1
|
Yang W, Zheng Z, Yang Y, You Y, Ye D, Zhang Z, Yu K, Shi Y, Duan C, Lan Y. Identification of key precursors of eugenol and Syringol in wines using a Pseudo-targeted Metabolomic approach. Food Chem 2025; 477:143552. [PMID: 40023029 DOI: 10.1016/j.foodchem.2025.143552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 02/16/2025] [Accepted: 02/20/2025] [Indexed: 03/04/2025]
Abstract
Elevated levels of eugenol and syringol in wines have been observed to impart a smoky, medicinal, and spicy aroma, particularly in wines produced from East Asian species. The precursors of these compounds remain to be elucidated. Therefore, a novel pseudo-targeted metabolomic approach was proposed to screen the key precursors of eugenol and syringol in grape berries. Subsequently, the identified precursors were validated through hydrolysis experiments. The results demonstrated that the key precursors of eugenol were four glycosidic forms present in the berry, including eugenol-β-D-rutinoside, eugenol-dihexose, eugenol-hexose-pentose, and eugenol-hexose glucoside. Similarly, the key precursors of syringol were five glycosidic forms of syringol present in the berry, which included two syringol-dihexoses, two syringol-hexose-deoxyhexoses, and one syringol-hexose-pentose. The pseudo-targeted metabolomic approach proved an effective methodology in this study, offering alternative insights that could inform similar investigations.
Collapse
Affiliation(s)
- Weixi Yang
- Center for Viticulture and Enology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Ziang Zheng
- Center for Viticulture and Enology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Yingying Yang
- Center for Viticulture and Enology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Yunzhu You
- Center for Viticulture and Enology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Dongqing Ye
- Guangxi Key Laboratory of Fruits and Vegetables Storage-Processing Technology, Guangxi Academy of Agricultural Sciences, Nanning 530007, Guangxi, China
| | - Zhenzhen Zhang
- Xinjiang Agricultural University, College of Food Science and Pharmacy, Urumqi 830052, Xinjiang, China
| | - Keji Yu
- Center for Viticulture and Enology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Ying Shi
- Center for Viticulture and Enology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Changqing Duan
- Center for Viticulture and Enology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China.
| | - Yibin Lan
- Center for Viticulture and Enology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China.
| |
Collapse
|
2
|
Yao X, Cai H, Kou J, Xie Y, Li J, Zhou P, He F, Duan C, Pan Q, Qi M, Lan Y. Dual-temperature dual-state fermentation: A novel approach to improve aroma and color characteristics of Marselan wines. Food Chem X 2025; 27:102447. [PMID: 40270646 PMCID: PMC12018024 DOI: 10.1016/j.fochx.2025.102447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 04/04/2025] [Accepted: 04/05/2025] [Indexed: 04/25/2025] Open
Abstract
This study examined the effects of the Dual-Temperature Dual-State Fermentation (DTSF) technique on the chemical and sensory characteristics of industrial-scale 'Marselan' wine. Compared to the control wine, DTSF wine exhibited greater color intensity (chroma) attributed to higher levels of anthocyanin derivatives and copigments, along with a lower pH. Furthermore, DTSF wine retained higher concentrations of grape-derived aroma volatiles, including C6/C9 compounds, terpenoids, and norisoprenoids, and elevated levels of fermentation-derived esters (notably ethyl esters), contributing to a more intense fresh fruit aroma. Additionally, the DTSF technique had a minimal impact on condensed tannins and mouthfeel. This study confirms the viability of the DTSF technique for producing high-quality red wines and highlights its potential for the production of wines with diverse sensory profiles.
Collapse
Affiliation(s)
- Xuechen Yao
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Haoen Cai
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Jiayi Kou
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Yunxue Xie
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Jin Li
- Shandong Technology Innovation Center of Wine Grape and Wine, Yantai 264000, China
| | - Penghui Zhou
- Shandong Technology Innovation Center of Wine Grape and Wine, Yantai 264000, China
| | - Fei He
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Changqing Duan
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Qiuhong Pan
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Mengyao Qi
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Yibin Lan
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| |
Collapse
|
3
|
Ling M, Cui D, Zhu B, Li D, Mu H, Li J, Shi Y, Duan C, Lan Y. The influence of polyphenols on the hydrolysis and formation of volatile esters in wines during aging: An insight of kinetic equilibrium reaction. Food Chem 2025; 464:141593. [PMID: 39413604 DOI: 10.1016/j.foodchem.2024.141593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 10/05/2024] [Accepted: 10/07/2024] [Indexed: 10/18/2024]
Abstract
The evolution of volatile esters leads to changes in wine aroma during aging. In this study, polyphenol effect on ester equilibrium in wines was investigated through three aging experiments. Kinetic parameters of esters were calculated in four red wines. Results showed that the reaction rate constant (kobsd) was mainly determined by the molar concentration ratio of alcohols or acids to the corresponding esters. Phenolic matrix was more likely to influence the activation energy (Ea). Higher contents of total polyphenol led to the increase of Ea, resulting in the reactions less prone to happen but more susceptible to temperature changes. Combined with the practical wine aging and exogenous polyphenol addition experiments, the impact of polyphenol composition was revealed. Flavanols with higher polymerization degrees were found more beneficial for ester preservation than monomer flavanols or anthocyanins. This work could provide theoretical guidance in enhancing fruity aroma in wines via modulating phenolic matrix.
