1
|
Silva GS, Nunes Moreira FI, Rodrigues de Albuquerque TM, Abreu TL, Torres de Souza EG, da Silva LR, Jenyffer de Farias Marques AD, de Sousa Galvão M, Dos Santos Lima M, de Souza EL, Madruga MS, Kurozawa LE, Alencar Bezerra TK. Microencapsulated phenolic compounds from organic coffee husk: Impacts on human gut microbiota and in vitro prebiotic potential. Food Res Int 2025; 201:115597. [PMID: 39849730 DOI: 10.1016/j.foodres.2024.115597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/28/2024] [Accepted: 12/28/2024] [Indexed: 01/25/2025]
Abstract
This research investigated the influence of the microencapsulation of phenolic compounds (PCs) from organic coffee husk with whey protein concentrate (WPC) and maltodextrin on the abundance of intestinal bacterial populations and their metabolic activity during in vitro fecal fermentation. The microencapsulated PCs were gradually metabolized during fecal fermentation, resulting in significant transformations and an increase in PCs in the fermentation media. The metabolism of PCs by the fecal microbiota occurred concurrently with the consumption of sugars, production of organic acids, and reduction in pH in the media. The PCs, especially when encapsulated, promoted an increase in the abundance of Lactobacillus spp./Enterococcus spp., Bifidobacterium spp., and Ruminococcus albus/R. flavefaciens, and a reduction in the abundance of Bacteroides spp./Prevotella spp., Clostridium histolyticum, and Eubacterium rectale/Clostridium cocoides. The results suggest that the PCs exhibited prebiotic potential, with their efficacy enhanced by microencapsulation, particularly when WPC was used exclusively as the encapsulating agent.
Collapse
Affiliation(s)
- Gezaildo Santos Silva
- Department of Food Engineering, Technology Centre of the Federal University of Paraíba, 58051-900 João Pessoa, Paraíba, Brazil
| | - Flávia Izabely Nunes Moreira
- Department of Food Engineering, Technology Centre of the Federal University of Paraíba, 58051-900 João Pessoa, Paraíba, Brazil
| | | | - Thaianaly Leite Abreu
- Department of Food and Nutrition, Faculty of Nutrition, Federal University of Mato Grosso, Campus Cuiabá, 78068-600 Cuiabá, Mato Grosso, Brazil
| | - Eike Guilherme Torres de Souza
- Department of Food Engineering, Technology Centre of the Federal University of Paraíba, 58051-900 João Pessoa, Paraíba, Brazil
| | - Layane Rosa da Silva
- Department of Food Engineering, Technology Centre of the Federal University of Paraíba, 58051-900 João Pessoa, Paraíba, Brazil
| | | | - Mércia de Sousa Galvão
- Department of Food Engineering, Technology Centre of the Federal University of Paraíba, 58051-900 João Pessoa, Paraíba, Brazil
| | - Marcos Dos Santos Lima
- Federal Institute of Educational Science and Technology Sertão Pernambucano, Department of Food Technology, Campus Petrolina, Rod. BR 407 Km 08, S/N, Jardim São Paulo, Petrolina, Pernambuco 56314-520, Brazil.
| | - Evandro Leite de Souza
- Laboratory of Food Microbiology, Department of Nutrition, Health Science Center Federal University of Paraíba, João Pessoa, PB, Brazil.
| | - Marta Suely Madruga
- Department of Food Engineering, Technology Centre of the Federal University of Paraíba, 58051-900 João Pessoa, Paraíba, Brazil.
| | - Louise Emy Kurozawa
- Department of Food Engineering and Technology, Faculty of Food Engineering, State University of Campinas, 13083-862, Campinas, São Paulo, Brazil.
| | - Taliana Kênia Alencar Bezerra
- Department of Food Engineering, Technology Centre of the Federal University of Paraíba, 58051-900 João Pessoa, Paraíba, Brazil.
| |
Collapse
|
2
|
Hassib L, Kanashiro A, Pedrazzi JFC, Vercesi BF, Higa S, Arruda Í, Soares Y, de Jesus de Souza A, Jordão AA, Guimarães FS, Ferreira FR. Should we consider microbiota-based interventions as a novel therapeutic strategy for schizophrenia? A systematic review and meta-analysis. Brain Behav Immun Health 2025; 43:100923. [PMID: 39839986 PMCID: PMC11745983 DOI: 10.1016/j.bbih.2024.100923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 12/04/2024] [Accepted: 12/10/2024] [Indexed: 01/06/2025] Open
Abstract
Schizophrenia is a chronic psychiatric disorder characterized by a variety of symptoms broadly categorized into positive, negative, and cognitive domains. Its etiology is multifactorial, involving a complex interplay of genetic, neurobiological, and environmental factors, and its neurobiology is associated with abnormalities in different neurotransmitter systems. Due to this multifactorial etiology and neurobiology, leading to a wide heterogeneity of symptoms and clinical presentations, current antipsychotic treatments face challenges, underscoring the need for novel therapeutic approaches. Recent studies have revealed differences in the gut microbiome of individuals with schizophrenia compared to healthy controls, establishing an intricate link between this disorder and gastrointestinal health, and suggesting that microbiota-targeted interventions could help alleviate clinical symptoms. Therefore, this meta-analysis investigates whether gut microbiota manipulation can ameliorate psychotic outcomes in patients with schizophrenia receiving pharmacological treatment. Nine studies (n = 417 participants) were selected from 81 records, comprising seven randomized controlled trials and two open-label studies, all with a low risk of bias, included in this systematic review and meta-analysis. The overall combined effect size indicated significant symptom improvement following microbiota treatment (Hedges' g = 0.48, 95% CI = 0.09 to 0.88, p = 0.004, I2 = 62.35%). However, according to Hedges' g criteria, the effect size was small (approaching moderate), and study heterogeneity was moderate based on I2 criteria. This review also discusses clinical and preclinical studies to elucidate the neural, immune, and metabolic pathways by which microbiota manipulation, particularly with Lactobacillus and Bifidobacterium genera, may exert beneficial effects on schizophrenia symptoms via the gut-brain axis. Finally, we address the main confounding factors identified in our systematic review, highlight key limitations, and offer recommendations to guide future high-quality trials with larger participant cohorts to explore microbiome-based therapies as a primary or adjunctive treatment for schizophrenia.
Collapse
Affiliation(s)
- Lucas Hassib
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
- Oswaldo Cruz Foundation, Institute Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | - Alexandre Kanashiro
- Faillace Department of Psychiatry and Behavioral Sciences, Translational Psychiatry Program, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | | | - Bárbara Ferreira Vercesi
- Department of Health Sciences, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Sayuri Higa
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of Sao Paulo, Ribeirão Preto, SP, 14049-900, Brazil
| | - Íris Arruda
- Oswaldo Cruz Foundation, Institute Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | - Yago Soares
- Oswaldo Cruz Foundation, Institute Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | - Adriana de Jesus de Souza
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of Sao Paulo, Ribeirão Preto, SP, 14049-900, Brazil
| | - Alceu Afonso Jordão
- Department of Health Sciences, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Francisco Silveira Guimarães
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of Sao Paulo, Ribeirão Preto, SP, 14049-900, Brazil
| | | |
Collapse
|
3
|
Chen C, Su Y, Li S, Man C, Jiang Y, Qu B, Yang X, Guo L. Advances in oligosaccharides and polysaccharides with different structures as wall materials for probiotics delivery: A review. Int J Biol Macromol 2024; 277:134468. [PMID: 39217037 DOI: 10.1016/j.ijbiomac.2024.134468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/29/2024] [Accepted: 08/02/2024] [Indexed: 09/04/2024]
Abstract
Probiotics are active microorganisms that are beneficial to the health of the host. However, probiotics are highly sensitive to the external environment, and are susceptible to a variety of factors that reduce their activity during production, storage, and use. Microencapsulation is an effective method that enhances probiotic activity. Macromolecules like polysaccharides, who classified as biologically active prebiotics, have attracted significant attention for their utility in probiotic microencapsulation. This article summarized the types of commonly used microencapsulation materials and their structural characteristics from the perspective of polysaccharides prebiotics. It also discussed recent advancements, probiotic-prebiotic microcapsule-based modulation of the immune system, as well as the associated limitations. Furthermore, the advantages and disadvantages of eight prebiotics as microencapsulation wall materials. The honeycomb structure of β-glucan enhances the bioavailability of probiotics, while, fructooligosaccharide and galactooligosaccharides improve microbead structure to tightly encapsulate probiotics. The terminal reducing groups of isomaltooligosaccharides and the free hydroxyl groups in xylooligosaccharides also positively affect the structure of microcapsules. Prebiotics not only enhance the survival rate and biological activity of probiotics as embedding materials during storage, but also exert their own probiotic effects. Collectively, prebiotics holds great promise as microencapsulation materials for probiotics delivery.
Collapse
Affiliation(s)
- Chen Chen
- Key Laboratory of Dairy Science, Ministry of Education, Department of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Yue Su
- Key Laboratory of Dairy Science, Ministry of Education, Department of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Shihang Li
- Key Laboratory of Dairy Science, Ministry of Education, Department of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Chaoxin Man
- Key Laboratory of Dairy Science, Ministry of Education, Department of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Yujun Jiang
- Key Laboratory of Dairy Science, Ministry of Education, Department of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Bo Qu
- Key Laboratory of Dairy Science, Ministry of Education, Department of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Xinyan Yang
- Key Laboratory of Dairy Science, Ministry of Education, Department of Food Science, Northeast Agricultural University, Harbin 150030, China.
| | - Ling Guo
- Key Laboratory of Dairy Science, Ministry of Education, Department of Food Science, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
4
|
Hu Y, Zhang L, Wen QH, Cheng XP, Zhou LQ, Chen MS, Ke DW, Tu ZC. Prebiotic saccharides polymerization improves the encapsulation efficiency, stability, bioaccessibility and gut microbiota modulation of urolithin A liposomes. Int J Biol Macromol 2024; 273:133045. [PMID: 38942666 DOI: 10.1016/j.ijbiomac.2024.133045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 05/30/2024] [Accepted: 06/07/2024] [Indexed: 06/30/2024]
Abstract
This work was to investigate the effect of four prebiotic saccharides gum arabic (GA), fructooligosaccharide (FOS), konjac glucomannan (KGM), and inulin (INU) incorporation on the encapsulation efficiency (EE), physicochemical stability, and in vitro digestion of urolithin A-loaded liposomes (UroA-LPs). The regulation of liposomes on gut microbiota was also investigated by in vitro colonic fermentation. Results indicated that liposomes coated with GA showed the best EE, bioaccessibility, storage and thermal stability, the bioaccessibility was 1.67 times of that of UroA-LPs. The UroA-LPs coated with FOS showed the best freeze-thaw stability and transformation. Meanwhile, saccharides addition remarkably improved the relative abundance of Bacteroidota, reduced the abundances of Proteobacteria and Actinobacteria. The UroA-LPs coated with FOS, INU, and GA exhibited the highest beneficial bacteria abundance of Parabacteroides, Monoglobus, and Phascolarctobacterium, respectively. FOS could also decrease the abundance of harmful bacteria Collinsella and Enterococcus, and increase the levels of acetic acid, butyric acid and iso-butyric acid. Consequently, prebiotic saccharides can improve the EE, physicochemical stability, gut microbiota regulation of UroA-LPs, and promote the bioaccessibility of UroA, but the efficiency varied based on saccharides types, which can lay a foundation for the application of UroA in foods industry and for the enhancement of its bio-activities.
