1
|
Ding X, Yu S, Zhou J, Tie H, Dai Z, Zeng X. Effect of K 2CO 3 micro-treatment of okara on quality and lipid digestion of fried tofu balls. Food Chem 2025; 475:143217. [PMID: 40009980 DOI: 10.1016/j.foodchem.2025.143217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 02/01/2025] [Accepted: 02/03/2025] [Indexed: 02/28/2025]
Abstract
Excessive lipid digestion in fried foods leads to health risks like obesity, cardiovascular diseases. This study investigates the effects of micronized okara (MO) treated with weak alkali (K2CO3) on inhibiting lipid digestion in deep-fried tofu balls, and examines how varying MO proportions affect tofu ball quality and lipid digestion. The addition of 16 % MO significantly improved the texture of tofu balls, enhancing hardness, chewiness, and dietary fiber content. FTIR analysis indicated partial degradation of the dietary fiber fraction in the MO. SEM and XRD analyses revealed that 24 % MO resulted in notable structural changes, including void formation and reduced crystallinity. Simulated in vitro digestion showed that MO-containing samples had increased particle size and decreased free fatty acid release, with a 25.76 % reduction in total fatty acid release during intestinal digestion at 16 % MO addition. This study provides theoretical support for the preparation of fried foods with modifiable lipid digestion.
Collapse
Affiliation(s)
- Xuelu Ding
- School of Liquor and Food Engineering, School of Life Sciences, Guizhou Provincial Key Laboratory of Agricultural and Animal Products Storage and Processing, Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550000, China
| | - Shan Yu
- School of Liquor and Food Engineering, School of Life Sciences, Guizhou Provincial Key Laboratory of Agricultural and Animal Products Storage and Processing, Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550000, China
| | - Juan Zhou
- School of Liquor and Food Engineering, School of Life Sciences, Guizhou Provincial Key Laboratory of Agricultural and Animal Products Storage and Processing, Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550000, China
| | - Huaimao Tie
- School of Liquor and Food Engineering, School of Life Sciences, Guizhou Provincial Key Laboratory of Agricultural and Animal Products Storage and Processing, Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550000, China
| | - Ziru Dai
- Guangxi College and University Key Laboratory of High-Value Utilization of Seafood and Prepared Food in Beibu Gulf, Qinzhou 535011, China; Qinzhou Key Laboratory of Food Flavor Analysis and Control, Beibu Gulf University, Qinzhou 535011, China
| | - Xuefeng Zeng
- School of Liquor and Food Engineering, School of Life Sciences, Guizhou Provincial Key Laboratory of Agricultural and Animal Products Storage and Processing, Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550000, China; Qinzhou Key Laboratory of Food Flavor Analysis and Control, Beibu Gulf University, Qinzhou 535011, China.
| |
Collapse
|
2
|
Zhang C, Zhang H, Lin S, Su L. Bioprocessing of Sargassum fusiforme via Lactobacillus Fermentation: Effects on Nutrient Composition, Organoleptic Properties, and In Vitro Antioxidant and Hypoglycemic Activities. Foods 2025; 14:1385. [PMID: 40282786 PMCID: PMC12027381 DOI: 10.3390/foods14081385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 04/12/2025] [Accepted: 04/14/2025] [Indexed: 04/29/2025] Open
Abstract
Sargassum fusiforme is an abundant source of biologically active compounds that are released during fermentation. However, the effects of Lactobacillus fermentation on the nutrient composition of S. fusiforme have yet to be sufficiently determined. In this study, we used five strains of Lactobacillus to ferment S. fusiforme and examined changes in the bioactive components, volatile compounds, and bioactivities of the fermentation supernatants. Among the assessed strains, fermentation with Lactobacillus delbrueckii promoted significant increases in the total phenolic contents, and fermentation with all strains contributed to reductions in the levels of undesirable volatile compounds associated with the characteristic odor of S. fusiforme. In addition, S. fusiforme fermented using L. delbrueckii showed superior ABTS radical scavenging activity, whereas S. fusiforme fermented using L. plantarum FY03 (PF-3) or L. plantarum FY02 (PF-2) showed enhanced DPPH radical scavenging capacity, and fermentation using L. rhamnosus promoted the highest ferric-ion-reducing power. Moreover, the inhibition of α-glucosidase activity increased by 2.0- to 3.0-fold in fermented S. fusiforme, whereas the inhibition of α-amylase activity was only significantly augmented by the PF-2 and PF-3 strains. These findings highlight the potential health benefits of Lactobacillus-fermented S. fusiforme, particularly the enhanced antioxidant activities and the capacity to inhibit α-glucosidase and α-amylase activities.
Collapse
Affiliation(s)
- Chao Zhang
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; (C.Z.)
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China
| | - Houyun Zhang
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; (C.Z.)
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China
| | - Shengli Lin
- Wenzhou Academy of Agricultural Science, Wenzhou Characteristic Food Resources Engineering and Technology Research Center, Wenzhou 325006, China
| | - Laijin Su
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; (C.Z.)