Collapse
Affiliation(s)
- Mengqi Ling
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs; College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; College of Food Science and Engineering, "The Belt and Road" International Institute of Grape and Wine Industry Innovation, Beijing University of Agriculture, Beijing 102206, China
| | - Dongsheng Cui
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs; College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Baoqing Zhu
- Beijing Key Laboratory of Food Processing and Safety in Forestry, Department of Food Science, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Demei Li
- College of Food Science and Engineering, "The Belt and Road" International Institute of Grape and Wine Industry Innovation, Beijing University of Agriculture, Beijing 102206, China
| | - Haibin Mu
- Collaborative Innovation Center of Eastern Foothills of Helan Mountain Wine Industry Technology, Yinchuan 750104, China
| | - Jin Li
- Shandong Technology Innovation Center of Wine Grape and Wine, Yantai 264000, China
| | - Ying Shi
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs; College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Changqing Duan
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs; College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Yibin Lan
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs; College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
4
|
Ding W, Tu Q, Xi X, Wu X, Bai J, Liu S, Li J, Yuan C. Effects of X-ray and electron beam irradiation on wine quality: Emphasizing phenolic compounds and aroma profiles. Food Chem X 2025; 25:102124. [PMID: 39885920 PMCID: PMC11780950 DOI: 10.1016/j.fochx.2024.102124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/20/2024] [Accepted: 12/20/2024] [Indexed: 02/01/2025] Open
Abstract
The content of flavor compounds in wine is limited by factors such as climate warming and the resistance of cell walls to maceration. This study used X-rays (ionizing radiation) and electron beams (particle radiation) at 0.5, 2, and 7 kGy for grape pre-treatment before winemaking. Scanning electron microscopy showed varying degrees of grape skin damage. Results indicated irradiation significantly enhanced phenolic compound extraction, with DPPH and ABTS scavenging activities increasing by up to 38.98 % and 38.70 %. Wines treated with 0.5 kGy electron beams exhibited the highest levels of esters and higher alcohols, enhancing fruity aromas. Irradiation reduced C6 compound content, decreasing green notes and improving color and complexity scores. This study demonstrates that X-ray and electron beam irradiation significantly enhance phenolic and aromatic compound extraction in wine, showing the potential of irradiation technology in the wine industry.
Collapse
Affiliation(s)
- Weikang Ding
- College of Enology, Northwest A&F University, Shaanxi 712100, China
| | - Qian Tu
- College of Enology, Northwest A&F University, Shaanxi 712100, China
| | - Xuexue Xi
- College of Enology, Northwest A&F University, Shaanxi 712100, China
| | - Xiaojie Wu
- College of Enology, Northwest A&F University, Shaanxi 712100, China
| | - Junqing Bai
- Yangling Hesheng Irradiation Technologies Co., Ltd., Yangling, Shaanxi Province 712100, China
| | - Shuang Liu
- College of Enology, Northwest A&F University, Shaanxi 712100, China
| | - Junjun Li
- College of Enology, Northwest A&F University, Shaanxi 712100, China
| | - Chunlong Yuan
- College of Enology, Northwest A&F University, Shaanxi 712100, China
- Ningxia Helan Mountain's East Foothill Wine Experiment and Demonstration Station of Northwest A&F University, Yongning, Ningxia 750104, China
| |
Collapse
|
5
|
Wu X, Li Y, Du T, Kang L, Pei B, Zhuang W, Tang F. Transcriptome sequencing and anthocyanin metabolite analysis involved in leaf red color formation of Cinnamomum camphora. Sci Rep 2024; 14:31470. [PMID: 39732975 PMCID: PMC11682368 DOI: 10.1038/s41598-024-83235-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 12/12/2024] [Indexed: 12/30/2024] Open
Abstract
Cinnamomum camphora, a key multifunctional tree species, primarily serves in landscaping. Leaf color is crucial for its ornamental appeal, undergoing a transformation to red that enhances the ornamental value of C. camphora. However, the molecular mechanisms underlying this transformation remain largely unexplored. In this study, green leaf (GL), color turning red leaf (RL) and whole red leaf (WRL) were obtained to measure pigment contents, while GL and RL were analyzed for transcriptomic alterations. A decline in chlorophyll content and a rise in anthocyanins were observed during the transition from green to red leaves. Using LC MS/MS, 11 types of anthocyanins showed significant accumulative differences, with cyanidin-3,5-O-diglucoside exhibiting the greatest disparity. Comparative RNA-seq identified 22,948 genes against reference genes, revealing 544 novel genes. Of these, 3,222 genes were up-regulated and 7,391 genes were down-regulated when the FPKM mean value > 1 in at least one group. The ribosome was identified as the most abundant KEGG term, with a substantial number of down-regulated differentially expressed genes (DEGs). The results indicated a downward trend in protein content, with GL exhibiting the highest protein concentration. 22, 4, and 29 DEGs were associated with chlorophyll biosynthesis, chlorophyll degradation, and anthocyanin biosynthesis, respectively. Most DEGs related to chlorophyll biosynthesis were down-regulated. SGR and SGRL, which are associated with chlorophyll degradation, exhibited opposite differential expression, resulting in a significant decrease in chlorophyll content in RL. The significantly up-regulated genes ANS and UFGT are advantageous for anthocyanin biosynthesis, contributing to the red coloration observed. Additionally, differential expression was noted in 40 R2R3-MYBs. Two MYB90 (Ccam01G003512 and Ccam01G003515) homologs of AtMYB113 were also identified showed high levels of up-regulation in RL. These findings suggest a strong correlation between pigment metabolism and transcriptome data, elucidating the mechanism that leads to the red coloration of leaves in C. camphora.
Collapse
Affiliation(s)
- Xinxin Wu
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, 223003, China.
| | - Yan Li
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, 223003, China
| | - Tong Du
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, 223003, China
| | - Li Kang
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, 223003, China
| | - Baolei Pei
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, 223003, China
| | - Weibing Zhuang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Memorial Sun Yat-Sen), Nanjing, 210014, China
| | - Fang Tang
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, 223003, China
| |
Collapse
|
6
|
Wang X, Cheng J, Zhu Y, Li T, Wang Y, Gao X. Intermolecular copigmentation of anthocyanins with phenolic compounds improves color stability in the model and real blueberry fermented beverage. Food Res Int 2024; 190:114632. [PMID: 38945622 DOI: 10.1016/j.foodres.2024.114632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/07/2024] [Accepted: 06/08/2024] [Indexed: 07/02/2024]
Abstract
To improve the color stability of anthocyanins (ACNs) in blueberry fermented beverage, the intermolecular copigmentation between ACNs and 3 different phenolic compounds, including (-)-epigallocatechin gallate (EGCG), ferulic acid (FA), and gallic acid (GA) as copigments, was compared in the model and the real blueberry fermented beverage, respectively. The copigmented ACNs by EGCG presented a high absorbance (0.34 a.u.) and redness (27.09 ± 0.17) in the model blueberry fermented beverage. The copigmentation by the participation of the 3 different phenolic compounds showed all a spontaneous exothermic reaction, and the Gibbs free energy (ΔG°) of the system was lowest (-5.90 kJ/mol) using EGCG as copigment. Furthermore, the molecular docking model verified that binary complexes formed between ACNs and copigments by hydrogen bonds and π-π stacking. There was a high absorbance (1.02 a.u.), percentage polymeric color (PC%, 68.3 %), and good color saturation (C*ab, 43.28) in the real blueberry fermented beverage aged for 90 days, and more malvidin-3-O-glucoside had been preserved in the wine using EGCG as copigment. This finding may guide future industrial production of blueberry fermented beverage with improved color.