Collapse
Affiliation(s)
- Yue Hu
- National R&D Center of Freshwater Fish Processing, College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Lu Zhang
- National R&D Center of Freshwater Fish Processing, College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi 330022, China.
| | - Qing-Hui Wen
- School of Health, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Xin-Peng Cheng
- National R&D Center of Freshwater Fish Processing, College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Li-Qiang Zhou
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Ming-Shun Chen
- School of Health, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Dai-Wei Ke
- National R&D Center of Freshwater Fish Processing, College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Zong-Cai Tu
- National R&D Center of Freshwater Fish Processing, College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi 330022, China; State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China.
| |
Collapse
|
5
|
McCoubrey LE, Ferraro F, Seegobin N, Verin J, Alfassam HA, Awad A, Marzorati M, Verstrepen L, Ghyselinck J, De Munck J, De Medts J, Steppe E, De Vleeschhauwer V, De Rocker G, Droesbeke A, De Rijck M, Vanthoor S, Moens F, Siepmann J, Siepmann F, Gaisford S, Orlu M, Basit AW. Poly(D,l-lactide-co-glycolide) particles are metabolised by the gut microbiome and elevate short chain fatty acids. J Control Release 2024; 369:163-178. [PMID: 38521168 DOI: 10.1016/j.jconrel.2024.03.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/17/2024] [Accepted: 03/20/2024] [Indexed: 03/25/2024]
Abstract
The production of short chain fatty acids (SCFAs) by the colonic microbiome has numerous benefits for human health, including maintenance of epithelial barrier function, suppression of colitis, and protection against carcinogenesis. Despite the therapeutic potential, there is currently no optimal approach for elevating the colonic microbiome's synthesis of SCFAs. In this study, poly(D,l-lactide-co-glycolide) (PLGA) was investigated for this application, as it was hypothesised that the colonic microbiota would metabolise PLGA to its lactate monomers, which would promote the resident microbiota's synthesis of SCFAs. Two grades of spray dried PLGA, alongside a lactate bolus control, were screened in an advanced model of the human colon, known as the M-SHIME® system. Whilst the high molecular weight (Mw) grade of PLGA was stable in the presence of the microbiota sourced from three healthy humans, the low Mw PLGA (PLGA 2) was found to be metabolised. This microbial degradation led to sustained release of lactate over 48 h and increased concentrations of the SCFAs propionate and butyrate. Further, microbial synthesis of harmful ammonium was significantly reduced compared to untreated controls. Interestingly, both types of PLGA were found to influence the composition of the luminal and mucosal microbiota in a donor-specific manner. An in vitro model of an inflamed colonic epithelium also showed the polymer to affect the expression of pro- and anti-inflammatory markers, such as interleukins 8 and 10. The findings of this study reveal PLGA's sensitivity to enzymatic metabolism in the gut, which could be harnessed for therapeutic elevation of colonic SCFAs.
Collapse
Affiliation(s)
- Laura E McCoubrey
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, United Kingdom
| | - Fabiana Ferraro
- Univ. Lille, Inserm, CHU Lille, U1008, F-59000 Lille, France
| | - Nidhi Seegobin
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, United Kingdom
| | - Jérémy Verin
- Univ. Lille, Inserm, CHU Lille, U1008, F-59000 Lille, France
| | - Haya A Alfassam
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, United Kingdom; Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), 114422 Riyadh, Saudi Arabia
| | - Atheer Awad
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, United Kingdom; Department of Clinical, Pharmaceutical and Biological Sciences, University of Hertfordshire, College Lane, Hatfield AL10 9AB, United Kingdom
| | | | | | | | | | | | - Evi Steppe
- ProDigest BVB, Technologiepark 73, 9052 Ghent, Belgium
| | | | | | | | | | - Sara Vanthoor
- ProDigest BVB, Technologiepark 73, 9052 Ghent, Belgium
| | | | | | | | - Simon Gaisford
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, United Kingdom
| | - Mine Orlu
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, United Kingdom
| | - Abdul W Basit
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, United Kingdom.
| |
Collapse
|
6
|
Almanza-Oliveros A, Bautista-Hernández I, Castro-López C, Aguilar-Zárate P, Meza-Carranco Z, Rojas R, Michel MR, Martínez-Ávila GCG. Grape Pomace-Advances in Its Bioactivity, Health Benefits, and Food Applications. Foods 2024; 13:580. [PMID: 38397557 PMCID: PMC10888227 DOI: 10.3390/foods13040580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/09/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024] Open
Abstract
From a circular economy perspective, the appropriate management and valorization of winery wastes and by-products are crucial for sustainable development. Nowadays, grape pomace (GP) has attracted increasing interest within the food field due to its valuable content, comprising nutritional and bioactive compounds (e.g., polyphenols, organic and fatty acids, vitamins, etc.). Particularly, GP polyphenols have been recognized as exhibiting technological and health-promoting effects in different food and biological systems. Hence, GP valorization is a step toward offering new functional foods and contributing to solving waste management problems in the wine industry. On this basis, the use of GP as a food additive/ingredient in the development of novel products with technological and functional advantages has recently been proposed. In this review, we summarize the current knowledge on the bioactivity and health-promoting effects of polyphenolic-rich extracts from GP samples. Advances in GP incorporation into food formulations (enhancement of physicochemical, sensory, and nutritional quality) and information supporting the intellectual property related to GP potential applications in the food industry are also discussed.
Collapse
Affiliation(s)
- Angélica Almanza-Oliveros
- Laboratorio de Química y Bioquímica, Facultad de Agronomía, Universidad Autónoma de Nuevo León, General Escobedo 66050, Mexico; (A.A.-O.); (Z.M.-C.); (R.R.)
| | - Israel Bautista-Hernández
- Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, 4169-005 Porto, Portugal;
| | - Cecilia Castro-López
- Laboratorio de Biotecnología y Biología Molecular, Departamento de Ciencias Básicas, Universidad Autónoma Agraria Antonio Narro, Saltillo 25315, Coahuila, Mexico;
| | - Pedro Aguilar-Zárate
- Departamento de Ingenierías, Tecnológico Nacional de Mexico/I.T. de Ciudad Valles, San Luis Potosí 79010, Mexico; (P.A.-Z.); (M.R.M.)
- Laboratorio Nacional CONAHCYT de Apoyo a la Evaluación de Productos Bióticos (LaNAEPBi), Unidad de Servicio, Tecnológico Nacional de Mexico/I.T. de Ciudad Valles, San Luis Potosí 79010, Mexico
| | - Zahidd Meza-Carranco
- Laboratorio de Química y Bioquímica, Facultad de Agronomía, Universidad Autónoma de Nuevo León, General Escobedo 66050, Mexico; (A.A.-O.); (Z.M.-C.); (R.R.)
| | - Romeo Rojas
- Laboratorio de Química y Bioquímica, Facultad de Agronomía, Universidad Autónoma de Nuevo León, General Escobedo 66050, Mexico; (A.A.-O.); (Z.M.-C.); (R.R.)
| | - Mariela R. Michel
- Departamento de Ingenierías, Tecnológico Nacional de Mexico/I.T. de Ciudad Valles, San Luis Potosí 79010, Mexico; (P.A.-Z.); (M.R.M.)
- Laboratorio Nacional CONAHCYT de Apoyo a la Evaluación de Productos Bióticos (LaNAEPBi), Unidad de Servicio, Tecnológico Nacional de Mexico/I.T. de Ciudad Valles, San Luis Potosí 79010, Mexico
| | - Guillermo Cristian G. Martínez-Ávila
- Laboratorio de Química y Bioquímica, Facultad de Agronomía, Universidad Autónoma de Nuevo León, General Escobedo 66050, Mexico; (A.A.-O.); (Z.M.-C.); (R.R.)
| |
Collapse
|
7
|
Catassi G, Aloi M, Giorgio V, Gasbarrini A, Cammarota G, Ianiro G. The Role of Diet and Nutritional Interventions for the Infant Gut Microbiome. Nutrients 2024; 16:400. [PMID: 38337684 PMCID: PMC10857663 DOI: 10.3390/nu16030400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/14/2024] [Accepted: 01/19/2024] [Indexed: 02/12/2024] Open
Abstract
The infant gut microbiome plays a key role in the healthy development of the human organism and appears to be influenced by dietary practices through multiple pathways. First, maternal diet during pregnancy and infant nutrition significantly influence the infant gut microbiota. Moreover, breastfeeding fosters the proliferation of beneficial bacteria, while formula feeding increases microbial diversity. The timing of introducing solid foods also influences gut microbiota composition. In preterm infants the gut microbiota development is influenced by multiple factors, including the time since birth and the intake of breast milk, and interventions such as probiotics and prebiotics supplementation show promising results in reducing morbidity and mortality in this population. These findings underscore the need for future research to understand the long-term health impacts of these interventions and for further strategies to enrich the gut microbiome of formula-fed and preterm infants.
Collapse
Affiliation(s)
- Giulia Catassi
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (G.C.); (A.G.); (G.C.)
- Pediatric Gastroenterology and Liver Unit, Sapienza University of Rome, Umberto I Hospital, 00161 Rome, Italy;
| | - Marina Aloi
- Pediatric Gastroenterology and Liver Unit, Sapienza University of Rome, Umberto I Hospital, 00161 Rome, Italy;
| | - Valentina Giorgio
- Department of Woman and Child Health and Public Health, UOC Pediatria, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy;
| | - Antonio Gasbarrini
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (G.C.); (A.G.); (G.C.)
- Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Giovanni Cammarota
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (G.C.); (A.G.); (G.C.)
- Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Gianluca Ianiro
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (G.C.); (A.G.); (G.C.)
- Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| |
Collapse
|
8
|
Tecchio Borsoi F, Ferreira Alves L, Neri-Numa IA, Geraldo MV, Pastore GM. A multi-omics approach to understand the influence of polyphenols in ovarian cancer for precision nutrition: a mini-review. Crit Rev Food Sci Nutr 2023; 65:1037-1054. [PMID: 38091344 DOI: 10.1080/10408398.2023.2287701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2025]
Abstract
The impact of polyphenols in ovarian cancer is widely studied observing gene expression, epigenetic alterations, and molecular mechanisms based on new 'omics' technologies. Therefore, the combination of omics technologies with the use of phenolic compounds may represent a promising approach to precision nutrition in cancer. This article provides an updated review involving the current applications of high-throughput technologies in ovarian cancer, the role of dietary polyphenols and their mechanistic effects in ovarian cancer, and the current status and challenges of precision nutrition and their relationship with big data. High-throughput technologies in different omics science can provide relevant information from different facets for identifying biomarkers for diagnosis, prognosis, and selection of specific therapies for personalized treatment. Furthermore, the field of omics sciences can provide a better understanding of the role of polyphenols and their function as signaling molecules in the prevention and treatment of ovarian cancer. Although we observed an increase in the number of investigations, there are several approaches to data acquisition, analysis, and integration that still need to be improved, and the standardization of these practices still needs to be implemented in clinical trials.
Collapse
Affiliation(s)
- Felipe Tecchio Borsoi
- Laboratory of Bioflavors and Bioactive Compounds, Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas (UNICAMP), Campinas, Brazil
| | - Letícia Ferreira Alves
- Department of Structural and Functional Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Iramaia Angélica Neri-Numa
- Laboratory of Bioflavors and Bioactive Compounds, Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas (UNICAMP), Campinas, Brazil
| | - Murilo Vieira Geraldo
- Department of Structural and Functional Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Glaucia Maria Pastore
- Laboratory of Bioflavors and Bioactive Compounds, Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas (UNICAMP), Campinas, Brazil
| |
Collapse
|
9
|
Marangoni K, Dorneles G, da Silva DM, Pinto LP, Rossoni C, Fernandes SA. Diet as an epigenetic factor in inflammatory bowel disease. World J Gastroenterol 2023; 29:5618-5629. [PMID: 38077158 PMCID: PMC10701328 DOI: 10.3748/wjg.v29.i41.5618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/24/2023] [Accepted: 10/25/2023] [Indexed: 11/07/2023] Open
Abstract
Inflammatory bowel disease (IBD) has as a main characteristic the exacerbation of the immune system against enterocytes, compromising the individual's intestinal microbiota. This inflammatory cascade causes several nutritional deficiencies, which further compromise immunological functioning and, as a result, worsen the prognosis. This vicious cycle can be interrupted as the patient's dietary pattern meets their needs according to their clinical condition, acting directly on the inflammatory process of IBD through the interaction of food, intestinal microbiota, and epigenome. Specific nutritional intervention for IBD has a crucial role in preventing and managing disease activity. This review addresses epigenetic modifications through dietary compounds as a mechanism for modulating the intestinal microbiota of patients with IBD.