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China
| |
Collapse
|
3
|
Mohammadi F, Rudkowska I. Dietary Lipids, Gut Microbiota, and Their Metabolites: Insights from Recent Studies. Nutrients 2025; 17:639. [PMID: 40004966 PMCID: PMC11858126 DOI: 10.3390/nu17040639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 01/30/2025] [Accepted: 02/08/2025] [Indexed: 02/27/2025] Open
Abstract
Dietary lipid intake can influence the gut microbiota (GM) and their metabolites, such as short-chain fatty acids (SCFA) and bile acids, which are key mediators of health. The objective is to examine how dietary lipids' quantity and quality influence the GM and metabolite profiles. A literature review of 33 studies in animals and humans was performed on the effects of saturated fatty acids (SFAs), monounsaturated fatty acids (MUFAs), polyunsaturated fatty acids (PUFAs), trans-fatty acids (TFAs), and sterols on GM composition and gut-derived metabolites. The results show that diets rich in MUFAs, n-3 PUFAs, and short-chain FAs have the potential to enhance beneficial bacteria and metabolites. In addition, trans-palmitoleic acid, conjugated linoleic acid, and phytosterols may also have potentially beneficial effects on GM, but more research is needed. Medium-chain FAs and n-6 PUFAs have variable effects on the GM. Conversely, intakes of high-fat diets, long-chain SFAs, industrial TFAs, and cholesterol disrupt GM balance. In conclusion, animal studies clearly demonstrate that dietary fats influence the GM and related metabolites. Yet, human studies are limited. Therefore, well-designed human studies that consider the whole diet and baseline health status are needed to better understand the effects of dietary lipids on GM.
Collapse
Affiliation(s)
- Farzad Mohammadi
- Endocrinology and Nephrology Unit, CHU de Québec—Université Laval Research Center, 2705 Laurier Blvd, Québec, QC G1V 4G2, Canada;
- Department of Kinesiology, Faculty of Medicine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Iwona Rudkowska
- Endocrinology and Nephrology Unit, CHU de Québec—Université Laval Research Center, 2705 Laurier Blvd, Québec, QC G1V 4G2, Canada;
- Department of Kinesiology, Faculty of Medicine, Université Laval, Québec, QC G1V 0A6, Canada
| |
Collapse
|
4
|
Kurhaluk N. Palm oil as part of a high-fat diet: advances and challenges, or possible risks of pathology? Nutr Rev 2025; 83:e547-e573. [PMID: 38699959 DOI: 10.1093/nutrit/nuae038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2024] Open
Abstract
Nutritional status disorders have the most significant impact on the development of cardiovascular and oncologic diseases; therefore, the interest in the study of palm oil as among the leading components of nutrition has been increasing. The data examined in this review were sourced from the Scopus, SCIE (Web of Science), PubMed and PubMed Central, MEDLINE, CAPlus/SciFinder, and Embase databases; experts in the field; bibliographies; and abstracts from review analyses from the past 15 years. This review summarizes recent research data focusing on the quantitative and qualitative composition of nutrition of modern humans; concepts of the relationship between high-fat diets and disorders of insulin functioning and transport and metabolism of fatty acids; analyses of data regarding the palmitic acid (16:0) to oleic acid (18:1) ratio; and the effect of diet based on palm oil consumption on cardiovascular risk factors and lipid and lipoprotein levels. Several studies suggest a potential vector contributing to the transmission of maternal, high-fat-diet-induced, addictive-like behaviors and obesogenic phenotypes across generations. The relationship between cholesterol accumulation in lysosomes that may lead to lysosome dysfunction and inhibition of the autophagy process is analyzed, as is the progression of inflammatory diseases, atherosclerosis, nonalcoholic liver inflammation, and obesity with associated complications. Data are discussed from analyses of differences between rodent models and human population studies in the investigated different effects of palm oil consumption as a high-fat diet component. A conclusion is reached that the results cannot be generalized in human population studies because no similar effects were observed. Although there are numerous published reports, more studies are necessary to elucidate the complex regulatory mechanisms in digestive and nutrition processes, because there are great differences in lipoprotein profiles between rodents and humans, which makes it difficult to reproduce the pathology of many diseases caused by different types of the high-fat diet.
Collapse
Affiliation(s)
- Natalia Kurhaluk
- Department of Animal Physiology, Institute of Biology, Pomeranian University in Słupsk, Słupsk, Poland
| |
Collapse
|
5
|
Zhu T, Kuai Y, Guo X, Bu G, Yang C, Chen F. Effect of Dietary Oils with Different Fatty Acid Compositions on Serum Lipid and Gut Microbiota of Rats. Foods 2024; 14:61. [PMID: 39796351 PMCID: PMC11720656 DOI: 10.3390/foods14010061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 12/22/2024] [Accepted: 12/27/2024] [Indexed: 01/13/2025] Open
Abstract
The effects of three dietary oils (rapeseed oil, camellia oil, linseed oil) with different fatty acid compositions on the growth performance, digestion and gut microbiota of SD rats after 8 weeks of feeding were studied. The serum metabolic index and liver histomorphology of rats were measured using an automatic biochemical analyzer and light microscope. Furthermore, 16S rDNA amplicon sequencing technology was used to analyze the gut microbiota. It was found that these differences in fatty acid composition had no significant effect on body fat and liver tissue. However, after digestion, the rapeseed oil group showed lowest triglyceride content (1.22 ± 0.15) and a lower LDL/HDL ratio (0.41 ± 0.02). For gut microbiota distribution, the linseed oil group showed a higher Firmicutes/Bacteroides ratio (6.11 ± 0.54) and a high proportion of Lactobacillus. These data indicate that both the unsaturated fatty acid content and n-3 unsaturated fatty acids collectively had an effect on digestion metabolism, and the influence order may be n-3 unsaturated fatty acids > unsaturated fatty acid content.