Collapse
Affiliation(s)
- Xiaohan Wang
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-products Processing, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Jingjing Cheng
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-products Processing, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Yue Zhu
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-products Processing, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Tao Li
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-products Processing, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Yu Wang
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-products Processing, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Xueling Gao
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-products Processing, Anhui Agricultural University, Hefei 230036, Anhui, China.
| |
Collapse
|
7
|
Noviello M, Antonino C, Gambacorta G, Paradiso VM, Caponio F. Use of vine-shoots stilbene extract to the reduction of SO 2 in red and rosé Italian wine: Effect on phenolic, volatile, and sensory profiles. Heliyon 2024; 10:e34310. [PMID: 39113959 PMCID: PMC11304030 DOI: 10.1016/j.heliyon.2024.e34310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/03/2024] [Accepted: 07/08/2024] [Indexed: 08/10/2024] Open
Abstract
Sulfur dioxide (SO2) is one of the most used additives in wine industry for its antioxidant and antimicrobial activity. However, due to health concerns, consumers' demand of wines with either reduced or totally replaced SO2 has increased. This study aimed to assess the effect of partial and total replacement of SO2 with a vine-shoots extract rich in stilbenes in rosé (cv. Sangiovese) and red (cv. Negramaro) wines respectively. Color as well as phenolic, volatile, and sensory profiles of wines were evaluated at bottling and during storage. The results showed that the vine-shoots extract increased the levels of trans-resveratrol, catechin, and gallic acid in wines. Moreover, the positive correlation of procyanidin dimers in red wine suggested an increase of the polymerization reactions. The amount of added extract probably provided lower antimicrobial protection compared to SO2, as indicated by the higher levels of ethyl phenol. The decrease of individual anthocyanins and oxidation aldehydes observed in wines with SO2 replacement and the higher levels of caftaric acid in the rosé wine with the extract suggested a shift of the oxidative protection, with a lower protection towards anthocyanin degradation and higher protection towards carbonyl formation and oxidation of readily oxidizable phenolic acids.
Collapse
Affiliation(s)
- Mirella Noviello
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola, 165/A, 70126, Bari, Italy
| | - Claudia Antonino
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola, 165/A, 70126, Bari, Italy
| | - Giuseppe Gambacorta
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola, 165/A, 70126, Bari, Italy
| | - Vito Michele Paradiso
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Provinciale Monteroni, 73100, Lecce, Italy
| | - Francesco Caponio
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola, 165/A, 70126, Bari, Italy
| |
Collapse
|
8
|
Zhang L, Wang Z, Zhang C, Zhou S, Yuan C. Metabolomics analysis based on UHPLC-QqQ-MS/MS to discriminate grapes and wines from different geographical origins and climatological characteristics. Food Chem X 2024; 22:101396. [PMID: 38699585 PMCID: PMC11063387 DOI: 10.1016/j.fochx.2024.101396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 05/05/2024] Open
Abstract
With the proliferation of the consumer's awareness of wine provenance, wines with unique origin characteristics are increasingly in demand. This study aimed to investigate the influence of geographical origins and climatological characteristics on grapes and wines. A total of 94 anthocyanins and 78 non-anthocyanin phenolic compounds in grapes and wines from five Chinese viticultural vineyards (CJ, WH, QTX, WW, and XY) were identified by UHPLC-QqQ-MS/MS. Chemometric methods PCA and OPLS-DA were established to select candidate differential metabolites, including flavonols, stilbenes, hydroxycinnamic acids, peonidin derivatives, and malvidin derivatives. CCA showed that malvidin-3-O-glucoside had a positive correlation with mean temperature, and quercetin-3-O-glucoside had a negative correlation with precipitation. In addition, enrichment analysis elucidated that the metabolic diversity in different origins mainly occurred in flavonoid biosynthesis. This study would provide some new insights to understand the effect of geographical origins and climatological characteristics on phenolic compounds in grapes and wines.
Collapse
Affiliation(s)
- Lin Zhang
- College of Enology, Northwest A&F University, Yangling 712100, China
| | - Zhaoxiang Wang
- College of Enology, Northwest A&F University, Yangling 712100, China
| | - Cui Zhang
- College of Enology, Northwest A&F University, Yangling 712100, China
- Xinjiang Bainian Manor Wines & Spirits Co., Ltd, China
| | - Shubo Zhou
- College of Enology, Northwest A&F University, Yangling 712100, China
| | - Chunlong Yuan
- College of Enology, Northwest A&F University, Yangling 712100, China
- Ningxia Helan Mountain's East Foothill Wine Experiment and Demonstration Station of Northwest A&F University, Yongning, Ningxia 750104, China
| |
Collapse
|
9
|
Yang W, Zheng Z, Shi Y, Reynolds AG, Duan C, Lan Y. Volatile phenols in wine: overview of origin, formation, analysis, and sensory expression. Crit Rev Food Sci Nutr 2024:1-26. [PMID: 38766770 DOI: 10.1080/10408398.2024.2354526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Volatile phenols impart particular aromas to wine. Due to their distinctive aroma characteristics and low sensory thresholds, volatile phenols can easily influence and modify the aroma of wine. Since these compounds can be formed in wines in various ways, it is necessary to clarify the possible sources of each volatile phenol to achieve management during the winemaking process. The sources of volatile phenols in wine are divided into berry-derived, fermentation-derived, and oak-derived. The pathways and factors influencing the formation of volatile phenols from each source are then reviewed respectively. In addition, an overview of the sensory impact of volatile phenols is given, both in terms of the aroma these volatile phenols directly bring to the wine and their contribution through aroma interactions. Finally, as an essential basis for exploring the scientific problems of volatile phenols in wine, approaches to quantitation of volatile phenols and their precursors are discussed in detail. With the advancement of analytical techniques, more details on volatile phenols have been discovered. Further exploration is worthwhile to achieve more detailed monitoring and targeted management of volatile phenols in wine.