Collapse
Affiliation(s)
- Karina Marangoni
- Egas Moniz School of Health and Science, Caparica - Almada, Portugal, Caparica 2820-062, Portugal
- National Institute of Sciences and Technology - Theranostics and Nanobiotechnology, Federal University of Uberlandia - MG, Brazil, Uberlândia 38400-902, Brazil
| | - Gilson Dorneles
- Corporate Social Responsibility, Hospital Moinhos de Vento, Porto Alegre 90035-004, Brazil
| | - Daniella Miranda da Silva
- Postgraduate Program in Gastroenterology, Universidade Federal do Rio Grande do Sul, Porto Alegre 91540-000, Brazil
- Department of Nutrition, Uniasselvi - Group Vitru, Santa Catarina 89082-262, Brazil
| | - Letícia Pereira Pinto
- Postgraduate Program in Hepatology, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre 90050-170, Brazil
| | - Carina Rossoni
- Faculty of Medicine, Institute of Environmental Health, University of Lisbon, Lisboa 1649-026, Portugal
- Master in Physical Activity and Health, Polytechnic Institute of Beja, Beja 7800-000, Portugal
- Degree in Nutrition Sciences, Lusófona University, Lisboa 1749-024, Portugal
| | - Sabrina Alves Fernandes
- Postgraduate Program in Hepatology, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre 90050-170, Brazil
| |
Collapse
|
10
|
Li T, Yang S, Liu X, Li Y, Gu Z, Jiang Z. Dietary neoagarotetraose extends lifespan and impedes brain aging in mice via regulation of microbiota-gut-brain axis. J Adv Res 2023; 52:119-134. [PMID: 37085001 PMCID: PMC10555787 DOI: 10.1016/j.jare.2023.04.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 03/31/2023] [Accepted: 04/16/2023] [Indexed: 04/23/2023] Open
Abstract
INTRODUCTION Dietary oligosaccharides can impact the gut microbiota and confer tremendous health benefits. OBJECTIVES The aim of this study was to determine the impact of a novel functional oligosaccharide, neoagarotetraose (NAT), on aging in mice. METHODS 8-month-old C57BL/6J mice as the natural aging mice model were orally administered with NAT for 12 months. The preventive effect of NAT in Alzheimer's disease (AD) mice was further evaluated. Aging related indicators, neuropathology, gut microbiota and short-chain fatty acids (SCFAs) in cecal contents were analyzed. RESULTS NAT treatment extended the lifespan of these mice by up to 33.3 %. Furthermore, these mice showed the improved aging characteristics and decreased injuries in cerebral neurons. Dietary NAT significantly delayed DNA damage in the brain, and inhibited reduction of tight junction protein in the colon. A significant increase at gut bacterial genus level (such as Lactobacillus, Butyricimonas, and Akkermansia) accompanied by increasing concentrations of SCFAs in cecal contents was observed after NAT treatment. Functional profiling of gut microbiota composition indicated that NAT treatment regulated the glucolipid and bile acid-related metabolic pathways. Interestingly, NAT treatment ameliorated cognitive impairment, attenuated amyloid-β (Aβ) and Tau pathology, and regulated the gut microbiota composition and SCFAs receptor-related pathway of Alzheimer's disease (AD) mice. CONCLUSION NAT mitigated age-associated cerebral injury in mice through gut-brain axis. The findings provide novel evidence for the effect of NAT on anti-aging, and highlight the potential application of NAT as an effective intervention against age-related diseases.
Collapse
Affiliation(s)
- Tao Li
- Key Laboratory of Food Bioengineering (China National Light Industry), College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Shaoqing Yang
- Key Laboratory of Food Bioengineering (China National Light Industry), College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Xiaoyan Liu
- Key Laboratory of Food Bioengineering (China National Light Industry), College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Yanxiao Li
- Department of Nutrition and Health, College of Engineering, China Agricultural University, Beijing, China
| | - Zhenglong Gu
- Division of Nutritional Sciences, Cornell University, NY, USA; Greater Bay Area Institute of Precision Medicine (Guangzhou), Nansha District, Guangzhou 511400, China; Institute of Life Sciences, Fudan University, Shanghai 200433, China.
| | - Zhengqiang Jiang
- Key Laboratory of Food Bioengineering (China National Light Industry), College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.
| |
Collapse
|
11
|
Bester A, O'Brien M, Cotter PD, Dam S, Civai C. Shotgun Metagenomic Sequencing Revealed the Prebiotic Potential of a Fruit Juice Drink with Fermentable Fibres in Healthy Humans. Foods 2023; 12:2480. [PMID: 37444219 DOI: 10.3390/foods12132480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/13/2023] [Accepted: 06/08/2023] [Indexed: 07/15/2023] Open
Abstract
Fibre-based dietary interventions are at the forefront of gut microbiome modulation research, with a wealth of 16S rRNA information to demonstrate the prebiotic effects of isolated fibres. However, there is a distinct lack of data relating to the effect of a combination of soluble and insoluble fibres in a convenient-to-consume fruit juice food matrix on gut microbiota structure, diversity, and function. Here, we aimed to determine the impact of the MOJU Prebiotic Shot, an apple, lemon, ginger, and raspberry fruit juice drink blend containing chicory inulin, baobab, golden kiwi, and green banana powders, on gut microbiota structure and function. Healthy adults (n = 20) were included in a randomised, double-blind, placebo-controlled, cross-over study, receiving 60 mL MOJU Prebiotic Shot or placebo (without the fibre mix) for 3 weeks with a 3-week washout period between interventions. Shotgun metagenomics revealed significant between-group differences in alpha and beta diversity. In addition, the relative abundance of the phyla Actinobacteria and Desulfobacteria was significantly increased as a result of the prebiotic intervention. Nine species were observed to be differentially abundant (uncorrected p-value of <0.05) as a result of the prebiotic treatment. Of these, Bifidobacterium adolescentis and CAG-81 sp900066785 (Lachnospiraceae) were present at increased abundance relative to baseline. Additionally, KEGG analysis showed an increased abundance in pathways associated with arginine biosynthesis and phenylacetate degradation during the prebiotic treatment. Our results show the effects of the daily consumption of 60 mL MOJU Prebiotic Shot for 3 weeks and provide insight into the functional potential of B. adolescentis.
Collapse
Affiliation(s)
- Adri Bester
- London Agri Food Innovation Clinic (LAFIC), School of Applied Sciences, London South Bank University, London SE1 0AA, UK
| | | | | | | | - Claudia Civai
- London Agri Food Innovation Clinic (LAFIC), School of Applied Sciences, London South Bank University, London SE1 0AA, UK
| |
Collapse
|
12
|
Liu ZS, Chen PW. Featured Prebiotic Agent: The Roles and Mechanisms of Direct and Indirect Prebiotic Activities of Lactoferrin and Its Application in Disease Control. Nutrients 2023; 15:2759. [PMID: 37375663 DOI: 10.3390/nu15122759] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
Lactoferrin (LF) is a glycoprotein found in mammalian milk, and lactoferricin is a peptide derived from LF hydrolysate. Both LF and lactoferricin (LFcin) have diverse functions that could benefit mammals. Bovine LF (BLF) and BLFcin exhibit a wide range of antimicrobial activities, but most probiotic strains are relatively resistant to their antibacterial effects. BLF and BLF hydrolysate can promote the growth of specific probiotics depending on the culture conditions, the dose of BLF or BLF-related peptides, and the probiotic strains used. BLF supplementation has been shown to modulate several central molecular pathways or genes in Lacticaseibacillus rhamnosus GG under cold conditions, which may explain the prebiotic roles of BLF. LF alone or in combination with selected probiotics can help control bacterial infections or metabolic disorders, both in animal studies and in human clinical trials. Various LF-expressing probiotics, including those expressing BLF, human LF, or porcine LF, have been developed to facilitate the combination of LFs with specific probiotics. Supplementation with LF-expressing probiotics has positive effects in animal studies. Interestingly, inactivated LF-expressing probiotics significantly improved diet-induced nonalcoholic fatty liver disease (NAFLD) in a mouse model. This review highlights the accumulated evidence supporting the use of LF in combination with selected LF-resistant probiotics or LF-expressing probiotics in the field.
Collapse
Affiliation(s)
- Zhen-Shu Liu
- Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Chiayi 61363, Taiwan
- Department of Safety, Health and Environmental Engineering, Ming Chi University of Technology, New Taipei City 24301, Taiwan
| | - Po-Wen Chen
- Department of Veterinary Medicine, National Chung Hsing University, Taichung 40249, Taiwan
| |
Collapse
|
13
|
He H, Qin Q, Xu F, Chen Y, Rao S, Wang C, Jiang X, Lu X, Xie C. Oral polyphenol-armored nanomedicine for targeted modulation of gut microbiota-brain interactions in colitis. SCIENCE ADVANCES 2023; 9:eadf3887. [PMID: 37235662 PMCID: PMC10219598 DOI: 10.1126/sciadv.adf3887] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 04/20/2023] [Indexed: 05/28/2023]
Abstract
Developing oral nanomedicines that suppress intestinal inflammation while modulating gut microbiota and brain interactions is essential for effectively treating inflammatory bowel disease. Here, we report an oral polyphenol-armored nanomedicine based on tumor necrosis factor-α (TNF-α)-small interfering RNA and gallic acid-mediated graphene quantum dot (GAGQD)-encapsulated bovine serum albumin nanoparticle, with a chitosan and tannin acid (CHI/TA) multilayer. Referred to "armor," the CHI/TA multilayer resists the harsh environment of the gastrointestinal tract and adheres to inflamed colon sites in a targeted manner. TA provides antioxidative stress and prebiotic activities that modulate the diverse gut microbiota. Moreover, GAGQD protected TNF-α-siRNA delivery. Unexpectedly, the armored nanomedicine suppressed hyperactive immune responses and modulated bacterial gut microbiota homeostasis in a mouse model of acute colitis. Notably, the armored nanomedicine alleviated anxiety- and depression-like behaviors and cognitive impairment in mice with colitis. This armor strategy sheds light on the effect of oral nanomedicines on bacterial gut microbiome-brain interactions.
Collapse
Affiliation(s)
- Huan He
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, Sichuan, China
- Key Laboratory of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Qiaozhen Qin
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Fang Xu
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu 215123, China
| | - Yitong Chen
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu 215123, China
| | - Shuquan Rao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Chao Wang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu 215123, China
| | - Xiaoxia Jiang
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Xiong Lu
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, Sichuan, China
- Key Laboratory of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Chaoming Xie
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, Sichuan, China
- Key Laboratory of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| |
Collapse
|
14
|
Grinevich VB, Lazebnik LB, Kravchuk YA, Radchenko VG, Tkachenko EI, Pershko AM, Seliverstov PV, Salikova CP, Zhdanov KV, Kozlov KV, Makienko VV, Potapova IV, Ivanyuk ES, Egorov DV, Sas EI, Korzheva MD, Kozlova NM, Ratnikova AK, Ratnikov VA, Sitkin SI, Bolieva LZ, Turkina CV, Abdulganieva DI, Ermolova TV, Kozhevnikova SA, Tarasova LV, Myazin RG, Khomeriki NM, Pilat TL, Kuzmina LP, Khanferyan RA, Novikova VP, Polunina AV, Khavkin AI. Gastrointestinal disorders in post-COVID syndrome. Clinical guidelines. EXPERIMENTAL AND CLINICAL GASTROENTEROLOGY 2023:4-68. [DOI: 10.31146/1682-8658-ecg-208-12-4-68] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Summary Post- COVID syndrome refers to the long-term consequences of a new coronavirus infection COVID-19, which includes a set of symptoms that develop or persist after COVID-19. Symptoms of gastrointestinal disorders in post- COVID syndrome, due to chronic infl ammation, the consequences of organ damage, prolonged hospitalization, social isolation, and other causes, can be persistent and require a multidisciplinary approach. The presented clinical practice guidelines consider the main preventive and therapeutic and diagnostic approaches to the management of patients with gastroenterological manifestations of postCOVID syndrome. The Guidelines were approved by the 17th National Congress of Internal Medicine and the 25th Congress of Gastroenterological Scientifi c Society of Russia.