Collapse
Affiliation(s)
| | | | | | | | | | - Fusheng Chen
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China; (T.Z.); (Y.K.); (X.G.); (G.B.); (C.Y.)
| |
Collapse
|
6
|
Song A, Li Y, Wang W, Hu Y, Xu J, Xu Z, Zhou L, Liu J. Revealing the effect of sea buckthorn oil, fish oil and structured lipid on intestinal microbiota, colonic short chain fatty acid composition and serum lipid profiles in vivo. NATURAL PRODUCTS AND BIOPROSPECTING 2024; 14:41. [PMID: 38955923 PMCID: PMC11219638 DOI: 10.1007/s13659-024-00461-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 06/20/2024] [Indexed: 07/04/2024]
Abstract
In this study, the effects of sea buckthorn oil (SBO), fish oil (FO) and an enzymatically synthesized structured lipid (SL) on serum, short-chain fatty acids (SCFAs) and intestinal microbiota in Sprague-Dawley (SD) rats were investigated. The results demonstrated that FO, SBO, and SL effectively reduced the levels of high-density lipoprotein cholesterol and low-density lipoprotein cholesterol in the serum of SD rats. SBO increased serum triglyceride levels, while FO elevated total cholesterol levels. Furthermore, all three dietary lipids decreased short-chain fatty acid production and enhanced intestinal microbiota diversity. FO increased the abundance of intestinal microbiota including Romboutsia, Lactobacillus, Escherichia-Shigella, and Lachnospiraceae_NK4A136_group. Conversely, all three dietary lipids reduced the abundance of Klebsiella and Blautia. These findings provide a foundation for understanding the functionality of SBO and FO as well as their potential application in synthesizing novel SLs to regulate intestinal microbiota.
Collapse
Affiliation(s)
- Ankang Song
- College of Food Science and Pharmacy, Xinjiang Agricultural University, Urumqi, 830000, People's Republic of China
| | - Yanbo Li
- College of Food Science and Pharmacy, Xinjiang Agricultural University, Urumqi, 830000, People's Republic of China
| | - Wei Wang
- College of Food Science and Pharmacy, Xinjiang Agricultural University, Urumqi, 830000, People's Republic of China.
| | - Yueqi Hu
- National Demonstration Center for Experimental Ethnopharmacology Education, School of Pharmaceutical Sciences, South-Central MinZu University, Wuhan, 430074, People's Republic of China
| | - Junjie Xu
- National Demonstration Center for Experimental Ethnopharmacology Education, School of Pharmaceutical Sciences, South-Central MinZu University, Wuhan, 430074, People's Republic of China
| | - Zhixin Xu
- College of Food Science and Pharmacy, Xinjiang Agricultural University, Urumqi, 830000, People's Republic of China
| | - Li Zhou
- National Demonstration Center for Experimental Ethnopharmacology Education, School of Pharmaceutical Sciences, South-Central MinZu University, Wuhan, 430074, People's Republic of China.
| | - Jikai Liu
- National Demonstration Center for Experimental Ethnopharmacology Education, School of Pharmaceutical Sciences, South-Central MinZu University, Wuhan, 430074, People's Republic of China.
| |
Collapse
|
7
|
Xing L, Zhang Q, Liu J, Yu N, Jia Y. Determination of six short-chain fatty acids in rat feces using headspace solid-phase dynamic extraction coupled with GC-MS. J Sep Sci 2024; 47:e2400032. [PMID: 38937913 DOI: 10.1002/jssc.202400032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 05/07/2024] [Accepted: 05/10/2024] [Indexed: 06/29/2024]
Abstract
Short-chain fatty acids (SCFAs) are organic acids with carbon atoms less than six, released through fermentation products by intestinal microbiome, having multiple physiological activities. Considering weak acidity and high volatility, derivatization or liquid-liquid extraction is essential, which is time consuming. Headspace-solid-phase dynamic extraction (HS-SPDE) coupled with gas chromatography-mass spectrometry is automated and effortless to determine SCFAs in rat feces. The extraction procedure is performed by aspirating and discharging the headspace cyclically through a steel needle, coated with an inner polyethylene glycol sorbent. The key parameters of SPDE were optimized including coating type, incubation time and temperature, and number of extraction strokes. Besides, salting-out was conducted. Then, a method by HS-SPDE-GC-MS was established and validated. It only took 3-min incubation time, 4.5 min extraction time, and 13 min chromatographic separation in a run. The recovery, linearity, limit of quantification, and stability were evaluated. Then, the proposed method was applied to analyze rat feces including 18 rats with liver injury and 23 normal controls. Mann-Whitney U test indicated that the concentrations of six SCFAs in normal rat feces were higher than those with liver injury. This method provides a choice for fast, solvent-free, automated, and high-throughput analysis of SCFAs.
Collapse
Affiliation(s)
- Lihua Xing
- Department of Biopharmaceuticals, College of Pharmacy, Anhui University of Chinese Medicine, Hefei, P. R. China
| | - Qiang Zhang
- Department of Criminal Science and Technology, Henan Police College, Zhengzhou, P. R. China
| | - Juan Liu
- Department of Biopharmaceuticals, College of Pharmacy, Anhui University of Chinese Medicine, Hefei, P. R. China
- Science and Technology Experimental Center, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China
| | - Nianjun Yu
- Department of Biopharmaceuticals, College of Pharmacy, Anhui University of Chinese Medicine, Hefei, P. R. China
| | - Yiqun Jia
- Science and Technology Experimental Center, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China
| |
Collapse
|
8
|
Xiao N, He W, Chen S, Yao Y, Wu N, Xu M, Du H, Zhao Y, Tu Y. Protective Effect of Egg Yolk Lipids against Dextran Sulfate Sodium-Induced Colitis: The Key Role of Gut Microbiota and Short-Chain Fatty Acids. Mol Nutr Food Res 2024; 68:e2400048. [PMID: 38659317 DOI: 10.1002/mnfr.202400048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/13/2024] [Indexed: 04/26/2024]
Abstract
Egg yolk lipids significantly alleviate dextran sulfate sodium (DSS)-induced colitis by inhibiting NLRP3 inflammasome, reversing gut microbiota dysbiosis, and increasing short chain fatty acids (SCFAs) concentrations. However, the role of gut microbiota and the relationship between SCFAs and NLRP3 inflammasome are still unknown. Here, this study confirms that antibiotic treatment abolishes the protective effect of egg yolk lipids on DSS-induced colonic inflammation, intestinal barrier damage, and lipopolysaccharide translocation. Fecal microbiota transplantation also supports that egg yolk lipids alleviate colitis in a gut microbiota-dependent manner. Then, the study investigates the relationship between SCFAs and NLRP3 inflammasome, and finds that SCFAs significantly suppress colitis via inhibiting colonic NLRP3 inflammasome activation and proinflammatory cytokines secretions (interleukin, IL)-1β and IL-18, and combined treatment of SCFAs and MCC950 (NLRP3 inhibitor) shows a better activity against colitis and NLRP3 inflammasome activation. Together, these findings provide positive evidence for gut microbiorta-SCFAs-NLRP3 axis as a novel target involving in the therapy of inflammatory bowel disease.