Collapse
Affiliation(s)
- Weixi Yang
- Center for Viticulture and Enology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, China
- Ministry of Agriculture and Rural Affairs, Key Laboratory of Viticulture and Enology, Beijing, China
| | - Ziang Zheng
- Center for Viticulture and Enology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, China
- Ministry of Agriculture and Rural Affairs, Key Laboratory of Viticulture and Enology, Beijing, China
| | - Ying Shi
- Center for Viticulture and Enology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, China
- Ministry of Agriculture and Rural Affairs, Key Laboratory of Viticulture and Enology, Beijing, China
| | | | - Changqing Duan
- Center for Viticulture and Enology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, China
- Ministry of Agriculture and Rural Affairs, Key Laboratory of Viticulture and Enology, Beijing, China
| | - Yibin Lan
- Center for Viticulture and Enology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, China
- Ministry of Agriculture and Rural Affairs, Key Laboratory of Viticulture and Enology, Beijing, China
| |
Collapse
|
10
|
Tong W, Zhai H, Qi M, Hua Y, Shi T, Shang H, Shi Y, Duan C, Lan Y. Characterization of chemical and sensory properties of Cabernet Sauvignon and Marselan wines made by flash détente technique. Food Res Int 2024; 184:114229. [PMID: 38609216 DOI: 10.1016/j.foodres.2024.114229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/09/2024] [Accepted: 03/12/2024] [Indexed: 04/14/2024]
Abstract
This study aimed to characterize the sensory profiles of wines produced using the flash détente (FD) technique and to identify the flavor compounds contributing to the sensory characteristics. The FD technique was applied to two major grape varieties, Cabernet Sauvignon and Marselan, from the Changli region of China to produce high-quality wines with aging potential. Compared to the traditional macerated wines, the FD wines showed greater color intensity, mainly due to the higher levels of anthocyanins. Regarding the aroma characteristics, FD wines were found to have a more pronounced fruitness, especially fresh fruit note, which was due to the contribution of higher concentration of esters. Concurrently, FD wines showed an increased sweet note which was associated with increased lactones and furanones. In addition, FD wines exhibited reduced green and floral notes due to lower levels of C6 alcohols and C13-norisoprenoids. With regard to mouthfeel, FD wines presented greater astringency and bitterness, which was due to the higher levels of phenolics. The total concentration of condensed tannins and condensed tannins for each degree of polymerization was considerably higher in FD wines due to the strong extraction of the FD technique. A significant increase in grape-derived polysaccharides and glycerol was also found in FD wines, contributing to a fuller body. This study contributed to an increase in the knowledge of the Changli region and demonstrated that the FD technique could be applied to the wine production in this region to address the negative impacts of rainfall in individual vintages.
Collapse
Affiliation(s)
- Wenzhe Tong
- Center for Viticulture and Enology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Hongyue Zhai
- Center for Viticulture and Enology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Mengyao Qi
- Center for Viticulture and Enology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Yubo Hua
- Hebei Wine Industrial Technology Institute, Changli 066600, Hebei Province, China
| | - Tonghua Shi
- Hebei Wine Industrial Technology Institute, Changli 066600, Hebei Province, China
| | - Hua Shang
- COFCO Great Wall Winery (Ningxia) Co., Ltd., Yinchuan 750000, Ningxia Province, China
| | - Ying Shi
- Center for Viticulture and Enology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Changqing Duan
- Center for Viticulture and Enology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Yibin Lan
- Center for Viticulture and Enology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China.
| |
Collapse
|
11
|
Custodio-Mendoza JA, Aktaş H, Zalewska M, Wyrwisz J, Kurek MA. A Review of Quantitative and Topical Analysis of Anthocyanins in Food. Molecules 2024; 29:1735. [PMID: 38675555 PMCID: PMC11051960 DOI: 10.3390/molecules29081735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
Anthocyanins, a subclass of flavonoids known for their vibrant colors and health-promoting properties, are pivotal in the nutritional science and food industry. This review article delves into the analytical methodologies for anthocyanin detection and quantification in food matrices, comparing quantitative and topical techniques. Quantitative methods, including High-performance Liquid Chromatography (HPLC) and Mass Spectrometry (MS), offer precise quantification and profiling of individual anthocyanins but require sample destruction, limiting their use in continuous quality control. Topical approaches, such as Near-infrared Spectroscopy (NIR) and hyperspectral imaging, provide rapid, in situ analysis without compromising sample integrity, ideal for on-site food quality assessment. The review highlights the advancements in chromatographic techniques, particularly Ultra-high-performance Liquid Chromatography (UHPLC) coupled with modern detectors, enhancing resolution and speed in anthocyanin analysis. It also emphasizes the growing importance of topical techniques in the food industry for their efficiency and minimal sample preparation. By examining the strengths and limitations of both analytical realms, this article aims to shed light on current challenges and prospective advancements, providing insights into future research directions for improving anthocyanin analysis in foods.
Collapse
Affiliation(s)
| | | | | | | | - Marcin A. Kurek
- Department of Technique and Food Development, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (WULS-SGGW), 02-776 Warsaw, Poland; (J.A.C.-M.); (H.A.); (M.Z.); (J.W.)
| |
Collapse
|
12
|
Yao XC, Zhang HL, Ma XR, Xia NY, Duan CQ, Yang WM, Pan QH. Leaching and evolution of anthocyanins and aroma compounds during Cabernet Sauvignon wine fermentation with whole-process skin-seed contact. Food Chem 2024; 436:137727. [PMID: 37832413 DOI: 10.1016/j.foodchem.2023.137727] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 09/18/2023] [Accepted: 10/08/2023] [Indexed: 10/15/2023]
Abstract
This study explores the leaching and evolution of anthocyanins and aroma compounds during wine-making, using an industrial-scale vinification of Cabernet Sauvignon with whole-process skin-seed contact. The results indicated that compounds within the same class displayed similar evolutionary patterns during fermentation. The extraction of anthocyanins, C6 aldehydes, and β-damascenes occurred continuously during cold soak, accompanied by the conversion of C6 aldehydes into alcohols and hydrolytic release of glycosidic β-damascenone. During alcoholic fermentation, pyranoanthocyanins, polymeric pigments, esters, benzene compounds, higher alcohols, and acids were generated. The concurrent occurrence of malolactic fermentation and prolonged maceration led to aromas associated with lactic acid bacteria metabolism. Finally, a comparison between free-run wine and pressed wine revealed high concentrations of C6 compounds and polymeric pigments with flavanol dimers in the pressed wine. These results can be used as a reference to optimize the vinification process to enhance the red due and fruity aromas of the wine.