Collapse
Affiliation(s)
| | - L. B. Lazebnik
- A. I. Yevdokimov Moscow State University of Medicine and Dentistry
| | | | | | | | | | | | | | | | - K. V. Kozlov
- Military Medical Academy named after S. M. Kirov
| | | | | | | | - D. V. Egorov
- Military Medical Academy named after S. M. Kirov
| | - E. I. Sas
- Military Medical Academy named after S. M. Kirov
| | | | | | - A. K. Ratnikova
- North-West District Scientifi c and Clinical Center named after L. G. Sokolov Federal Medical and Biological Agency
| | - V. A. Ratnikov
- North-West District Scientifi c and Clinical Center named after L. G. Sokolov Federal Medical and Biological Agency
| | - S. I. Sitkin
- North-Western state medical University named after I. I. Mechnikov;
Almazov National Medical Research Centre
| | | | | | | | - T. V. Ermolova
- North-Western state medical University named after I. I. Mechnikov
| | | | | | | | - N. M. Khomeriki
- Moscow Regional Research Clinical Institute n. a. M. F. Vladimirsky”
| | - T. L. Pilat
- Scientifi c Research Institute of labour medicine named after academician N. F. Izmerov
| | - L. P. Kuzmina
- Scientifi c Research Institute of labour medicine named after academician N. F. Izmerov;
I. M. Sechenov First Moscow State Medical University (Sechenov University)
| | | | | | | | - A. I. Khavkin
- Russian National Research Medical University named after N. I. Pirogov
| |
Collapse
|
15
|
Xie A, Zhao S, Liu Z, Yue X, Shao J, Li M, Li Z. Polysaccharides, proteins, and their complex as microencapsulation carriers for delivery of probiotics: A review on carrier types and encapsulation techniques. Int J Biol Macromol 2023; 242:124784. [PMID: 37172705 DOI: 10.1016/j.ijbiomac.2023.124784] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 05/03/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023]
Abstract
Probiotics provide several benefits for humans, including restoring the balance of gut bacteria, boosting the immune system, and aiding in the management of certain conditions such as irritable bowel syndrome and lactose intolerance. However, the viability of probiotics may undergo a significant reduction during food storage and gastrointestinal transit, potentially hindering the realization of their health benefits. Microencapsulation techniques have been recognized as an effective way to improve the stability of probiotics during processing and storage and allow for their localization and slow release in intestine. Although, numerous techniques have been employed for the encapsulation of probiotics, the encapsulation techniques itself and carrier types are the main factors affecting the encapsulate effect. This work summarizes the applications of commonly used polysaccharides (alginate, starch, and chitosan), proteins (whey protein isolate, soy protein isolate, and zein) and its complex as the probiotics encapsulation materials; evaluates the evolutions in microencapsulation technologies and coating materials for probiotics, discusses their benefits and limitations, and provides directions for future research to improve targeted release of beneficial additives as well as microencapsulation techniques. This study provides a comprehensive reference for current knowledge pertaining to microencapsulation in probiotics processing and suggestions for best practices gleaned from the literature.
Collapse
Affiliation(s)
- Aijun Xie
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 119077, Singapore
| | - Shanshan Zhao
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Zifei Liu
- Department of Food Science and Technology, National University of Singapore, 117542, Singapore
| | - Xiqing Yue
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Junhua Shao
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Mohan Li
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China; Department of Food Science and Technology, National University of Singapore, 117542, Singapore.
| | - Zhiwei Li
- Jiangsu Key Laboratory of Oil & Gas Storage and Transportation Technology, Changzhou University, 213164, Jiangsu, China.
| |
Collapse
|
16
|
Andrade MER, Trindade LM, Leocádio PCL, Leite JIA, Dos Reis DC, Cassali GD, da Silva TF, de Oliveira Carvalho RD, de Carvalho Azevedo VA, Cavalcante GG, de Oliveira JS, Fernandes SOA, Generoso SV, Cardoso VN. Association of Fructo-oligosaccharides and Arginine Improves Severity of Mucositis and Modulate the Intestinal Microbiota. Probiotics Antimicrob Proteins 2023; 15:424-440. [PMID: 36631616 DOI: 10.1007/s12602-022-10032-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/07/2022] [Indexed: 01/13/2023]
Abstract
Mucositis is defined as inflammatory and ulcerative lesions along of the gastrointestinal tract that leads to the imbalance of the intestinal microbiota. The use of compounds with action on the integrity of the intestinal epithelium and their microbiota may be a beneficial alternative for the prevention and/or treatment of mucositis. So, the aim of this study was to evaluate the effectiveness of the association of fructo-oligosaccharides (FOS) and arginine on intestinal damage in experimental mucositis. BALB/c mice were randomized into five groups: CTL (without mucositis + saline), MUC (mucositis + saline), MUC + FOS (mucositis + supplementation with FOS-1st until 10th day), MUC + ARG (mucositis + supplementation with arginine-1st until 10th day), and MUC + FOS + ARG (mucositis + supplementation with FOS and arginine-1st until 10th day). On the 7th day, mucositis was induced with an intraperitoneal injection of 300 mg/kg 5-fluorouracil (5-FU), and after 72 h, the animals were euthanized. The results showed that association of FOS and arginine reduced weight loss and oxidative stress (P < 0.05) and maintained intestinal permeability and histological score at physiological levels. The supplementation with FOS and arginine also increased the number of goblet cells, collagen area, and GPR41 and GPR43 gene expression (P < 0.05). Besides these, the association of FOS and arginine modulated intestinal microbiota, leading to an increase in the abundance of the genera Bacteroides, Anaerostipes, and Lactobacillus (P < 0.05) in relation to increased concentration of propionate and acetate. In conclusion, the present results show that the association of FOS and arginine could be important adjuvants in the prevention of intestinal mucositis probably due to modulated intestinal microbiota.
Collapse
Affiliation(s)
- Maria Emília Rabelo Andrade
- Laboratório de Radioisótopos, Departamento de Análise Clínica e Toxicológica, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Av. Presidente Antônio Carlos, 667, Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Luisa Martins Trindade
- Departamento Alimentos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Av. Presidente Antônio Carlos, 667, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Paola Caroline Lacerda Leocádio
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Presidente Antônio Carlos, 667, Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Jacqueline Isaura Alvarez Leite
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Presidente Antônio Carlos, 667, Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Diego Carlos Dos Reis
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Geovanni Dantas Cassali
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Tales Fernando da Silva
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Rodrigo Dias de Oliveira Carvalho
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
- Departamento de Bioquímica e Biofísica, Instituto de Ciências da Saúde, Universidade Federal da Bahia (UFBA), Salvador, Brazil
| | - Vasco Ariston de Carvalho Azevedo
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Gregório Grama Cavalcante
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Presidente Antônio Carlos, 667, Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Jamil Silvano de Oliveira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Presidente Antônio Carlos, 667, Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Simone Odília Antunes Fernandes
- Laboratório de Radioisótopos, Departamento de Análise Clínica e Toxicológica, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Av. Presidente Antônio Carlos, 667, Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Simone Vasconcelos Generoso
- Departamento de Nutrição, Escola de Enfermagem, Universidade Federal de Minas Gerais, Av Professor Alfredo Balena, 190, Belo Horizonte, MG, 30130-100, Brazil
| | - Valbert Nascimento Cardoso
- Laboratório de Radioisótopos, Departamento de Análise Clínica e Toxicológica, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Av. Presidente Antônio Carlos, 667, Minas Gerais, Belo Horizonte, 31270-901, Brazil.
| |
Collapse
|
17
|
Anachad O, Taouil A, Taha W, Bennis F, Chegdani F. The Implication of Short-Chain Fatty Acids in Obesity and Diabetes. Microbiol Insights 2023; 16:11786361231162720. [PMID: 36994236 PMCID: PMC10041598 DOI: 10.1177/11786361231162720] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/21/2023] [Indexed: 03/28/2023] Open
Abstract
Evidence indicates that short-chain fatty acids (SCFAs) generated from the gut microbiota play crucial roles in host metabolism. They contribute to metabolic regulation and energy acquisition of the host by influencing the development of metabolic disorders. This review aims to synthesize recent advances from the literature to investigate the implication of SCFAs in the modulation of obesity and diabetes pathologies. For a better understanding of the relationships between SCFAs and host metabolism, we need to answer some questions: What is the biochemistry of SCFAs, and how they are generated by gut microbiota? What are the bacteria producing of SCFAs and from which routes? How SCFAs are absorbed and transported in the gut by different mechanisms and receptors? How SCFAs involved in obesity and diabetes pathologies?
Collapse
Affiliation(s)
- Oumaima Anachad
- Laboratory of Immunology and biodiversity, Faculty of Sciences Aïn Chock, Hassan II University of Casablanca, Casablanca, Morocco
| | - Amine Taouil
- Laboratory of Immunology and biodiversity, Faculty of Sciences Aïn Chock, Hassan II University of Casablanca, Casablanca, Morocco
| | - Wafaa Taha
- Laboratory of Immunology and biodiversity, Faculty of Sciences Aïn Chock, Hassan II University of Casablanca, Casablanca, Morocco
| | - Faiza Bennis
- Laboratory of Immunology and biodiversity, Faculty of Sciences Aïn Chock, Hassan II University of Casablanca, Casablanca, Morocco
| | - Fatima Chegdani
- Laboratory of Immunology and biodiversity, Faculty of Sciences Aïn Chock, Hassan II University of Casablanca, Casablanca, Morocco
| |
Collapse
|
18
|
Zhang L, Xiao H, Zhao L, Liu Z, Chen L, Liu C. Comparison of the Effects of Prebiotics and Synbiotics Supplementation on the Immune Function of Male University Football Players. Nutrients 2023; 15:nu15051158. [PMID: 36904156 PMCID: PMC10004888 DOI: 10.3390/nu15051158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/23/2023] [Accepted: 02/23/2023] [Indexed: 03/03/2023] Open
Abstract
This study was conducted to compare the effects of long-term prebiotic and synbiotic supplementations on the immunosuppression of male football players after daily high-intensity training and a one-time strenuous exercise. A total of 30 male university student-athletes were recruited and randomly assigned to the prebiotic (PG, n = 15) or synbiotic group (SG, n = 15), receiving a prebiotic or synbiotic once per day for six weeks. Physiological assessments were conducted by a maximal oxygen uptake (VO2max) test and an exhaustive constant load exercise (75% VO2max test). Inflammatory cytokine and secretory immunoglobulin A (SIgA) were measured. VO2max, maximal heart rate (HRmax), and lactic acid elimination rate (ER) were used to evaluate aerobic capacity. Upper respiratory tract infection (URTI) complaints were evaluated using a questionnaire. URTI incidence and duration were significantly lower in the SG group than that in the PG group (p < 0.05). At baseline, SIgA and interleukin-1β (IL-1β) levels in the SG group (p < 0.01) as well as IL-1β and IL-6 in the PG group (p < 0.05) were significantly increased, and IL-4 concentration was markedly reduced in the PG group (p < 0.01). The concentrations of IL-4, IL-10 and transforming growth factor-β1 (TGF-β1) were significantly reduced in the PG and SG group immediately after the constant load exercise. Significantly decreased HRmax and enhanced ER (increased by 193.78%) were detected in the SG group, not in the PG group, during the constant load experiment (p < 0.05) and the recovery period (p < 0.01), respectively. However, VO2max value was not changed. These data suggest that synbiotic supplementation for six weeks has a more positive effect than prebiotics on the immune function and athletic performance of male university football players.