Collapse
Affiliation(s)
- Nanhai Xiao
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang, 330045, China
- Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Wen He
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang, 330045, China
- Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Shuping Chen
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang, 330045, China
- Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Yao Yao
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang, 330045, China
- Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Na Wu
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang, 330045, China
- Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Mingsheng Xu
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang, 330045, China
- Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Huaying Du
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang, 330045, China
- Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Yan Zhao
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang, 330045, China
- Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Yonggang Tu
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang, 330045, China
- Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang, 330045, China
| |
Collapse
|
9
|
Xiao N, He W, Chen S, Yao Y, Wu N, Xu M, Du H, Zhao Y, Tu Y. Egg Yolk Lipids Alleviated Dextran Sulfate Sodium-Induced Colitis by Inhibiting NLRP3 Inflammasome and Regulating Gut Microbiota. Mol Nutr Food Res 2024; 68:e2300509. [PMID: 38037542 DOI: 10.1002/mnfr.202300509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/11/2023] [Indexed: 12/02/2023]
Abstract
The increasing incidence of inflammatory bowel disease (IBD) has become a global phenomenon. Egg yolk lipids are one of the essential dietary foods, but its effects on intestinal immunity remain unclear. Here, egg yolk lipids are obtained using ethanol extraction and a total of 601 kinds of lipids are detected via lipidomics, including 251 kinds of triglycerides, 133 kinds of phosphatidylcholines, 44 kinds of phosphatidylethanolamines. Then, the study finds that egg yolk lipids significantly alleviate dextran sulfate sodium-induced colitis and reduce the production of inflammatory factors. Meanwhile, egg yolk lipids also maintain intestinal barrier integrity and decrease lipopolysaccharide translocation by alleviating intestinal structure damage and increasing the numbers of goblet cells and mucin 2. Mechanistically, egg yolk lipids attenuate colitis by inhibiting the assembly and activation of NLRP3 inflammasome. Moreover, the study also finds that egg yolk lipids reverse gut microbiota dysbiosis referring to increased relative abundance of Bacteroides acidifaciens and decrease relative abundance of Akkermansia muciniphila, as well as increased short chain fatty acids concentration in the gut. Together, the study elucidates the anti-colitis effect of egg yolk lipids and provides positive evidences for egg yolk lipids involving in dietary strategy and IBD therapy.
Collapse
Affiliation(s)
- Nanhai Xiao
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang, 330045, China
- Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Wen He
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang, 330045, China
- Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Shuping Chen
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang, 330045, China
- Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Yao Yao
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang, 330045, China
- Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Na Wu
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang, 330045, China
- Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Mingsheng Xu
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang, 330045, China
- Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Huaying Du
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang, 330045, China
- Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Yan Zhao
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang, 330045, China
- Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Yonggang Tu
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang, 330045, China
- Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang, 330045, China
| |
Collapse
|
10
|
Xu Q, Wang W, Sun-Waterhouse D, Yan M, Zou Q, Liu X, Lan D, Wang Y. Exploring the fates and molecular changes of different diacylglycerol-rich lipids during in vitro digestion. Food Chem 2023; 416:135677. [PMID: 36898341 DOI: 10.1016/j.foodchem.2023.135677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 02/24/2023]
Abstract
This study aimed to support the pursuit of healthy oils and investigate the relationships between lipid compositions and digestion fates of diacylglycerol (DAG)-rich lipids using an in vitro digestion model. Soybean-, olive-, rapeseed-, camellia-, and linseed-based DAG-rich lipids (termed SD, OD, RD, CD, and LD, respectively) were selected. These lipids exhibited identical lipolysis degrees (92.20-94.36 %) and digestion rates (0.0403-0.0466 s-1). The lipid structure (DAG or triacylglycerol) was a more important factor affecting the lipolysis degree than other indices (glycerolipid composition and fatty acid composition). For RD, CD and LD with similar fatty acid compositions, the same fatty acid had different release levels, probably due to their different glycerolipid compositions (causing different distributions of the fatty acid in UU-DAG, USa-DAG and SaSa-DAG; U: unsaturated fatty acids, Sa: saturated fatty acids). This study provides insights into the digestion behaviors of different DAG-rich lipids and supports their food or pharmaceutical applications.
