang X, Hu W, Xiu Z, Jiang A, Yang X, Saren G, Ji Y, Guan Y, Feng K. Microbial Community Dynamics and Metabolome Changes During Spontaneous Fermentation of Northeast Sauerkraut From Different Households. Front Microbiol 2020; 11:1878. [PMID: 32849461 PMCID: PMC7419431 DOI: 10.3389/fmicb.2020.01878] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 07/16/2020] [Indexed: 12/22/2022] Open
Abstract
Sauerkraut, one of the most popular traditional fermented vegetable foods in northern China, has been widely consumed for thousands of years. In this study, the physicochemical characteristics, microbial composition and succession, and metabolome profile were elucidated during the fermentation of traditional northeast sauerkraut sampled from different households. The microbial community structure as determined by high-throughput sequencing (HTS) technology demonstrated that Firmicutes and Proteobacteria were the predominant phyla and Weissella was the most abundant genus in all samples. Except for Weissella, higher relative abundance of Clostridium was observed in #1 sauerkraut, Clostridium and Enterobacter in #2 sauerkraut, and Lactobacillus in #3 sauerkraut, respectively. Meanwhile, Principal component analysis (PCA) revealed significant variances in the volatilome profile among different homemade sauerkraut. Acids and lactones were dominant in the #1 sauerkraut. The #2 sauerkraut had significantly higher contents of alcohols, aldehydes, esters, sulfides, and free amino acids (FAAs). In comparison, higher contents of terpenes and nitriles were found in the #3 sauerkraut. Furthermore, the potential correlations between the microbiota and volatilome profile were explored based on Spearman’s correlation analysis. Positive correlations were found between Clostridium, Enterobacter, Lactobacillus, Leuconostoc, Weissella and most volatile compounds. Pseudomonas, Chloroplast, Rhizobium, Aureimonas, and Sphingomonas were negatively correlated with volatile compounds in sauerkraut. This study provided a comprehensive picture of the dynamics of microbiota and metabolites profile during the fermentation of different homemade northeast sauerkraut. The elucidation of correlation between microbiota and volatile compounds is helpful for guiding future improvement of the fermentation process and manufacturing high-quality sauerkraut.
Collapse
Affiliation(s)
- Xiaozhe Yang
- School of Bioengineering, Dalian University of Technology, Dalian, China.,College of Life Science, Dalian Minzu University, Dalian, China.,Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian, China
| | - Wenzhong Hu
- College of Life Science, Dalian Minzu University, Dalian, China.,Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian, China
| | - Zhilong Xiu
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Aili Jiang
- College of Life Science, Dalian Minzu University, Dalian, China.,Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian, China
| | - Xiangyan Yang
- College of Life Science, Dalian Minzu University, Dalian, China.,Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian, China
| | - Gaowa Saren
- School of Bioengineering, Dalian University of Technology, Dalian, China.,College of Life Science, Dalian Minzu University, Dalian, China.,Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian, China
| | - Yaru Ji
- School of Bioengineering, Dalian University of Technology, Dalian, China.,College of Life Science, Dalian Minzu University, Dalian, China.,Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian, China
| | - Yuge Guan
- School of Bioengineering, Dalian University of Technology, Dalian, China.,College of Life Science, Dalian Minzu University, Dalian, China.,Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian, China
| | - Ke Feng
- College of Life Science, Dalian Minzu University, Dalian, China.,Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian, China
| |
Collapse
|