Collapse
Affiliation(s)
- Lufang Zhang
- Department of Exercise Physiology, School of Sport Science, Beijing Sport University, Beijing 100084, China
| | - Hui Xiao
- School of China Football Sports, Beijing Sport University, Beijing 100084, China
| | - Li Zhao
- Department of Exercise Physiology, School of Sport Science, Beijing Sport University, Beijing 100084, China
| | - Zeting Liu
- Department of Mathematic Science, School of Sport Engineering, Beijing Sport University, Beijing 100084, China
| | - Lanmu Chen
- Department of Exercise Physiology, School of Sport Science, Beijing Sport University, Beijing 100084, China
| | - Chenzhe Liu
- Department of Exercise Physiology, School of Sport Science, Beijing Sport University, Beijing 100084, China
- Correspondence:
| |
Collapse
|
19
|
Subcritical Fluid Process for Producing Mannooligosaccharide-Rich Carbohydrates from Coconut Meal and Their In Vitro Fermentation. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02954-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
20
|
Dietary polyphenols and their relationship to the modulation of non-communicable chronic diseases and epigenetic mechanisms: A mini-review. FOOD CHEMISTRY. MOLECULAR SCIENCES 2022; 6:100155. [PMID: 36582744 PMCID: PMC9793217 DOI: 10.1016/j.fochms.2022.100155] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 10/18/2022] [Accepted: 12/11/2022] [Indexed: 12/14/2022]
Abstract
Chronic Non-Communicable Diseases (NCDs) have been considered a global health problem, characterized as diseases of multiple factors, which are developed throughout life, and regardless of genetics as a risk factor of important relevance, the increase in mortality attributed to the disease to environmental factors and the lifestyle one leads. Although the reactive species (ROS/RNS) are necessary for several physiological processes, their overproduction is directly related to the pathogenesis and aggravation of NCDs. In contrast, dietary polyphenols have been widely associated with minimizing oxidative stress and inflammation. In addition to their antioxidant power, polyphenols have also drawn attention for being able to modulate both gene expression and modify epigenetic alterations, suggesting an essential involvement in the prevention and/or development of some pathologies. Therefore, this review briefly explained the mechanisms in the development of some NCDs, followed by a summary of some evidence related to the interaction of polyphenols in oxidative stress, as well as the modulation of epigenetic mechanisms involved in the management of NCDs.
Collapse
Key Words
- 8-oxodG, 8-oxo-2́deosyguanosine
- ABCG, ATP Binding Cassette Subfamily G Member
- ADAM10, α-secretase
- ADRB3, adrenoceptor Beta 3
- APP, amyloid-β precursor protein
- ARF, auxin response factor
- ARH-I, aplysia ras homology member I
- ARHGAP24, Rho GTPase Activating Protein 24
- ATF6, activating transcription factor 6
- ATP2A3, ATPase Sarcoplasmic/Endoplasmic Reticulum Ca2+ Transporting 3
- BCL2L14, apoptosis facilitator Bcl-2-like protein 14
- Bioactive compounds
- CDH1, cadherin-1
- CDKN, cyclin dependent kinase inhibitor
- CPT, carnitine palmitoyltransferase
- CREBH, cyclic AMP-responsive element-binding protein H
- DANT2, DXZ4 associated non-noding transcript 2, distal
- DAPK1, death-associated protein kinase 1
- DNA methylation
- DNMT, DNA methyltransferase
- DOT1L, disruptor of telomeric silencing 1-like
- EWASs, epigenome-wide association studies
- EZH2, Enhancer of zeste homolog 2
- FAS, Fas cell Surface Death Receptor
- GDNF, glial cell line-derived neurotrophic factor
- GFAP, glial fibrillary acid protein
- GSTP1, Glutathione S-transferases P1
- Gut microbiota modulation
- HAT, histone acetylases
- HDAC, histone deacetylases
- HSD11B2, 11 beta-hydroxysteroid dehydrogenase type 2
- Histone modifications
- IGFBP3, insulin-like growth factor-binding protein 3
- IGT, impaired glucose tolerance
- KCNK3, potassium two pore domain channel subfamily K Member 3
- MBD4, methyl-CpG binding domain 4
- MGMT, O-6-methylguanine-DNA methyltransferase
- NAFLD, Non-alcoholic fatty liver disease
- OCT1, Organic cation transporter 1
- OGG1, 8-Oxoguanine DNA Glycosylase
- Oxidative stress
- PAI-1, plasminogen activator inhibitor 1
- PHOSPHO1, Phosphoethanolamine/Phosphocholine Phosphatase 1
- PLIN1, perilipin 1
- POE3A, RNA polymerase III
- PPAR, peroxisome proliferator-activated receptor
- PPARGC1A, PPARG coactivator 1 alpha
- PRKCA, Protein kinase C alpha
- PTEN, phosphatase and tensin homologue
- Personalized nutrition
- RASSF1A, Ras association domain family member 1
- SAH, S -adenosyl-l-homocysteine
- SAM, S-adenosyl-methionine
- SD, sleep deprivation
- SOCS3, suppressor of cytokine signaling 3
- SREBP-1C, sterol-regulatory element binding protein-1C
- TBX2, t-box transcription factor 2
- TCF7L2, transcription factor 7 like 2
- TET, ten-eleven translocation proteins
- TNNT2, cardiac muscle troponin T
- TPA, 12-O-tetradecanoylphorbol-13-acetate
- lncRNA, long non-coding RNA
- ncRNA, non-coding RNA
- oAβ-induced-LTP, oligomeric amyloid-beta induced long term potentiation
Collapse
|
21
|
Marín-Tello C, Jintaridth P, Sanchez F, González C, Zelada-Castillo L, Vásquez-Arqueros A, Guevara-Vásquez A, Vieira A. Epigenetic regulation by metabolites from the gut microbiome. Benef Microbes 2022; 13:437-444. [PMID: 36377583 DOI: 10.3920/bm2022.0006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The gut microbiome can metabolise food components, such as dietary fibres and various phytochemicals; and the microbiome can also synthesise some nutrients, for example B vitamins. The metabolites produced by bacteria and other micro-organisms in the colon can have implications for health and disease risk. Some of these metabolites are epigenetically active, and can contribute to changes in the chemical modification and structure of chromatin by affecting the activity and expression of epigenetically-active enzymes, for example histone deacetylases and DNA methyltransferases. The epigenetic activity of such gut microbiome metabolites is reviewed herein.
Collapse
Affiliation(s)
- C Marín-Tello
- Food, Metabolism, and Physiology Laboratory, Facultad de Farmacia y Bioquímica, Universidad Nacional de Trujillo, Trujillo 13008, Perú
| | - P Jintaridth
- Department of Tropical Nutrition and Food Science, The Faculty of Tropical Medicine, Mahidol University, 420/6 Rachavithi Road, Rachathevi, Payatai, Bangkok 10400, Thailand
| | - F Sanchez
- Instituto De Educacion Superior Tecnológico Público, 103, Lonya Grande 01556, Perú
| | - C González
- CITE Agroindustrial Chavimochic, Virú 044, Perú
| | - L Zelada-Castillo
- Food, Metabolism, and Physiology Laboratory, Facultad de Farmacia y Bioquímica, Universidad Nacional de Trujillo, Trujillo 13008, Perú
| | - A Vásquez-Arqueros
- Food, Metabolism, and Physiology Laboratory, Facultad de Farmacia y Bioquímica, Universidad Nacional de Trujillo, Trujillo 13008, Perú
| | - A Guevara-Vásquez
- Food, Metabolism, and Physiology Laboratory, Facultad de Farmacia y Bioquímica, Universidad Nacional de Trujillo, Trujillo 13008, Perú
| | - A Vieira
- Nutrition and Metabolism Research Laboratory, BPK-9625, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, V5A 1S6, Canada
| |
Collapse
|
22
|
Huang R, Zhang R, Yao S, Si M, Xia R, Zhou X, Fan X, Jiang K. Glutamic acid assisted hydrolysis strategy for preparing prebiotic xylooligosaccharides. Front Nutr 2022; 9:1030685. [PMID: 36324624 PMCID: PMC9618876 DOI: 10.3389/fnut.2022.1030685] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 09/29/2022] [Indexed: 03/04/2024] Open
Abstract
Since the immune-boosting properties as well as the benefit of promoting the growth of gut bacteria, xylooligosaccharides as prebiotics have attracted considerable interest as functional feed additives around the world. A growing number of studies suggest that acidic hydrolysis is the most cost-effective method for treating xylan materials to prepare xylooligosaccharides, and organic acids were proved to be more preferable. Therefore, in this study, glutamic acid, as an edible and nutritive organic acid, was employed as a catalyst for hydrolyzing xylan materials to prepare xylooligosaccharides. Further, xylooligosaccharide yields were optimized using the response surface methodology with central composite designs. Through the response surface methodology, 28.2 g/L xylooligosaccharides with the desirable degree of polymerization (2-4) at a yield of 40.5 % could be achieved using 4.5% glutamic acid at 163°C for 41 min. Overall, the application of glutamic acid as a catalyst could be a potentially cost-effective method for producing xylooligosaccharides.
Collapse
Affiliation(s)
- Rong Huang
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, China
| | - Rui Zhang
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, China
- Jiangsu Co-innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Shuangquan Yao
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Mengyuan Si
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, China
| | - Ruowen Xia
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, China
| | - Xin Zhou
- Jiangsu Co-innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Xingli Fan
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, China
| | - Kankan Jiang
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
23
|
Synbiotics and Their Antioxidant Properties, Mechanisms, and Benefits on Human and Animal Health: A Narrative Review. Biomolecules 2022; 12:biom12101443. [PMID: 36291652 PMCID: PMC9599591 DOI: 10.3390/biom12101443] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/04/2022] [Accepted: 10/07/2022] [Indexed: 12/01/2022] Open
Abstract
Antioxidants are often associated with a variety of anti-aging compounds that can ensure human and animal health longevity. Foods and diet supplements from animals and plants are the common exogenous sources of antioxidants. However, microbial-based products, including probiotics and their derivatives, have been recognized for their antioxidant properties through numerous studies and clinical trials. While the number of publications on probiotic antioxidant capacities and action mechanisms is expanding, that of synbiotics combining probiotics with prebiotics is still emerging. Here, the antioxidant metabolites and properties of synbiotics, their modes of action, and their different effects on human and animal health are reviewed and discussed. Synbiotics can generate almost unlimited possibilities of antioxidant compounds, which may have superior performance compared to those of their components through additive or complementary effects, and especially by synergistic actions. Either combined with antioxidant prebiotics or not, probiotics can convert these substrates to generate antioxidant compounds with superior activities. Such synbiotic-based new routes for supplying natural antioxidants appear relevant and promising in human and animal health prevention and treatment. A better understanding of various component interactions within synbiotics is key to generating a higher quality, quantity, and bioavailability of antioxidants from these biotic sources.