Collapse
Affiliation(s)
- Qingqing Xu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Weifei Wang
- Sericultural and Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510610, China
| | - Dongxiao Sun-Waterhouse
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Menglei Yan
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Qian Zou
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Xuan Liu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Dongming Lan
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Yonghua Wang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Youmei Institute of Inteligent Bio-manufacturing Co., Ltd, Foshan, Guangdong 528200, China.
| |
Collapse
|
11
|
de Souza Aquino J, Batista KS, Araujo-Silva G, dos Santos DC, de Brito NJN, López JA, da Silva JA, das Graças Almeida M, Pincheira CG, Magnani M, de Pontes Pessoa DCN, Stamford TLM. Antioxidant and Lipid-Lowering Effects of Buriti Oil ( Mauritia flexuosa L.) Administered to Iron-Overloaded Rats. Molecules 2023; 28:2585. [PMID: 36985557 PMCID: PMC10056315 DOI: 10.3390/molecules28062585] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/27/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023] Open
Abstract
The indiscriminate use of oral ferrous sulfate (FeSO4) doses induces significant oxidative damage to health. However, carotene-rich foods such as buriti oil can help the endogenous antioxidant defense and still maintain other body functions. This study aimed to assess the effects of buriti oil intake in iron-overloaded rats by FeSO4 administration. Buriti oil has β-carotene (787.05 mg/kg), α-tocopherol (689.02 mg/kg), and a predominance of monounsaturated fatty acids (91.30 g/100 g). Wistar rats (n = 32) were subdivided into two control groups that were fed a diet containing either soybean or buriti oil; and two groups which received a high daily oral dose of FeSO4 (60 mg/kg body weight) and fed a diet containing either soybean (SFe) or buriti oil (Bfe). The somatic and hematological parameters, serum lipids, superoxide dismutase (SOD), and glutathione peroxidase (GPx) were determined after 17 days of iron overload. Somatic parameters were similar among groups. BFe showed a decrease in low-density lipoprotein (38.43%) and hemoglobin (7.51%); an increase in monocytes (50.98%), SOD activity in serum (87.16%), and liver (645.50%) hepatic GPx (1017.82%); and maintained serum GPx compared to SFe. Buriti oil showed systemic and hepatic antioxidant protection in iron-overloaded rats, which may be related to its high carotenoid, tocopherol, and fatty acid profile.
Collapse
Affiliation(s)
- Jailane de Souza Aquino
- Experimental Nutrition Laboratory, Department of Nutrition, Federal University of Paraíba (UFPB), João Pessoa 58051-900, PB, Brazil
| | - Kamila Sabino Batista
- Experimental Nutrition Laboratory, Department of Nutrition, Federal University of Paraíba (UFPB), João Pessoa 58051-900, PB, Brazil
| | - Gabriel Araujo-Silva
- Organic Chemistry and Biochemistry Laboratory, State University of Amapá (UEAP), Macapá 68900-070, AP, Brazil
- Experimental Nutrition Research Group, Vive Sano University Institute (IUVS), São Paulo 04304-000, SP, Brazil
| | - Darlan Coutinho dos Santos
- Organic Chemistry and Biochemistry Laboratory, State University of Amapá (UEAP), Macapá 68900-070, AP, Brazil
| | | | - Jorge A. López
- Organic Chemistry and Biochemistry Laboratory, State University of Amapá (UEAP), Macapá 68900-070, AP, Brazil
| | - João Andrade da Silva
- Department of Food Technology, Center for Technology and Regional Development, Federal University of Paraíba (UFPB), João Pessoa 58051-900, PB, Brazil
| | - Maria das Graças Almeida
- Department of Clinical and Toxicological Analysis, Federal University of Rio Grande do Norte (UFRN), Natal 59078-970, RN, Brazil
| | - Carla Guzmán Pincheira
- Experimental Nutrition Research Group, Vive Sano University Institute (IUVS), São Paulo 04304-000, SP, Brazil
- College of Health Care Sciences, Concepción Campus, San Sebastian University, Concepción 4030000, Chile
| | - Marciane Magnani
- Laboratory of Microbial Processes in Food, Department of Food Engineering, Federal University of Paraíba (UFPB), João Pessoa 58051-900, PB, Brazil
| | | | | |
Collapse
|
12
|
Fang W, Liu Y, Chen Q, Xu D, Liu Q, Cao X, Hao T, Zhang L, Mai K, Ai Q. Palmitic acid induces intestinal lipid metabolism disorder, endoplasmic reticulum stress and inflammation by affecting phosphatidylethanolamine content in large yellow croaker Larimichthys crocea. Front Immunol 2022; 13:984508. [PMID: 36059525 PMCID: PMC9437641 DOI: 10.3389/fimmu.2022.984508] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 07/26/2022] [Indexed: 11/30/2022] Open
Abstract
In the 21st century, intestinal homeostatic imbalance has emerged as a growing health challenge worldwide. Accumulating evidence reveals that excessive intake of saturated fatty acid (SFA) induces intestinal homeostatic imbalance. However, the potential molecular mechanism is still unclear. In the present study, we found that palm oil or palmitic acid (PA) treatment disturbed lipid metabolism homeostasis and triggered endoplasmic reticulum (ER) stress and inflammation in the intestine or intestinal cells of large yellow croaker (Larimichthys crocea). Interestingly, PA treatment significantly decreased phosphatidylethanolamine (PE) content in the intestinal cells. PE supplementation decreased triglyceride content in the intestinal cells induced by PA treatment by inhibiting fatty acid uptake and lipogenesis. PE supplementation suppressed ER stress. Meanwhile, PE supplementation alleviated inflammatory response through p38 MAPK-p65 pathway, reducing the damage of intestinal cells caused by PA treatment to some extent. Our work revealed that intestinal homeostatic imbalance caused by PA treatment was partly due to the decrease of PE content. PE consumption might be a nutritional strategy to regulate intestinal homeostasis in fish and even human beings.