Collapse
Affiliation(s)
- Xue-Chen Yao
- Center for Viticulture & Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Viticulture and Enology, Ministry of Agricultural and Rural Affairs, Beijing 100083, China
| | - Hua-Lin Zhang
- Center for Viticulture & Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Viticulture and Enology, Ministry of Agricultural and Rural Affairs, Beijing 100083, China
| | - Xin-Rui Ma
- Center for Viticulture & Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Nong-Yu Xia
- Center for Viticulture & Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Viticulture and Enology, Ministry of Agricultural and Rural Affairs, Beijing 100083, China
| | - Chang-Qing Duan
- Center for Viticulture & Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Viticulture and Enology, Ministry of Agricultural and Rural Affairs, Beijing 100083, China
| | - Wei-Ming Yang
- Chateau Zhihui Yuanshi Co. Ltd., 750026 Yinchuan, Ningxia, China
| | - Qiu-Hong Pan
- Center for Viticulture & Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Viticulture and Enology, Ministry of Agricultural and Rural Affairs, Beijing 100083, China.
| |
Collapse
|
13
|
Noviello M, Paradiso VM, Natrella G, Gambacorta G, Faccia M, Caponio F. Application of toasted vine-shoot chips and ultrasound treatment in the ageing of Primitivo wine. ULTRASONICS SONOCHEMISTRY 2024; 104:106826. [PMID: 38422810 PMCID: PMC10909903 DOI: 10.1016/j.ultsonch.2024.106826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/02/2024] [Accepted: 02/21/2024] [Indexed: 03/02/2024]
Abstract
Ageing wine in barrels is an historical practice used to improve the aromatic complexity of wine, but due to the high cost and the long ageing period, alternative approaches have been developed, such as the use of wood chips and ultrasound treatment. The present paper reports the results of an investigation performed on wine (cv. Primitivo). Three treatments were investigated: a) control wine untreated; b) wine with toasted vine-shoot chips (10 g/L); c) wine with toasted vine-shoot chips (10 g/L) and treated by ultrasound. Wines were analysed after 7, 14, 21, and 28 days. The application of ultrasound combined with vine-shoot chips promoted tannin evolution, thereby accelerating the ageing process of wine. The chips addition decreased the total anthocyanins content and increased the stilbenes (trans-resveratrol and trans-piceid) and wood-related aromas (i.e., furfural, 5-methylfurfural) concentration. Finally, wines added with chips were richer in woody, vanilla, oak, and chocolate notes and more preferred by the tasters.
Collapse
Affiliation(s)
- Mirella Noviello
- Department of Soil, Plant and Food Science (DISSPA), University of Bari Aldo Moro, Via Amendola, 165/a, I-70126 Bari, Italy
| | - Vito Michele Paradiso
- Department of Biological and Environmental Sciences and Technologies, University of Salento, S.P. 6, Lecce-Monteroni, I-73100 Lecce, Italy.
| | - Giuseppe Natrella
- Department of Soil, Plant and Food Science (DISSPA), University of Bari Aldo Moro, Via Amendola, 165/a, I-70126 Bari, Italy
| | - Giuseppe Gambacorta
- Department of Soil, Plant and Food Science (DISSPA), University of Bari Aldo Moro, Via Amendola, 165/a, I-70126 Bari, Italy
| | - Michele Faccia
- Department of Soil, Plant and Food Science (DISSPA), University of Bari Aldo Moro, Via Amendola, 165/a, I-70126 Bari, Italy
| | - Francesco Caponio
- Department of Soil, Plant and Food Science (DISSPA), University of Bari Aldo Moro, Via Amendola, 165/a, I-70126 Bari, Italy
| |
Collapse
|
14
|
Lin X, Wu H, Huang G, Wu Q, Yao ZP. Rapid authentication of red wine by MALDI-MS combined with DART-MS. Anal Chim Acta 2023; 1283:341966. [PMID: 37977790 DOI: 10.1016/j.aca.2023.341966] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/23/2023] [Accepted: 10/25/2023] [Indexed: 11/19/2023]
Abstract
A simple, rapid and high-throughput approach was developed for authentication of red wine for the first time, by combining spectral results from matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) and direct analysis in real time mass spectrometry (DART-MS). By coupling with orthogonal partial least squares discrimination analysis (OPLS-DA), this approach enabled successful classification of 535 wines from 8 countries, with the correct classification rates of 100% on the calibration set and over 90% on the validation set for almost all countries, and 26 potential characteristic markers selected. Compared to one single technique, this approach allowed detection of more compound ions, and with better fitting and predictive performances. The satisfactory differentiation results of vintages and grape varieties further verified the robustness of the approach. This study demonstrated the feasibility of combining multiple mass spectrometric techniques for wine analysis, which can be extended to other fields or to combinations of other analytical techniques.
Collapse
Affiliation(s)
- Xuewei Lin
- State Key Laboratory of Chemical Biology and Drug Discovery, and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Special Administrative Region of China; Research Institute for Future Food, and Research Center for Chinese Medicine Innovation, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Special Administrative Region of China; State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), and Shenzhen Key Laboratory of Food Biological Safety Control, Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518057, China
| | - Hao Wu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Fujian, 361102, China
| | - Gefei Huang
- State Key Laboratory of Chemical Biology and Drug Discovery, and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Special Administrative Region of China; Research Institute for Future Food, and Research Center for Chinese Medicine Innovation, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Special Administrative Region of China; State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), and Shenzhen Key Laboratory of Food Biological Safety Control, Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518057, China
| | - Qian Wu
- State Key Laboratory of Chemical Biology and Drug Discovery, and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Special Administrative Region of China; Research Institute for Future Food, and Research Center for Chinese Medicine Innovation, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Special Administrative Region of China; State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), and Shenzhen Key Laboratory of Food Biological Safety Control, Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518057, China
| | - Zhong-Ping Yao
- State Key Laboratory of Chemical Biology and Drug Discovery, and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Special Administrative Region of China; Research Institute for Future Food, and Research Center for Chinese Medicine Innovation, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Special Administrative Region of China; State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), and Shenzhen Key Laboratory of Food Biological Safety Control, Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518057, China.
| |
Collapse
|
15
|
Lu HC, Tian MB, Han X, Shi N, Li HQ, Cheng CF, Chen W, Li SD, He F, Duan CQ, Wang J. The key role of vineyard parcel in shaping flavonoid profiles and color characteristics of Cabernet Sauvignon wines combined with the influence of harvest ripeness, vintage and bottle aging. Food Chem X 2023; 19:100772. [PMID: 37780257 PMCID: PMC10534108 DOI: 10.1016/j.fochx.2023.100772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 06/22/2023] [Accepted: 06/23/2023] [Indexed: 10/03/2023] Open
Abstract
Recently, revealing the terroir influence on wine chemical features has drawn increasing interest. This study aimed to explain how wine flavonoid signatures were altered by vineyard parcel, harvest ripeness, vintage and bottle aging. Six commercial Cabernet Sauvignon vineyards were selected in the Manas region to produce wines at three harvest ripeness in three seasons (2019-2021) and aged for three years. The six vineyards had little difference in mesoclimate conditions while varying greatly in soil composition. Results showed high vineyard pH (> 8.5) could accelerate grape ripening rate and increase wine flavonol concentration. Vineyards with moderate nutrition produced wines with abundant anthocyanin derivatives and maintained color characteristics during aging. The role of detailed anthocyanin derivatives in regulating wine color was clarified. As the harvest ripeness elevated, wine's flavonoid profiles were altered and gained a higher red color intensity. This work provides chemical mechanisms underlying single-vineyard wines and a theoretical basis for targeted wine production.