Collapse
|
24
|
Pilat TL, Minushkin ON, Lazebnik LB, Zverkov IV, Kuznetsova YG, Khanferyan RA. Features of diet therapy for H. pylori associated diseases of the gastrointestinal tract. MEDITSINSKIY SOVET = MEDICAL COUNCIL 2022:46-61. [DOI: 10.21518/2079-701x-2022-16-15-46-61] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
This review of the literature is devoted to the importance of nutritional support in the treatment and prevention of diseases of the gastrointestinal tract associated with Helicobacter pylori. Modern data on the biological properties of H. pylori and the mechanisms of colonization of the microorganism in the gastrointestinal mucosa are presented. Information is provided on the virulence factors and factors that promote adhesion, depolymerization and dissolution of protective mucus, damage and circulatory disorders of the gastrointestinal mucosa, secreted by H. pylori (lipopolysaccharides and proteins of the outer shell of the bacterium, enzymes – mucinase, protease, phospholipase, urease, VacA cytotoxin). The article pays special attention to the issues of diet therapy, the role of various foods and their components in the dietary correction of disorders in gastrointestinal diseases associated with H. pylori. The causes of nutritional disorders in patients with gastrointestinal diseases are described and a detailed description of food products and their biologically active components with anti-Helicobacter activity is given. A special section is devoted to the use and effectiveness of specialized dietary products for therapeutic and preventive nutrition of domestic production (LLC “Leovit nutria”) and the features of use in diseases of the gastrointestinal tract mediated by H. pylori. The authors provide information on the composition of dietary products, their anti-inflammatory, antioxidant, immunotropic and other activities that underlie clinical efficacy. The article provides detailed recommendations on the use of specialized dietary foods for this pathology.
Collapse
Affiliation(s)
- T. L. Pilat
- Izmerov Research Institute of Occupational Health
| | - O. N. Minushkin
- Central State Medical Academy of Department for Presidential Affairs of the Russian Federation
| | - L. B. Lazebnik
- Yevdokimov Moscow State University of Medicine and Dentistry
| | - I. V. Zverkov
- Central State Medical Academy of Department for Presidential Affairs of the Russian Federation
| | | | | |
Collapse
|
25
|
Roussel C, Anunciação Braga Guebara S, Plante PL, Desjardins Y, Di Marzo V, Silvestri C. Short-term supplementation with ω-3 polyunsaturated fatty acids modulates primarily mucolytic species from the gut luminal mucin niche in a human fermentation system. Gut Microbes 2022; 14:2120344. [PMID: 36109831 PMCID: PMC9481098 DOI: 10.1080/19490976.2022.2120344] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Consumption of omega-3 polyunsaturated fatty acids (ω-3 PUFAs) eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) provides multifaceted health benefits. Recent studies suggest that ω-3 PUFAs modulate the gut microbiota by enhancing health-promoting bacteria, such as the mucin specialist Akkermansia muciniphila. However, these prebiotic properties have been poorly investigated and direct effects on the gut microbiome have never been explored dynamically across gut regions and niches (lumen vs. mucus-associated microbiota). Thus, we studied the effects of 1 week EPA- and DHA-enriched ω-3 fish-oil supplementation on the composition and functionality of the human microbiome in a Mucosal Simulator of the Human Intestinal Microbial Ecosystem (M-SHIME®). Gut microbial communities derived from one individual harvested in two different seasons were tested in duplicate. Luminal and outer mucus-associated microbiota of the ileum, ascending, transverse and descending colons were cultivated over 28 d from fecal inoculates and supplemented with ω-3 PUFAs for the last 7 d. We show that ω-3 PUFA supplementation modulates the microbiota in a gut region- and niche-dependent fashion. The outer mucus-associated microbiota displayed a higher resilience than the luminal mucin habitat to ω-3 PUFAs, with a remarkable blooming of Akkermansia muciniphila in opposition to a decrease of Firmicutes-mucolytic bacteria. The ω-3 PUFAs also induced a gradual and significant depletion of non-mucolytic Clostridia members in luminal habitats. Finally, increased concentrations of the short chain fatty acids (SCFA) propionate in colon regions at the end of the supplementation was associated positively with the bloom of Akkermansia muciniphila and members of the Desulfovibrionia class.
Collapse
Affiliation(s)
- Charlène Roussel
- Institute of Nutrition and Functional Foods (INAF), Faculty of Agriculture and Food Sciences, Laval University, Quebec, QC, Canada,Centre Nutrition, Santé et Société (NUTRISS), INAF Laval University, Quebec, QC, Canada,Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, CRIUCPQ Laval University, Quebec, QC, Canada
| | - Sara Anunciação Braga Guebara
- Institute of Nutrition and Functional Foods (INAF), Faculty of Agriculture and Food Sciences, Laval University, Quebec, QC, Canada,Centre Nutrition, Santé et Société (NUTRISS), INAF Laval University, Quebec, QC, Canada,Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, CRIUCPQ Laval University, Quebec, QC, Canada
| | - Pier-Luc Plante
- Institute of Nutrition and Functional Foods (INAF), Faculty of Agriculture and Food Sciences, Laval University, Quebec, QC, Canada,Centre Nutrition, Santé et Société (NUTRISS), INAF Laval University, Quebec, QC, Canada,Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, CRIUCPQ Laval University, Quebec, QC, Canada
| | - Yves Desjardins
- Institute of Nutrition and Functional Foods (INAF), Faculty of Agriculture and Food Sciences, Laval University, Quebec, QC, Canada,Centre Nutrition, Santé et Société (NUTRISS), INAF Laval University, Quebec, QC, Canada
| | - Vincenzo Di Marzo
- Institute of Nutrition and Functional Foods (INAF), Faculty of Agriculture and Food Sciences, Laval University, Quebec, QC, Canada,Centre Nutrition, Santé et Société (NUTRISS), INAF Laval University, Quebec, QC, Canada,Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, CRIUCPQ Laval University, Quebec, QC, Canada,Faculty of Medicine, Department of Medicine, Laval University, Quebec, QC, Canada,CONTACT Vincenzo Di Marzo Institute of Nutrition and Functional Foods (INAF), Faculty of Agriculture and Food Sciences, Laval University, Quebec, QC, Canada
| | - Cristoforo Silvestri
- Institute of Nutrition and Functional Foods (INAF), Faculty of Agriculture and Food Sciences, Laval University, Quebec, QC, Canada,Centre Nutrition, Santé et Société (NUTRISS), INAF Laval University, Quebec, QC, Canada,Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, CRIUCPQ Laval University, Quebec, QC, Canada,Faculty of Medicine, Department of Medicine, Laval University, Quebec, QC, Canada,Cristoforo Silvestri Faculty of Medicine, Department of Medicine Laval University, Quebec, QC, Canada
| |
Collapse
|
26
|
Massa NML, de Oliveira SPA, Rodrigues NPA, Menezes FNDD, dos Santos Lima M, Magnani M, de Souza EL. In vitro colonic fermentation and potential prebiotic properties of pre-digested jabuticaba (Myrciaria jaboticaba (Vell.) Berg) by-products. Food Chem 2022; 388:133003. [DOI: 10.1016/j.foodchem.2022.133003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 03/17/2022] [Accepted: 04/16/2022] [Indexed: 11/04/2022]
|
27
|
Kumari A, Bhawal S, Kapila S, Kapila R. Strain-specific effects of probiotic Lactobacilli on mRNA expression of epigenetic modifiers in intestinal epithelial cells. Arch Microbiol 2022; 204:411. [PMID: 35729284 DOI: 10.1007/s00203-022-03027-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/18/2022] [Accepted: 05/30/2022] [Indexed: 11/27/2022]
Abstract
The epigenome of an organism is as important as the genome for the normal development and functioning of an individual. The human epigenome can be affected by various environmental factors including nutrients, microbiota and probiotics through epigenetic modifiers and mediates various health-promoting effects. The present study was aimed to explore the temporal changes in DNA and histone modifiers (DNMT1, TET2, p300, HDAC1, KMT2A, KDM5B, EzH2 and JMJD3) in intestinal epithelial cells (Caco-2) by probiotic lactobacilli (Limosilactobacillus fermentum MTCC 5898 and Lacticaseibacillus rhamnosus MTCC 5897) in comparison to opportunistic commensal pathogen Escherichia coli (ATCC 14849). Cells were treated separately with probiotic strains and E. coli for different durations and temporal changes in gene expression among DNA and histone modifiers were measured. Time-dependent studies showed that L. fermentum enhanced the transcription of epigenetic modifiers at 12 h of treatment (P < 0.05) contrary to E. coli which reduced the expression of these genes during the same duration of treatment. On the other hand, probiotic L. rhamnosus was not able to induce any significant changes in gene expression of these modifiers. Furthermore, during the exclusion of E. coli by L. fermentum, the probiotic was found to resist the changes made by E. coli in the transcription of some of the epigenetic modifiers. Thus, it is concluded that the probiotics modulated the mRNA expression of DNA and histone modifiers contrarily to E. coli in a strain-specific manner.
Collapse
Affiliation(s)
- Ankita Kumari
- Division of Animal Biochemistry, National Dairy Research Institute (NDRI), Karnal, Haryana, 132001, India
| | - Shalaka Bhawal
- Division of Animal Biochemistry, National Dairy Research Institute (NDRI), Karnal, Haryana, 132001, India
| | - Suman Kapila
- Division of Animal Biochemistry, National Dairy Research Institute (NDRI), Karnal, Haryana, 132001, India
| | - Rajeev Kapila
- Division of Animal Biochemistry, National Dairy Research Institute (NDRI), Karnal, Haryana, 132001, India.
| |
Collapse
|
28
|
Zhang N, Jin M, Wang K, Zhang Z, Shah NP, Wei H. Functional oligosaccharide fermentation in the gut: Improving intestinal health and its determinant factors-A review. Carbohydr Polym 2022; 284:119043. [PMID: 35287885 DOI: 10.1016/j.carbpol.2021.119043] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 12/21/2021] [Accepted: 12/21/2021] [Indexed: 12/17/2022]
Abstract
The human intestine is characterized by an abundance of nutrients and a complex microbiota that make crucial contributions to overall health. These nutrients facilitate the adaptation of resident commensals to extreme environments and the development of a robust ecological network in host species. Long-term deprivation of microbiota-accessible carbohydrates (MACs) in the gut results in a loss of bacterial diversity, disruption of intestinal barrier function, and inflammatory diseases. Functional oligosaccharides are excellent MACs possessing important prebiotic properties for intestinal health through their fermentation in the gut. Its mechanism of action is predominantly attributed to acting as carbon sources for specific probiotics, promoting short-chain fatty acids production, and regulating the gut microbiota. In this review, we describe the source and structural characteristics of functional oligosaccharides, provide a framework for strategies to improve intestinal health by oligosaccharide fermentation and discuss structural determinants influencing the functional properties of oligosaccharides.
Collapse
Affiliation(s)
- Na Zhang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, Jiangxi, China
| | - Mingliang Jin
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Kaiming Wang
- Department of Physiology, CEGIIR, University of Alberta, Edmonton T6G 2E1, Alberta, Canada
| | - Zhihong Zhang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, Jiangxi, China; Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, Jiangxi, China.
| | - Nagendra P Shah
- Food and Nutritional Science, School of Biological Science, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Hua Wei
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, Jiangxi, China; Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, Jiangxi, China
| |
Collapse
|
29
|
Cheng L, Kong L, Xia C, Zeng X, Wu Z, Guo Y, Pan D. Sources, Processing-Related Transformation, and Gut Axis Regulation of Conventional and Potential Prebiotics. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:4509-4521. [PMID: 35389646 DOI: 10.1021/acs.jafc.2c00168] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
One strategy to achieve a balanced intestinal microbiota is to introduce prebiotics. Some substances present in the diet, such as soybean extracts, koji glycosylceramides, grape extracts, tea polyphenols, and seaweed extracts, can be considered as potential prebiotics, because they can selectively stimulate the proliferation of beneficial bacteria in the intestine. However, the discovery of novel prebiotics also involves advances in screening methods and the use of thermal and non-thermal processing techniques to modify and enhance the properties of beneficial organisms. The health benefits of prebiotics are also reflected by their participation in regulating the microbiota in different gut axes. In the present review, we introduced the field of prebiotics, focusing on potential prebiotic substances, the process of screening potential prebiotics, the transformation of prebiotics by food-processing technologies, and the roles of prebiotics on gut axis regulation, which, it is hoped, will promote the discovery and utilization of novel prebiotics.