Collapse
Affiliation(s)
- Wei Fang
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, China
| | - Yongtao Liu
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, China
| | - Qiuchi Chen
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, China
| | - Dan Xu
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, China
| | - Qiangde Liu
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, China
| | - Xiufei Cao
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, China
| | - Tingting Hao
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, China
| | - Lu Zhang
- Tongwei Co., Ltd., Chengdu, China
- Healthy Aquaculture Key Laboratory of Sichuan Province, Chengdu, China
| | - Kangsen Mai
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Qinghui Ai
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- *Correspondence: Qinghui Ai,
| |
Collapse
|
13
|
Ye Z, Xu YJ, Liu Y. Different typical dietary lipid consumption affects the bile acid metabolism and the gut microbiota structure: an animal trial using Sprague-Dawley rats. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:3179-3192. [PMID: 34787315 DOI: 10.1002/jsfa.11661] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 10/07/2021] [Accepted: 11/17/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND The palm oil (PO), leaf lard oil (LO), rapeseed oil (RO), sunflower oil (SO) and linseed oil (LN) are five of the most typical dietary lipids in most Asian countries. However, their influences on gut health, and the connections between the fatty acid composition, the gut microbiota, and the bile acid metabolism are not fully understood. RESULTS In the present study, results showed that compared with polyunsaturated fatty acid (PUFA)-rich SO and LN, the saturated fatty acid (SFA)-rich and monounsaturated fatty acid (MUFA)-rich PO, LO and RO were more likely to decrease the re-absorption of bile acid in the colon, which was probably caused by their different role in modulating the gut microbiota structure. LO consumption significantly up-regulated the Cyp27a1, FXR and TGR5 gene expression level (P < 0.05). The correlation results suggested that the C18:0 was significantly positive correlated with these three genes, indicating that intake of SFA-rich dietary lipids, especially for the C18:0, could specifically increase the bile acid production by stimulating the bile acid alternative synthesis pathway. Although the bile acid receptor expression in the colon was increased, the re-absorption of bile acid did not show a significant increase (P > 0.05) as compared with other dietary lipids. Moreover, the C18:2-rich SO maintained the bile acid metabolic balance probably by decreasing the Romboutsia, while increasing the Bifidobacterium abundance in the colon. CONCLUSIONS The different dietary lipids showed different effects on the bile acid metabolism, which was probably connected with the alterations in the gut microbiota structure. The present study could provide basic understandings about the influences of the different dietary lipids consumption on gut homeostasis and bile acid metabolism. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhan Ye
- School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
- State Key Laboratory of Food Science and Technology, National Engineering Laboratory for Cereal Fermentation Technology, National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, P. R. China
| | - Yong-Jiang Xu
- School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
- State Key Laboratory of Food Science and Technology, National Engineering Laboratory for Cereal Fermentation Technology, National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, P. R. China
| | - Yuanfa Liu
- School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
- State Key Laboratory of Food Science and Technology, National Engineering Laboratory for Cereal Fermentation Technology, National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, P. R. China
| |
Collapse
|
14
|
Liu WC, Pan ZY, Zhao Y, Guo Y, Qiu SJ, Balasubramanian B, Jha R. Effects of Heat Stress on Production Performance, Redox Status, Intestinal Morphology and Barrier-Related Gene Expression, Cecal Microbiome, and Metabolome in Indigenous Broiler Chickens. Front Physiol 2022; 13:890520. [PMID: 35574439 PMCID: PMC9098996 DOI: 10.3389/fphys.2022.890520] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 04/01/2022] [Indexed: 12/19/2022] Open
Abstract
This study was done to evaluate the effects of heat stress (HS) on production performance, redox status, small intestinal barrier-related parameters, cecal microbiota, and metabolome of indigenous broilers. A total of forty female indigenous broilers (56-day-old) were randomly and equally divided into normal treatment group (NT group, 21.3 ± 1.2°C, 24 h/day) and HS group (32.5 ± 1.4°C, 8 h/day) with five replicates of each for 4 weeks feeding trial. The results showed that the body weight gain (BWG) of broilers in HS group was lower than those in NT group during 3–4 weeks and 1–4 weeks (p < 0.05). The HS exposure increased the abdominal fat rate (p < 0.05) but decreased the thigh muscle rate (p < 0.01). Besides, broilers in HS group had higher drip loss of breast muscle than NT group (p < 0.01). Broilers exposed to HS had lower total antioxidant capacity (T-AOC) in serum and jejunum, activities of total superoxide dismutase (T-SOD) in the jejunum, glutathione peroxidase (GSH-Px) in the thigh muscle, duodenum, and jejunum; and catalase (CAT) in breast muscle, duodenum, and jejunum (p < 0.05). Whereas the malondialdehyde (MDA) contents in breast muscle, duodenum, and jejunum was elevated by HS exposure (p < 0.05). Moreover, the relative mRNA expression of Occludin and ZO-1 in the duodenum, Occludin, Claudin-1, Claudin-4, ZO-1, Mucin-2 in the jejunum, and the Claudin-4 and Mucin-2 in the ileum was down-regulated by HS exposure (p < 0.05). The 16S rRNA sequencing results showed that the HS group increased the relative abundance of Anaerovorax in the cecum at the genus level (p < 0.05). Cecal metabolomics analysis indicated 19 differential metabolites between the two groups (p < 0.10, VIP >1). The Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed that the differential metabolites mainly enriched in 10 signaling pathways such as the Citrate cycle (TCA cycle) (p < 0.01). In summary, chronic HS exposure caused a decline of production performance, reduced antioxidant capacity, disrupted intestinal barrier function, and negatively affected cecal microbiota and metabolome in indigenous broilers.