Collapse
Affiliation(s)
- Hao-Cheng Lu
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Meng-Bo Tian
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Xiao Han
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Ning Shi
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Hui-Qing Li
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Chi-Fang Cheng
- CITIC Guoan Wine Co. Ltd, Manasi 832200, Xinjiang, China
| | - Wu Chen
- CITIC Guoan Wine Co. Ltd, Manasi 832200, Xinjiang, China
| | - Shu-De Li
- CITIC Guoan Wine Co. Ltd, Manasi 832200, Xinjiang, China
| | - Fei He
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Chang-Qing Duan
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Jun Wang
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| |
Collapse
|
16
|
Sub-Regional Variation and Characteristics of Cabernet Sauvignon Wines in the Eastern Foothills of the Helan Mountain: A Perspective from Phenolics, Visual Properties and Mouthfeel. Foods 2023; 12:foods12051081. [PMID: 36900598 PMCID: PMC10000446 DOI: 10.3390/foods12051081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/17/2023] [Accepted: 02/27/2023] [Indexed: 03/08/2023] Open
Abstract
As one of the most promising wine regions in China, the eastern foothills of the Helan Mountain (EFHM) in the Ningxia Hui Autonomous Region has attracted great attention recently. Geographically, EFHM is divided into six sub-regions, namely Shizuishan, Xixia, Helan, Qingtongxia, Yongning and Hongsipu. However, there have been few reports on the character and differences between wines in the six sub-regions. In this experiment, a total of 71 commercial Cabernet Sauvignon wines from six sub-regions were collected, and their phenolic compounds, visual properties and mouthfeel were investigated. The results showed that wines from the six sub-regions of EFHM showed distinctive phenolic profiles and could be distinguished through the OPLS-DA mode using 32 potential markers. In terms of color, Shizuishan wines showed higher a* values and lower b* values. The sensory evaluation showed that Hongsipu wines had higher astringency strength and lower tannin texture. The overall results implied that the phenolic compounds of wines in different sub-regions were affected by terroir conditions. To the best of our knowledge, this is the first time that a wide coverage of phenolic compounds has been analysed for wines from the sub-regions of EFHM, which could provide valuable information in deciphering the terroir of EFHM.
Collapse
|
17
|
Tong W, Sun B, Ling M, Zhang X, Yang W, Shi Y, Pan Q, Duan C, Lan Y. Influence of modified carbonic maceration technique on the chemical and sensory characteristics of Cabernet Sauvignon wines. Food Chem 2023; 403:134341. [DOI: 10.1016/j.foodchem.2022.134341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 09/16/2022] [Accepted: 09/16/2022] [Indexed: 10/14/2022]
|
18
|
Zhang XK, Jeffery DW, Li DM, Lan YB, Zhao X, Duan CQ. Red wine coloration: A review of pigmented molecules, reactions, and applications. Compr Rev Food Sci Food Saf 2022; 21:3834-3866. [PMID: 35912664 DOI: 10.1111/1541-4337.13010] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 06/10/2022] [Accepted: 06/29/2022] [Indexed: 01/28/2023]
Abstract
Color is one of the most distinctive qualities of red wine. Despite new knowledge in the field of pigment identification, copigmentation, and oxidation being forthcoming, there is still a large gap between the fundamental research and practical winemaking outcomes. A state-of-art review from these two aspects is, therefore, necessary. This review first introduces updated knowledge about the primary pigments in wine, with emphasis on their physicochemical properties. Then, the mechanisms of copigmentation and oxidation are elucidated in detail, along with their relative contributions to wine color. Finally, the practical effects of copigmentation and micro-oxygenation (MOX) in winemaking are summarized and discussed. In general, wine coloration is ultimately determined by the anthocyanin flavylium cation, which is greatly influenced by wine pH. In young red wine, grape-derived anthocyanins and nonanthocyanin polyphenols (as copigments) are the foundation for wine coloration. During aging and storage, anthocyanin derivatives are formed via various chemical reactions, where moderate oxidation plays a vital role, whereas copigmentation constantly decreases. The essence of wine color evolution relates to the changes of physicochemical properties of primary pigments in wine, where the hydration equilibrium gradually diminishes. In practice, the effects of copigment addition and MOX during real vinification can be viewed as somewhat controversial, considering that many studies showed different effects on wine color and pigment concentration. Universal features can be summarized but some phenomena still remain unclear and deserve further exploration.