Collapse
Affiliation(s)
- Lu Cheng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo, Zhejiang 315211, People's Republic of China
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang 315800, People's Republic of China
| | - Lingyu Kong
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo, Zhejiang 315211, People's Republic of China
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang 315800, People's Republic of China
| | - Chaoran Xia
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo, Zhejiang 315211, People's Republic of China
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang 315800, People's Republic of China
| | - Xiaoqun Zeng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo, Zhejiang 315211, People's Republic of China
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang 315800, People's Republic of China
| | - Zhen Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo, Zhejiang 315211, People's Republic of China
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang 315800, People's Republic of China
| | - Yuxing Guo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo, Zhejiang 315211, People's Republic of China
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu 210097, People's Republic of China
| | - Daodong Pan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo, Zhejiang 315211, People's Republic of China
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang 315800, People's Republic of China
| |
Collapse
|
30
|
Narli MB, Ozcan T. Assessment of bifidogenic potential of cowpea (Vigna unguiculata (L.) Walp.) extract in in vitro and milk fermentation models. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
31
|
de la Rosa O, Flores‐Gallegos AC, Ascacio‐Valdés JA, Sepúlveda L, Montáñez JC, Aguilar CN. Fructooligosaccharides as Prebiotics, their Metabolism, and Health Benefits. PROBIOTICS, PREBIOTICS AND SYNBIOTICS 2022:307-337. [DOI: 10.1002/9781119702160.ch13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
32
|
Awad A, Madla CM, McCoubrey LE, Ferraro F, Gavins FK, Buanz A, Gaisford S, Orlu M, Siepmann F, Siepmann J, Basit AW. Clinical translation of advanced colonic drug delivery technologies. Adv Drug Deliv Rev 2022; 181:114076. [PMID: 34890739 DOI: 10.1016/j.addr.2021.114076] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 10/26/2021] [Accepted: 12/02/2021] [Indexed: 12/12/2022]
Abstract
Targeted drug delivery to the colon offers a myriad of benefits, including treatment of local diseases, direct access to unique therapeutic targets and the potential for increasing systemic drug bioavailability and efficacy. Although a range of traditional colonic delivery technologies are available, these systems exhibit inconsistent drug release due to physiological variability between and within individuals, which may be further exacerbated by underlying disease states. In recent years, significant translational and commercial advances have been made with the introduction of new technologies that incorporate independent multi-stimuli release mechanisms (pH and/or microbiota-dependent release). Harnessing these advanced technologies offers new possibilities for drug delivery via the colon, including the delivery of biopharmaceuticals, vaccines, nutrients, and microbiome therapeutics for the treatment of both local and systemic diseases. This review details the latest advances in colonic drug delivery, with an emphasis on emerging therapeutic opportunities and clinical technology translation.
Collapse
|
33
|
Current clinical translation of microbiome medicines. Trends Pharmacol Sci 2022; 43:281-292. [DOI: 10.1016/j.tips.2022.02.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 02/01/2022] [Accepted: 02/02/2022] [Indexed: 12/17/2022]
|
34
|
Liu J, Li X, Song F, Cui S, Lu W, Zhao J, Zhang H, Gu Z, Chen W. Dietary supplementation with low-dose xylooligosaccharide promotes the anti-Salmonella activity of probiotic Lactiplantibacillus plantarum ZS2058 in a murine model. Food Res Int 2022; 151:110858. [PMID: 34980394 DOI: 10.1016/j.foodres.2021.110858] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 09/22/2021] [Accepted: 12/01/2021] [Indexed: 11/17/2022]
Abstract
Oligosaccharides have been previously reported to cause an aggravation of Salmonella infection. In this study, we reduced the dietary supplementation of oligosaccharides (1% w/w) and studied their effects on the anti-Salmonella activity of probiotic Lactiplantibacillus plantarum (L. plantarum) ZS2058. The results showed that among all five studied oligosaccharides, only xylooligosaccharide (XOS) promoted the anti-Salmonella activity of L. plantarum ZS2058 by increasing the survival rate of the infected mice (66.7% vs. 53.3%). Further study revealed that XOS did not function synergistically with L. plantarum ZS2058, as XOS itself did not improve the survival rate of the infected mice. In an in vitro coculture system, XOS significantly promoted the antagonistic activity (92% increase) of L. plantarum ZS2058 against Salmonella. In Salmonella-infected mice, the combination of XOS and L. plantarum ZS2058 significantly increased the faecal content of short-chain fatty acids (SCFAs) and restored the production of proinflammatory cytokines. More importantly, XOS, L. plantarum ZS2058 and their combination changed the gut microbiota into distinct profiles. Linear Discriminant Analysis (LDA) effect size (LEfSe) analysis identified five taxa as marker bacteria for mice treated with a combination of XOS and L. plantarum ZS2058. In particular, Mucispirillum, which was previously reported to protect the host from Salmonella infection, was increased. Here, we showed that low dose XOS could promote the anti-Salmonella activity of the probiotic L. plantarum ZS2058. These results offer new opportunities to cope with this predominant food-borne pathogen with great efficiency and to lay a foundation for developing functional foods with anti-Salmonella potential.
Collapse
Affiliation(s)
- Junsheng Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Xiangfei Li
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, PR China
| | - Fanfen Song
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Shumao Cui
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Wenwei Lu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Zhennan Gu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, PR China.
| |
Collapse
|
35
|
Global genome and comparative transcriptomic analysis reveal the inulin consumption strategy of Lactiplantibacillus plantarum QS7T. Food Res Int 2022; 151:110846. [PMID: 34980384 DOI: 10.1016/j.foodres.2021.110846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 11/01/2021] [Accepted: 11/27/2021] [Indexed: 11/21/2022]
Abstract
Sichuan pickle is a natural combination of probiotics and dietary fibers, in which a strain Lactiplantibacillus plantarum QS7T was found to be capable of efficiently metabolizing inulin. However, the underlying molecular mechanism of inulin consumption by the strain QS7T is unclear. Therefore, this study firstly investigated the metabolic characteristics of inulin in the strain QS7T, and the results showed it could grow very well on the medium containing inulin as a carbon source (maximum OD600 nm, 1.891 ± 0.028) and degrade both short-chain oligofructose and long-chain fructan components through thin layer chromatography analysis. Genomic sequencing and analysis revealed a high percentage of functional genes associated with carbohydrate transport and metabolism, particularly glycoside hydrolase (GH) genes responsible for hydrolysing carbohydrates, within the genome of the strain QS7T. Furthermore, comparative transcriptomic analysis of L. plantarum QS7T in response to inulin or glucose indicated that functional genes associated with inulin consumption including several genes encoding PTS sugar transporters and two predicted GH32 family genes encoding beta-fructofuranosidase and beta-fructosidase were significantly up-regulated by inulin compared to the gene expression on glucose. In conclusion, we obtained a mechanistic understanding of interplay between probiotic L. plantarum QS7T derived from Sichuan pickle and natural dietary fiber, inulin; totally two operons including a sacPTS1 operon responsible for metabolizing short-chain oligofructose primarily in the cytoplasm and a fos operon responsible for extracellularly degrading all moderate and long-chain fructan components linked to inulin consumption by L. plantarum QS7T.
Collapse
|
36
|
Polyphenols-Gut Microbiota Interrelationship: A Transition to a New Generation of Prebiotics. Nutrients 2021; 14:nu14010137. [PMID: 35011012 PMCID: PMC8747136 DOI: 10.3390/nu14010137] [Citation(s) in RCA: 157] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 12/21/2021] [Accepted: 12/24/2021] [Indexed: 12/18/2022] Open
Abstract
The present review summarizes the studies carried out on this topic in the last five years. According to the new definitions, among all the compounds included in the group of prebiotics, polyphenols are probably the most important secondary metabolites produced by the plant kingdom. Many of these types of polyphenols have low bioavailability, therefore reaching the colon in unaltered form. Once in the colon, these compounds interact with the intestinal microbes bidirectionally by modulating them and, consequently, releasing metabolites. Despite much research on various metabolites, little is known about the chemistry of the metabolic routes used by different bacteria species. In this context, this review aims to investigate the prebiotic effect of polyphenols in preclinical and clinical studies, highlighting that the consumption of polyphenols leads to an increase in beneficial bacteria, as well as an increase in the production of valuable metabolites. In conclusion, there is much evidence in preclinical studies supporting the prebiotic effect of polyphenols, but further clinical studies are needed to investigate this effect in humans.
Collapse
|
37
|
Foltz M, Zahradnik AC, Van den Abbeele P, Ghyselinck J, Marzorati M. A Pectin-Rich, Baobab Fruit Pulp Powder Exerts Prebiotic Potential on the Human Gut Microbiome In Vitro. Microorganisms 2021; 9:microorganisms9091981. [PMID: 34576876 PMCID: PMC8467054 DOI: 10.3390/microorganisms9091981] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/04/2021] [Accepted: 09/10/2021] [Indexed: 12/12/2022] Open
Abstract
Increasing insight into the impact of the gut microbiota on human health has sustained the development of novel prebiotic ingredients. This exploratory study evaluated the prebiotic potential of baobab fruit pulp powder, which consists of pectic polysaccharides with unique composition as compared to other dietary sources, given that it is rich in low methoxylated homogalacturonan (HG). After applying dialysis procedures to remove simple sugars from the product (simulating their absorption along the upper gastrointestinal tract), 48 h fecal batch incubations were performed. Baobab fruit pulp powder boosted colonic acidification across three simulated human adult donors due to the significant stimulation of health-related metabolites acetate (+18.4 mM at 48 h), propionate (+5.5 mM at 48 h), and to a lesser extent butyrate (0.9 mM at 48 h). Further, there was a trend of increased lactate levels (+2.7 mM at 6h) and reduced branched chain fatty acid (bCFA) levels (−0.4 mM at 48 h). While Bacteroidetes levels increased for all donors, donor-dependent increases in Bifidobacteria, Lactobacilli, and Firmicutes were observed, stressing the potential interindividual differences in microbial composition modulation upon Baobab fruit pulp powder treatment. Overall, Baobab fruit pulp powder fermentation displayed features of selective utilization by host microorganisms and, thus, has promising prebiotic potential (also in comparison with the ‘gold standard’ prebiotic inulin). Further research will be required to better characterize this prebiotic potential, accounting for the interindividual differences, while aiming to unravel the potential resulting health benefits.
Collapse
Affiliation(s)
- Martin Foltz
- Döhler GmbH, 64295 Darmstadt, Germany;
- Correspondence: ; Tel.: +49-6151-306-2524
| | | | | | | | - Massimo Marzorati
- ProDigest BV, 9052 Ghent, Belgium; (J.G.); (M.M.)
- Center of Microbial Ecology and Technology (CMET), Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
38
|
Paulo AFS, Baú TR, Ida EI, Shirai MA. Edible coatings and films with incorporation of prebiotics -A review. Food Res Int 2021; 148:110629. [PMID: 34507773 DOI: 10.1016/j.foodres.2021.110629] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 07/15/2021] [Accepted: 07/26/2021] [Indexed: 12/12/2022]
Abstract
Prebiotics are compounds naturally present in some foods or can be synthesized by microorganisms and enzymes. Among the benefits associated with prebiotic consumption are the modulation of the intestinal microbiota that increase the production of short chain fatty acids and prevent the development of some disorders such as colon cancer, irritable bowel syndrome, diabetes, obesity, among others. Traditionally, prebiotics have been used in diverse food formulations to enhance their healthy potential or to improve their technological and sensory properties. However, different alternatives for the production of prebiotic products are being explored, such as edible coatings and films. Therefore, this review aims to highlight recent research on edible coatings and films incorporated with different prebiotics, the concept of prebiotics, the general characteristics of these materials, and the main production methods, as well as presenting the perspectives of uses in the food industry. Current works describe that polyols and oligosaccharides are the most employed prebiotics, and depending on their structure and concentration, they can also act as film plasticizer or reinforcement agent. The use of prebiotic in the coating can also improve probiotic bacteria survival making it possible to obtain fruits and vegetables with synbiotic properties. The most common method of production is casting, suggesting that other technologies such as extrusion can be explored aiming industrial scale. The use of film and coating carried of prebiotic is an emerging technology and there are still several possibilities for study to enable its use in the food industry. This review will be useful to detect the current situation, identify problems, verify new features, future trends and support new investigations and investments.