Collapse
Affiliation(s)
- Wen-Chao Liu
- Department of Animal Science, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Zi-Yi Pan
- Department of Animal Science, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Yue Zhao
- Department of Animal Science, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Yan Guo
- Department of Animal Science, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Sheng-Jian Qiu
- Department of Animal Science, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Balamuralikrishnan Balasubramanian
- Department of Food Science and Biotechnology, College of Life Science, Sejong University, Seoul, South Korea
- *Correspondence: Balamuralikrishnan Balasubramanian, ; Rajesh Jha,
| | - Rajesh Jha
- Department of Human Nutrition, Food and Animal Sciences, College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, Honolulu, HI, United States
- *Correspondence: Balamuralikrishnan Balasubramanian, ; Rajesh Jha,
| |
Collapse
|
15
|
Kong D, Schipper L, van Dijk G. Distinct Effects of Short Chain Fatty Acids on Host Energy Balance and Fuel Homeostasis With Focus on Route of Administration and Host Species. Front Neurosci 2021; 15:755845. [PMID: 34744617 PMCID: PMC8569404 DOI: 10.3389/fnins.2021.755845] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 10/05/2021] [Indexed: 12/12/2022] Open
Abstract
Accumulating evidence implicates gut-microbiota-derived metabolites as important regulators of host energy balance and fuel homeostasis, the underlying mechanisms are currently subject to intense research. In this review, the most important executors, short chain fatty acids, which both directly and indirectly fulfill the interactions between gut microbiota and host will be discussed. Distinct roles of individual short chain fatty acids and the different effects they exert on host metabolism have long been overlooked, which compromises the process of clarifying the sophisticated crosstalk between gut microbiota and its host. Moreover, recent findings suggest that exogenously administered short chain fatty acids affect host metabolism via different mechanisms depending on the routes they enter the host. Although these exogenous routes are often artificial, they may help to comprehend the roles of the short-chain-fatty-acid mechanisms and signaling sites, that would normally occur after intestinal absorption of short chain fatty acids. Cautions should be addressed of generalizing findings, since different results have appeared in different host species, which may imply a host species-specific response to short chain fatty acids.
Collapse
Affiliation(s)
- Dehuang Kong
- Department of Behavioral Neuroscience, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands
| | | | - Gertjan van Dijk
- Department of Behavioral Neuroscience, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands
| |
Collapse
|
16
|
Li TT, Huang ZR, Jia RB, Lv XC, Zhao C, Liu B. Spirulina platensis polysaccharides attenuate lipid and carbohydrate metabolism disorder in high-sucrose and high-fat diet-fed rats in association with intestinal microbiota. Food Res Int 2021; 147:110530. [PMID: 34399508 DOI: 10.1016/j.foodres.2021.110530] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 06/07/2021] [Accepted: 06/15/2021] [Indexed: 02/08/2023]
Abstract
This study aimed to evaluate the possibility that Spirulina platensis crude polysaccharides may ameliorate the lipid and carbohydrate metabolism disorder, including obesity, hyperlipidemia, hyperglycemia, hepatic steatosis, and gut dysbiosis. The results showed Spirulina platensis crude polysaccharides could improve body weight, serum/liver lipid and carbohydrate indexes, and liver antioxidant parameters in high-sucrose and high-fat diet (HFD)-fed rats, which were accompanied by regulated liver mRNA expressions involved in lipid and carbohydrate metabolism disorder. In addition, SPLP intervention significantly decreased cecal level of propionic acid in HFD-fed rats. Notably, the SPLP could alter the relative abundance of Firmicutes, Bacteroides, Proteobacteria, and Actinobacteria at phylum levels. Based on Spearman's rank correlation coefficient, serum/liver lipid and carbohydrate profiles were found significantly positively correlated with genera Romboutsia, Allobaculum, Blautia, Phascolarctobacterium, Bifidobacterium, Coprococcus, Turicibacter, Erysipelotrichaceae_unclassified, Olsenella, Escherichia/Shigella, Coprobacillus, Lachnospiracea incertae, and Lactobacillus, but strongly negatively correlated with genera Atopostipes, Flavonifractor, Porphyromonadaceae_unclassified, Barnesiella, Oscillibacter, Paraprevotella, Jeotgalicoccus, Corynebacterium, Alloprevotella and Bacteroides. It was concluded that oral administration of SPLP could remarkably ameliorate the lipid and carbohydrate metabolism disorder and significantly modulate the intestinal microbiota in HFD-fed rats.
Collapse
Affiliation(s)
- Tian-Tian Li
- Engineering Research Centre of Fujian Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, China; College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zi-Rui Huang
- Engineering Research Centre of Fujian Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, China; College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Rui-Bo Jia
- Engineering Research Centre of Fujian Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, China; College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xu-Cong Lv
- Engineering Research Centre of Fujian Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, China; College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; National Engineering Research Center of JUNCAO Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Institute of Food Science and Technology, College of Biological Science and Technology, Fuzhou University, Fuzhou, Fujian 350108, China.