Collapse
Affiliation(s)
- Xin-Ke Zhang
- Center for Viticulture and Enology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing, China
- Food Science and Engineering College, Beijing University of Agriculture, Beijing, China
- "The Belt and Road" International Institute of Grape and Wine Industry Innovation, Beijing University of Agriculture, Beijing, China
| | - David W Jeffery
- Department of Wine Science and Waite Research Institute, The University of Adelaide, Glen Osmond, South Australia, Australia
| | - De-Mei Li
- Food Science and Engineering College, Beijing University of Agriculture, Beijing, China
- "The Belt and Road" International Institute of Grape and Wine Industry Innovation, Beijing University of Agriculture, Beijing, China
| | - Yi-Bin Lan
- Center for Viticulture and Enology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Xu Zhao
- Center for Viticulture and Enology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Chang-Qing Duan
- Center for Viticulture and Enology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing, China
| |
Collapse
|
19
|
Zhang XK, Zhao X, Ying S, Duan CQ. The formation mechanism of pinotin A in model wine: Experimental and theoretical investigation. Food Chem 2022; 380:132196. [DOI: 10.1016/j.foodchem.2022.132196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 12/28/2021] [Accepted: 01/16/2022] [Indexed: 11/15/2022]
|
20
|
Ling M, Qi M, Li S, Shi Y, Pan Q, Cheng C, Yang W, Duan C. The influence of polyphenol supplementation on ester formation during red wine alcoholic fermentation. Food Chem 2022; 377:131961. [PMID: 34990947 DOI: 10.1016/j.foodchem.2021.131961] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 12/03/2021] [Accepted: 12/24/2021] [Indexed: 12/28/2022]
Abstract
Pre-fermentative polyphenol supplementation in industrial scales (100-hL) and simulated fermentation (350 mL clarified juice) were conducted. Results showed that in practical winemaking, adding QCE (quercetin, caffeic acid and ellagic acid) increased acetate concentrations in wines and extra grape seed tannins (T) enhanced the effect of QCE supplementation. In simulated fermentation with clarified juice, the synergy effect of QCE and T was evidenced that ester formation was only promoted through mixed QCET supplementation. Besides, QCE supplementation benefited the formation of 4-vinylcatechol adducted malvidin-3-O-(acetyl/coumaroyl)-glucoside and decreased other anthocyanin derivatives derived from pyruvic acid and acetaldehyde, leading more pyruvic acid and acetaldehyde left in yeast to enhance the metabolic fluxes of esters. Findings manifested the connection between the formation of esters and anthocyanin derivatives during red wine alcoholic fermentation, which would be influenced by the phenolic matrix. This work could provide a perspective in winemaking industry for modulating aroma profile via polyphenol supplementation.
Collapse
Affiliation(s)
- Mengqi Ling
- Center for Viticulture & Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Mengyao Qi
- Center for Viticulture & Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Siyu Li
- Center for Viticulture & Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Ying Shi
- Center for Viticulture & Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Qiuhong Pan
- Center for Viticulture & Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Chifang Cheng
- Xinjiang CITIC Guoan Wine Co. Ltd, 832200 Manasi, Xinjiang, China
| | - Weiming Yang
- Chateau Zhihui Yuanshi Co. Ltd, 750026 Yinchuan, Ningxia, China
| | - Changqing Duan
- Center for Viticulture & Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China.
| |
Collapse
|
21
|
Zhao X, Zhang N, He F, Duan C. Reactivity comparison of three malvidin-type anthocyanins forming derived pigments in model wine solutions. Food Chem 2022; 384:132534. [PMID: 35219237 DOI: 10.1016/j.foodchem.2022.132534] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/17/2022] [Accepted: 02/19/2022] [Indexed: 01/04/2023]
Abstract
Malvidin-3-O-glucoside (MvG), malvidin-3-O-(6-O-acetyl)-glucoside (MvAG), and malvidin-3,5-O-diglucoside (MvDG) are three representative malvidin-type anthocyanins in red wine. In this study, the influence of structural differences on the formation efficiency of two types of derived pigments ((-)-epicatechin-ethyl-anthocyanins and pyranoanthocyanins) was investigated in model solutions using UHPLC-MS. The results showed that the yields of MvAG were higher than those of MvG to form both types of derived pigments, and the formation rate of pyranoanthocyanin was also relatively higher. In contrast, acetylation slowed the formation of (-)-epicatechin-ethyl-anthocyanins, indicating that the rate of covalent reactions may be linked to the affinity of (-)-epicatechin to copigment with anthocyanins. The condensation rate of MvDG with (-)-epicatechin, mediated by acetaldehyde, was much lower than that of the two monoglucosidic anthocyanins and also exhibited lower yields. In addition, pyranoanthocyanin was not generated from MvDG due to the absence of a free hydroxyl group at the C5 position.
Collapse
Affiliation(s)
- Xu Zhao
- Center for Viticulture and Enology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Ning Zhang
- Center for Viticulture and Enology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Fei He
- Center for Viticulture and Enology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Changqing Duan
- Center for Viticulture and Enology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China.
| |
Collapse
|
22
|
Fermentation mechanism of ginkgo rice wine using an ultra-high-performance liquid chromatography–quadrupole/time-of-flight mass spectrometry based metabolomics method. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2021.104230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
23
|
Li C, Chu S, Tan S, Yin X, Jiang Y, Dai X, Gong X, Fang X, Tian D. Towards Higher Sensitivity of Mass Spectrometry: A Perspective From the Mass Analyzers. Front Chem 2021; 9:813359. [PMID: 34993180 PMCID: PMC8724130 DOI: 10.3389/fchem.2021.813359] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 12/06/2021] [Indexed: 01/12/2023] Open
Abstract
Mass spectrometry (MS) is one of the most widely used analytical techniques in many fields. Recent developments in chemical and biological researches have drawn much attention to the measurement of substances with low abundances in samples. Continuous efforts have been made consequently to further improve the sensitivity of MS. Modifications on the mass analyzers of mass spectrometers offer a direct, universal and practical way to obtain higher sensitivity. This review provides a comprehensive overview of the latest developments in mass analyzers for the improvement of mass spectrometers' sensitivity, including quadrupole, ion trap, time-of-flight (TOF) and Fourier transform ion cyclotron (FT-ICR), as well as different combinations of these mass analyzers. The advantages and limitations of different mass analyzers and their combinations are compared and discussed. This review provides guidance to the selection of suitable mass spectrometers in chemical and biological analytical applications. It is also beneficial to the development of novel mass spectrometers.
Collapse
Affiliation(s)
- Chang Li
- College of Instrumentation & Electrical Engineering, Jilin University, Changchun, China
| | - Shiying Chu
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing, People’s Republic ofChina
| | - Siyuan Tan
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing, People’s Republic ofChina
| | - Xinchi Yin
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing, People’s Republic ofChina
| | - You Jiang
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing, People’s Republic ofChina
| | - Xinhua Dai
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing, People’s Republic ofChina
| | - Xiaoyun Gong
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing, People’s Republic ofChina
| | - Xiang Fang
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing, People’s Republic ofChina
| | - Di Tian
- College of Instrumentation & Electrical Engineering, Jilin University, Changchun, China
| |
Collapse
|
24
|
Zhao X, He F, Zhang XK, Shi Y, Duan CQ. Impact of three phenolic copigments on the stability and color evolution of five basic anthocyanins in model wine systems. Food Chem 2021; 375:131670. [PMID: 34848083 DOI: 10.1016/j.foodchem.2021.131670] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 10/31/2021] [Accepted: 11/21/2021] [Indexed: 11/26/2022]
Abstract
Phenolic copigments have important influence on red wine color. In this study, UV-visible spectrophotometer and UHPLC-Q-TOF-MS were combined to investigate the effects of three types of phenolic copigments (gallic acid, (-)-epicatechin, and quercetin-3-O-glucoside) on the stability and color properties of five common 3-O-monoglucosidic anthocyanins in model wine solutions. Results showed low concentrations (0.5 mM) of gallic acid and (-)-epicatechin protected anthocyanins from degradation, whereas high concentrations (8 mM) of them had the opposite effect. Quercetin-3-O-glucoside always improved the stability of anthocyanins despite its additive amount (0.1 mM or 0.4 mM). Even small quantity of (-)-epicatechin led to obvious yellow hue into the solution, and xanthylium derivatives generated from (-)-epicatechin were detected. Antagonistic effect among the three copigments was observed, probably as a result of competition of intermolecular copigmentation. Additionally, the stability of anthocyanins was significantly influenced by their structures: cyanidin-3-O-glucoside, peonidin-3-O-glucoside, and malvidin-3-O-glucoside were more stable than delphinidin-3-O-glucoside and petunidin-3-O-glucoside.