Collapse
Affiliation(s)
- Ana Flávia Sampaio Paulo
- Post-graduation Program of Food Technology, Federal University of Technology - Paraná, Londrina, PR, Brazil
| | - Tahis Regina Baú
- Food Technology Coordination, Federal Institute of Santa Catarina, São Miguel do Oeste, SC, Brazil
| | - Elza Iouko Ida
- Post-graduation Program of Food Technology, Federal University of Technology - Paraná, Londrina, PR, Brazil
| | - Marianne Ayumi Shirai
- Post-graduation Program of Food Technology, Federal University of Technology - Paraná, Londrina, PR, Brazil.
| |
Collapse
|
39
|
Roupar D, Berni P, Martins JT, Caetano AC, Teixeira JA, Nobre C. Bioengineering approaches to simulate human colon microbiome ecosystem. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.04.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
40
|
Aline de Moura F, Teixeira Macagnan F, Klein B, Wagner R, Picolli da Silva L. Metabolic properties of partially hydrolyzed pectin from passion fruit peel. BIOACTIVE CARBOHYDRATES AND DIETARY FIBRE 2021; 25:100256. [DOI: 10.1016/j.bcdf.2020.100256] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
41
|
Leddomado LS, Silva R, Guimarães JT, Balthazar CF, Ramos GL, Freitas MQ, Duarte MCK, Neto RP, Tavares MIB, Pimentel TC, Silva PHF, Raices RS, Silva MC, Cruz AG, Esmerino EA. Technological benefits of using inulin and xylooligosaccharide in dulce de leche. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106158] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
42
|
Kassem IAA, Joshua Ashaolu T, Kamel R, Elkasabgy NA, Afifi SM, Farag MA. Mucilage as a functional food hydrocolloid: ongoing and potential applications in prebiotics and nutraceuticals. Food Funct 2021; 12:4738-4748. [PMID: 34100507 DOI: 10.1039/d1fo00438g] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mucilage is a soluble dietary fiber used as a food additive to give foods a firmer texture, aside from its many health benefits and pharmacological properties. It is a polysaccharide in nature, composed of large molecules of sugars and uronic acid moieties. The extraction of mucilage is achieved from a wide variety of plant parts, including rhizomes, roots, and seeds, and it has also been reported from microorganisms. In this review, the nutritional and medicinal applications of mucilage are described in the context of the different mucilage types. The current article highlights state-of-the-art valorization practices relating to mucilage and its potential novel usages in the food industry and nutraceuticals, and as a prebiotic, in addition to its nutritional and anti-nutritional values. Analysis of the prebiotic action of mucilage with respect to its structure activity relationship, as well as how it modulates gut bacteria, is presented for the first time and in the context of its known health benefits inside the colon. It is recommended that more investigations are carried out to maximize the health benefits of mucilage and ensure its safety, especially upon long-term usage.
Collapse
Affiliation(s)
- Iman A A Kassem
- Chemistry of Natural Compounds Department, National Research Centre, Dokki, Giza 12622, Egypt
| | - Tolulope Joshua Ashaolu
- Institute of Research and Development, Duy Tan University, Da Nang, 550000, Viet Nam and Faculty of Environmental and Chemical Engineering, Duy Tan University, Da Nang, 550000, Viet Nam
| | - Rabab Kamel
- Pharmaceutical Technology Department, National Research Centre, Giza 12622, Egypt
| | - Nermeen A Elkasabgy
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo 11562, Egypt
| | - Sherif M Afifi
- Pharmacognosy Department, Faculty of Pharmacy, University of Sadat City, Sadat City 32897, Egypt
| | - Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Kasr El Aini St., P.B. 11562, Cairo, Egypt. and Chemistry Department, School of Sciences & Engineering, The American University in Cairo, New Cairo 11835, Egypt
| |
Collapse
|
43
|
Ashaolu TJ, Ashaolu JO. Prebiotics in vitro digestion by gut microbes, products' chemistry, and clinical relevance. Appl Microbiol Biotechnol 2020; 105:13-19. [PMID: 33201272 DOI: 10.1007/s00253-020-11021-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 11/06/2020] [Accepted: 11/12/2020] [Indexed: 01/05/2023]
Abstract
Several investigations have elucidated the chemistry of prebiotics based on their fermentation by the colonic microbes, which release metabolites that are often implicated in host's gut and whole body health. The present study aims at providing a preview of prebiotics and their interactions with the colonic microbiota for a slow fermentation in vitro. The metabolites produced, mainly short chain fatty acids (SCFA), their chemistry, interactions with prebiotic structural mechanisms, and beneficial impacts on the host were also reported. The present review further considers the clinical relevance of the SCFAs produced. It was deduced that the physicochemical properties of prebiotics would influence their colonic fermentation rate, microbial choice, and growth as well as SCFA type and ratios. This will in turn be of utmost clinical significance. KEY POINTS: • Prebiotics affect the composition of gut microorganisms. • The chemistry of short chain fatty acids are described. • Microbial and clinical applications of SCFAs were provided.
Collapse
Affiliation(s)
- Tolulope Joshua Ashaolu
- Institute of Research and Development, Duy Tan University, Da Nang, 550000, Vietnam. .,Faculty of Environmental and Chemical Engineering, Duy Tan University, Da Nang, 550000, Vietnam.
| | - Joseph O Ashaolu
- International Health Programme, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
44
|
Encapsulated probiotic cells: Relevant techniques, natural sources as encapsulating materials and food applications – A narrative review. Food Res Int 2020; 137:109682. [DOI: 10.1016/j.foodres.2020.109682] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 08/04/2020] [Accepted: 09/06/2020] [Indexed: 02/07/2023]
|
45
|
Hurtado-Romero A, Del Toro-Barbosa M, Garcia-Amezquita LE, García-Cayuela T. Innovative technologies for the production of food ingredients with prebiotic potential: Modifications, applications, and validation methods. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.08.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
46
|
Ashaolu TJ, Ashaolu JO, Adeyeye SAO. Fermentation of prebiotics by human colonic microbiota in vitro and short-chain fatty acids production: a critical review. J Appl Microbiol 2020; 130:677-687. [PMID: 32892434 DOI: 10.1111/jam.14843] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/24/2020] [Accepted: 08/26/2020] [Indexed: 12/12/2022]
Abstract
Prebiotics are known for their health benefits to man, including reducing cardiovascular disease and improving gut health. This review takes a critical assessment of the impact of dietary fibres and prebiotics on the gastrointestinal microbiota in vitro. The roles of colonic organisms, slow fermentation of prebiotics, production of high butyric and propionic acids and positive modulation of the host health were taken into cognizance. Also, the short-chain fatty acids (SCFAs) molecular signalling mechanisms associated with their prebiotic substrate structural conformations and the phenotypic responses related to the gut microbes composition were discussed. Furthermore, common dietary fibres such as resistant starch, pectin, hemicelluloses, β-glucan and fructan in context of their prebiotic potentials for human health were also explained. Finally, the in vitro human colonic fermentation depends on prebiotic type and its physicochemical characteristics, which will then affect the rate of fermentation, selectivity of micro-organisms to multiply, and SCFAs concentrations and compositions.
Collapse
Affiliation(s)
- T J Ashaolu
- Smart Agriculture Research and Application Team, Ton Duc Thang University, Ho Chi Minh City, Vietnam.,Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - J O Ashaolu
- International Health Programme, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - S A O Adeyeye
- Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City, Vietnam.,Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| |
Collapse
|
47
|
Ashaolu TJ. Immune boosting functional foods and their mechanisms: A critical evaluation of probiotics and prebiotics. Biomed Pharmacother 2020; 130:110625. [PMID: 32795926 DOI: 10.1016/j.biopha.2020.110625] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/02/2020] [Accepted: 08/05/2020] [Indexed: 12/13/2022] Open
Abstract
Comprehensive studies conducted on the link between the gut microbiome and immunity in recent decades have correspondingly led to ever increasing interests in functional foods, especially probiotics and prebiotics. Probiotics and prebiotics play crucial roles in managing the intestinal microbiota in order to improve host health, even though their influence on other body sites are being investigated. Different colonic bacteria metabolize dietary prebiotics to produce beneficial metabolites, especially short chain fatty acids (SCFAs) that improve luminal contents and intestinal performance, while positively affecting overall host physiology. Thus, this review provides a general perspective of the immune system, the gut immune system and its microbiota. The review also evaluates functional foods with critical but comprehensive perspectives into probiotics and prebiotics, their immune boosting and mechanisms of action. It is recommended that further mechanistic and translational studies are conducted to promote health, social life and also empower poverty-stricken communities.
Collapse
Affiliation(s)
- Tolulope Joshua Ashaolu
- Smart Agriculture Research and Application Team, Ton Duc Thang University, Ho Chi Minh City, Viet Nam; Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Viet Nam.
| |
Collapse
|
48
|
Füreder V, Rodriguez-Colinas B, Cervantes FV, Fernandez-Arrojo L, Poveda A, Jimenez-Barbero J, Ballesteros AO, Plou FJ. Selective Synthesis of Galactooligosaccharides Containing β(1→3) Linkages with β-Galactosidase from Bifidobacterium bifidum (Saphera). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:4930-4938. [PMID: 32279499 DOI: 10.1021/acs.jafc.0c00997] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The transglycosylation activity of a novel commercial β-galactosidase from Bifidobacterium bifidum (Saphera) was evaluated. The optimal conditions for the operation of this enzyme, measured with o-nitrophenyl-β-d-galactopyranoside, were 40 °C and pH around 6.0. Although at low lactose concentrations the property of this enzyme was basically hydrolytic, an increase of lactose concentration to 400 g/L resulted in a significant formation (107.2 g/L, 27% yield) of prebiotic galactooligosaccharides (GOS). The maximum amount of GOS was obtained at a lactose conversion of approximately 90%, which contrasts with other β-galactosidases, for which the highest GOS yield is achieved at 40-50% lactose conversion. Using high-performance anion-exchange chromatography with pulsed amperometric detection, semipreparative high-performance liquid chromatography-hydrophilic interaction liquid chromatography, mass spectrometry, and 1D and 2D NMR, we determined the structure of most of the GOS synthesized by this enzyme. The main identified products were Gal-β(1→3)-Gal-β(1→4)-Glc (3'-O-β-galactosyl-lactose), Gal-β(1→6)-Glc (allolactose), Gal-β(1→3)-Glc (3-galactosyl-glucose), Gal-β(1→3)-Gal (3-galactobiose), and the tetrasaccharide Gal-β(1→3)-Gal-β(1→3)-Gal-β(1→4)-Glc. In general, B. bifidum β-galactosidase showed a tendency to form β(1→3) linkages followed by β(1→6) and more scarcely β(1→4).
Collapse
Affiliation(s)
- Vera Füreder
- Instituto de Catálisis y Petroleoquímica, CSIC, 28049 Madrid, Spain
| | - Barbara Rodriguez-Colinas
- Instituto de Catálisis y Petroleoquímica, CSIC, 28049 Madrid, Spain
- Departamento de Biotecnología, Facultad de Ciencias Experimentales, Universidad Francisco de Vitoria, Pozuelo de Alarcón, 28223 Madrid, Spain
| | | | | | - Ana Poveda
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), 48160 Derio, Spain
| | - Jesus Jimenez-Barbero
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), 48160 Derio, Spain
- Ikerbasque, Basque Foundation for Science, Maria Diaz de Haro 3, 48013 Bilbao, Spain
| | | | - Francisco J Plou
- Instituto de Catálisis y Petroleoquímica, CSIC, 28049 Madrid, Spain
| |
Collapse
|