| | - Chao Zhao
- Engineering Research Centre of Fujian Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, China; College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Bin Liu
- Engineering Research Centre of Fujian Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, China; College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; National Engineering Research Center of JUNCAO Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
17
|
Del Cornò M, Varì R, Scazzocchio B, Varano B, Masella R, Conti L. Dietary Fatty Acids at the Crossroad between Obesity and Colorectal Cancer: Fine Regulators of Adipose Tissue Homeostasis and Immune Response. Cells 2021; 10:cells10071738. [PMID: 34359908 PMCID: PMC8304920 DOI: 10.3390/cells10071738] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 12/17/2022] Open
Abstract
Colorectal cancer (CRC) is among the major threatening diseases worldwide, being the third most common cancer, and a leading cause of death, with a global incidence expected to increase in the coming years. Enhanced adiposity, particularly visceral fat, is a major risk factor for the development of several tumours, including CRC, and represents an important indicator of incidence, survival, prognosis, recurrence rates, and response to therapy. The obesity-associated low-grade chronic inflammation is thought to be a key determinant in CRC development, with the adipocytes and the adipose tissue (AT) playing a significant role in the integration of diet-related endocrine, metabolic, and inflammatory signals. Furthermore, AT infiltrating immune cells contribute to local and systemic inflammation by affecting immune and cancer cell functions through the release of soluble mediators. Among the factors introduced with diet and enriched in AT, fatty acids (FA) represent major players in inflammation and are able to deeply regulate AT homeostasis and immune cell function through gene expression regulation and by modulating the activity of several transcription factors (TF). This review summarizes human studies on the effects of dietary FA on AT homeostasis and immune cell functions, highlighting the molecular pathways and TF involved. The relevance of FA balance in linking diet, AT inflammation, and CRC is also discussed. Original and review articles were searched in PubMed without temporal limitation up to March 2021, by using fatty acid as a keyword in combination with diet, obesity, colorectal cancer, inflammation, adipose tissue, immune cells, and transcription factors.
Collapse
|
18
|
Influences of dietary oils and fats, and the accompanied minor content of components on the gut microbiota and gut inflammation: A review. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.05.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
19
|
Ye Z, Xu YJ, Liu Y. Influence of different dietary oil consumption on nutrient malabsorption: An animal trial using Sprague Dawley rats. J Food Biochem 2021; 45:e13695. [PMID: 33694208 DOI: 10.1111/jfbc.13695] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/13/2021] [Accepted: 02/23/2021] [Indexed: 12/31/2022]
Abstract
In the present study, the influences of five typical dietary oils (i.e., palm oil, PO; leaf lard oil, LO; rapeseed oil, RO; sunflower oil, SO; and linseed oil, LN) consumption on the nutrients malabsorption were studied using adult male Sprague Dawley rats. Results suggested that the C16:0 (24.534 ± 2.26% to 54.269 ± 1.28%) and C18:0 (18.433 ± 4.421% to 36.455 ± 3.316%) were the dominant fatty acids in fecal samples in different groups. After 6-week intervention by different dietary oils, the fecal moisture and water soluble protein content in PO group, the reducing sugar content in PO, LO, and RO groups were significantly increased compared with those in the control group (p < .05). Moreover, the Na, K, and Fe contents in LO group were all the highest among the all groups. These effects were probably due to the different fatty acids composition as illustrated in the correlation analysis results. The different effects were probably due to their distinct fatty acids composition as illustrated in the correlation analysis results. Results further indicated that the different dietary oils treatment, especially for the PO (SFAs, 43.17 ± 0.98%) and LO (SFAs, 36.44 ± 0.65%), increased the upstream inflammatory cytokine expression level in the Toll-like receptor signal pathway (i.e., TLR4 and MyD88), enhancing the gut permeability. This resulted in significant increase of serum lipopolysaccharide (LPS) levels (p < .05), which was closely connected with different metabolic diseases. The present study may provide basic understandings about different dietary oil enteral nutrition and their effects on gut health. PRACTICAL APPLICATIONS: The PO, LO, RO, SO, and LN are the five of the most typical dietary lipids in Asia countries, especially in China. They are the natural edible oils which are rich in C16:0, C18:0, C18:1, C18:2ω6, and C18:3ω3, respectively. The present study indicated that the different dietary lipid consumption may result in different dietary nutrients malabsorption, which are related with the dietary lipid fatty acid composition.
Collapse
Affiliation(s)
- Zhan Ye
- School of Food Science and Technology, Jiangnan University, No. 1800, Lihu street, Wuxi, Jiangsu, 214122, P.R. China.,State Key Laboratory of Food Science and Technology, National Engineering Laboratory for Cereal Fermentation Technology, National Engineering Research Center for Functional Food, Jiangnan University, No. 1800, Lihu street, Wuxi, Jiangsu, 214122, P.R. China.,School of Human Nutrition, McGill University, Montreal, QC, H9X 3V9, Canada
| | - Yong-Jiang Xu
- School of Food Science and Technology, Jiangnan University, No. 1800, Lihu street, Wuxi, Jiangsu, 214122, P.R. China.,State Key Laboratory of Food Science and Technology, National Engineering Laboratory for Cereal Fermentation Technology, National Engineering Research Center for Functional Food, Jiangnan University, No. 1800, Lihu street, Wuxi, Jiangsu, 214122, P.R. China
| | - Yuanfa Liu
- School of Food Science and Technology, Jiangnan University, No. 1800, Lihu street, Wuxi, Jiangsu, 214122, P.R. China.,State Key Laboratory of Food Science and Technology, National Engineering Laboratory for Cereal Fermentation Technology, National Engineering Research Center for Functional Food, Jiangnan University, No. 1800, Lihu street, Wuxi, Jiangsu, 214122, P.R. China
| |
Collapse
|
20
|
Bellucci ERB, Munekata PE, Pateiro M, Lorenzo JM, da Silva Barretto AC. Red pitaya extract as natural antioxidant in pork patties with total replacement of animal fat. Meat Sci 2021; 171:108284. [DOI: 10.1016/j.meatsci.2020.108284] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/17/2020] [Accepted: 08/18/2020] [Indexed: 12/29/2022]
|