Collapse
Affiliation(s)
- Xu Zhao
- Center for Viticulture and Enology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Fei He
- Center for Viticulture and Enology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Xin-Ke Zhang
- Center for Viticulture and Enology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Ying Shi
- Center for Viticulture and Enology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Chang-Qing Duan
- Center for Viticulture and Enology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China.
| |
Collapse
|
25
|
Liu X, Li S, Wang Z, Wang X, He Y, Wen L. Ultrahigh Pressure Facilitates the Acylation of Malvidin and Chlorogenic Acid to Increase the Stability and Protective Effect of Malvidin Derivatives on H 2O 2-Induced ARPE-19 Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:13990-14003. [PMID: 34672563 DOI: 10.1021/acs.jafc.1c03133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We explored the effects of ultrahigh-pressure technology and chlorogenic acid on the color stability and structure-activity relationship of malvidin (MV). Experimental conditions were optimized through single-factor experiments and response surface analysis at a pressure of 300 MPa, mass ratio of MV to chlorogenic acid of 1:3.64 (w/w), and time of 5 min. Compared with MV, MV derivatives showed higher stability and in vitro antioxidant activity. X-ray diffraction analysis, UV-vis spectroscopy, Fourier transform infrared spectroscopy, high-performance liquid chromatography, and mass spectrometry were conducted to determine the structures of MV derivatives for the first time. Ultrahigh pressure facilitated acylation of chlorogenic acid and MV and produced four new MV derivatives. Analysis of the effect of malvidin-3-O-6-(acrylic acid-(2-hydroxy, 4-carboxy-cyclohexanol) ester)-guaiacol (Mv3ACEC) on ARPE-19 cells exposed to H2O2 by RNA transcriptome sequencing showed that Mv3ACEC simultaneously inhibited various inflammatory and apoptotic signal transduction pathways, exerted a synergistic effect, and partly inhibited cell apoptosis through the MAPK signaling pathway. Therefore, the results show that ultrahigh pressure will cause acylation of chlorogenic acid and MV to produce four new MV derivatives, and MV derivatives protect ARPE-19 cells from H2O2-induced oxidative stress.
Collapse
Affiliation(s)
- Xinyao Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, P. R. China
| | - Sheng Li
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, P. R. China
| | - Zhitong Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, P. R. China
| | - Xinyuan Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, P. R. China
| | - Yang He
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, P. R. China
| | - Liankui Wen
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, P. R. China
| |
Collapse
|
26
|
Xue ZD, Zhang QA, Zheng HR. Roles of free radical on the formation of acetaldehyde in model wine solutions under different ultrasound parameters: A key bridge-link compound for red wine coloration during ageing. ULTRASONICS SONOCHEMISTRY 2021; 79:105757. [PMID: 34562734 PMCID: PMC8473768 DOI: 10.1016/j.ultsonch.2021.105757] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/12/2021] [Accepted: 09/13/2021] [Indexed: 05/23/2023]
Abstract
In order to explore the effects of ultrasound on the formation of acetaldehyde and its mechanism in model wine solutions, ultrasound conditions and free radicals were investigated by response surface methodology and electron paramagnetic resonance spectroscopy (EPR), respectively. The results indicate that ultrasound does induce the production of acetaldehyde with the maximum amount under the conditions of ultrasound power density 0.2 W/cm2, 48 min and 32 °C. The hydroxyl radicals and the 1-hydroxyethyl free radicals are the main initiator and precursor for acetaldehyde, respectively. Furthermore, the stronger the 1-hydroxyethyl free radicals captured by EPR, the lower the formation of acetaldehyde. In addition, the content of Fe2+and ethanol also exerted a certain influence on the acetaldehyde formation. In conclusion, ultrasound does promote the production of acetaldehyde in the model wine solutions, which is beneficial for well understanding the mechanism of ultrasound in modifying the wine color and accelerating ageing.
Collapse
Affiliation(s)
- Zhen-Dan Xue
- Institute of Food & Physical Field Processing, School of Food Engineering and Nutrition Sciences, Shaanxi Normal University, Xi'an 710062, Shaanxi Province, PR China
| | - Qing-An Zhang
- Institute of Food & Physical Field Processing, School of Food Engineering and Nutrition Sciences, Shaanxi Normal University, Xi'an 710062, Shaanxi Province, PR China.
| | - Hong-Rong Zheng
- Institute of Food & Physical Field Processing, School of Food Engineering and Nutrition Sciences, Shaanxi Normal University, Xi'an 710062, Shaanxi Province, PR China
| |
Collapse
|
27
|
Khalafyan AA, Temerdashev ZA, Abakumov AG, Yakuba YF. Chemometric Estimation of the Contributions of Metals and Volatile Compounds to the Sensory Properties of Some Natural Grape Wines. JOURNAL OF ANALYTICAL CHEMISTRY 2021. [DOI: 10.1134/s1061934821080074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
28
|
Milinčić DD, Stanisavljević NS, Kostić AŽ, Soković Bajić S, Kojić MO, Gašić UM, Barać MB, Stanojević SP, Lj Tešić Ž, Pešić MB. Phenolic compounds and biopotential of grape pomace extracts from Prokupac red grape variety. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110739] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
29
|
Topić Božič J, Butinar L, Ćurko N, Kovačević Ganić K, Mozetič Vodopivec B, Korte D, Franko M. Implementation of high performance liquid chromatography coupled to thermal lens spectrometry (HPLC-TLS) for quantification of pyranoanthocyanins during fermentation of Pinot Noir grapes. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-3005-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|