1
|
Wang D, Liu L, Liu T, Zhao J, Chi H, Chen H, Tang J, Zhang X. Microcapsules stabilized by cellulose nanofibrils/whey protein complexes and modified with cinnamaldehyde: Characterization and release properties. Food Chem 2025; 473:143094. [PMID: 39879754 DOI: 10.1016/j.foodchem.2025.143094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/26/2024] [Accepted: 01/24/2025] [Indexed: 01/31/2025]
Abstract
This work aims to optimize encapsulation of Zanthoxylum schinifolium essential oil (ZSEO) in microcapsule to enhance its stability and slow-release capability. Herein, the ZSEO microcapsules stabilized by bacterial cellulose nanofibrils/whey protein isolate (BCNFs/WPI) complexes and modified by cinnamaldehyde (CA) were successfully prepared via spray drying. The microcapsules formed by 1.0 wt% BCNFs/WPI complexes at a ratio of 1:7 and fortified with 0.7 wt% CA, exhibited superior physical properties, a smaller powder size and the highest encapsulation efficiency (90.81 %). The spectroscopy analysis and molecular dynamics simulations demonstrated the presence of hydrogen bonding and electrostatic interactions between CA and BCNFs/WPI/ZSEO components, contributing to an increase in the binding energy. The release kinetic modeling revealed that the microcapsules exhibited the delayed release capability in both aqueous and oily model fluids. Moreover, the ZSEO microcapsules modified with CA exhibited enhanced stability during in vitro digestion, offering valuable insights into the microencapsulation of essential oils.
Collapse
Affiliation(s)
- Dan Wang
- School of Food and Bioengineering, Xihua University, Chengdu 610039, Sichuan, China
| | - Lin Liu
- School of Food and Bioengineering, Xihua University, Chengdu 610039, Sichuan, China
| | - Tanghui Liu
- School of Food and Bioengineering, Xihua University, Chengdu 610039, Sichuan, China
| | - Jie Zhao
- School of Food and Bioengineering, Xihua University, Chengdu 610039, Sichuan, China
| | - Hai Chi
- School of Food and Bioengineering, Xihua University, Chengdu 610039, Sichuan, China; Food Microbiology Key Laboratory of Sichuan Province, Xihua University, Chengdu 610039, Sichuan, China
| | - Hongrui Chen
- School of Food and Bioengineering, Xihua University, Chengdu 610039, Sichuan, China; Food Microbiology Key Laboratory of Sichuan Province, Xihua University, Chengdu 610039, Sichuan, China
| | - Jie Tang
- School of Food and Bioengineering, Xihua University, Chengdu 610039, Sichuan, China; Food Microbiology Key Laboratory of Sichuan Province, Xihua University, Chengdu 610039, Sichuan, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Xihua University, Chengdu 610039, China
| | - Xingzhong Zhang
- School of Food and Bioengineering, Xihua University, Chengdu 610039, Sichuan, China; Food Microbiology Key Laboratory of Sichuan Province, Xihua University, Chengdu 610039, Sichuan, China.
| |
Collapse
|
2
|
Ma J, Sun Y, Liang J, Cheng S. Pickering emulsion stabilized by salmon protein-fucoidan complex and its absorption promotion effect on astaxanthin. Int J Biol Macromol 2025; 310:143455. [PMID: 40280510 DOI: 10.1016/j.ijbiomac.2025.143455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 04/03/2025] [Accepted: 04/22/2025] [Indexed: 04/29/2025]
Abstract
In this experiment, salmon protein-fucoidan complexes (SMP-FU) were used to stabilize Pickering emulsions encapsulating astaxanthin (AXT). The hydrophobic forces and hydrogen bonding between SMP and FU were revealed as the main interaction to form the SMP-FU complex. The addition of FU led to the increase of three-phase contact angle from 51.3° to 92.1°, and the best hydrophilic-hydrophobic balance was achieved with 2 % FU. The emulsions stabilized by SMP-FU became more homogeneous and denser with the increase of FU concentration, and the smallest droplet size was obtained in the emulsion stabilized by SMP-FU(2 %), which exhibited good rheological properties and acceptable stabilities under the heating, strong ionic strength and extreme acid-base conditions. AXT loaded Pickering emulsion (PEAs) stabilized by SMP-FU (SMP-FU-PEAs) provided better protection for AXT and improved the AXT retention rate under different storage condition, and displayed better gastric acid stability and higher AXT release rate (60.57 %) and bioaccessibility index (71.52 %) in than SMP-PEAs during in vitro digestion. The Caco-2 cell assay and in vivo experiments revealed a significant increase in the uptake rate of AXT embedded in SMP-FU-PEAs, which provided a feasible way to subsequently promote the uptake and utilization of the active substance.
Collapse
Affiliation(s)
- Jiale Ma
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Dalian Key Laboratory for Precision Nutrition, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Yu Sun
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Dalian Key Laboratory for Precision Nutrition, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Jiayue Liang
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Dalian Key Laboratory for Precision Nutrition, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - ShaSha Cheng
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Dalian Key Laboratory for Precision Nutrition, Dalian Polytechnic University, Dalian 116034, Liaoning, China.
| |
Collapse
|
3
|
Wang F, Zeng J, Lin L, Wang X, Zhang L, Tao N. Co-delivery of astaxanthin using positive synergistic effect from biomaterials: From structural design to functional regulation. Food Chem 2025; 470:142731. [PMID: 39755039 DOI: 10.1016/j.foodchem.2024.142731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/22/2024] [Accepted: 12/30/2024] [Indexed: 01/06/2025]
Abstract
The powerful antioxidant properties of astaxanthin (AST) face two significant challenges: low water solubility and poor chemical stability. To overcome them, extensive research and development efforts have been directed toward creating effective delivery systems. Among them, the positive synergistic effect between biomaterials can be used to refine the design of delivery systems. Understanding the relationship between structure and function aids in tailoring applications to specific needs. This review outlines the challenges associated with delivering AST and reviews the mechanisms involved in creating delivery systems, specifically focusing on the structure-function relationship of biomaterials. It comprehensively introduces the positive synergistic effect of biomaterials with enhancing the functional properties of AST, and analyzes the impact of designed structures on function regulation and the application prospects of the delivery system in the food industry. The future demand for efficient delivery of AST will increasingly depend on the positive synergistic effect between biomaterials.
Collapse
Affiliation(s)
- Fengqiujie Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Jianhua Zeng
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Liu Lin
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Xichang Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, Shanghai, China; National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai, China
| | - Long Zhang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, Shanghai, China; National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai, China.
| | - Ningping Tao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, Shanghai, China; National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai, China.
| |
Collapse
|
4
|
Zheng X, Chu X, Pan H. Optimization of Encapsulation Core-Shell Structure to Preserve Polyphenols in Soy Protein-Polysaccharide Co-Dried Complexes. Molecules 2025; 30:978. [PMID: 40076205 PMCID: PMC11901748 DOI: 10.3390/molecules30050978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/10/2025] [Accepted: 01/16/2025] [Indexed: 03/14/2025] Open
Abstract
Polyphenols from extra virgin olive oil (EVOO) are bioactive compounds with significant antioxidant properties, but their instability necessitates effective encapsulation for enhanced stability and controlled release. This study prepared water-in-oil-in-water (W1/O/W2) emulsions to encapsulate EVOO using a two-step emulsification technique with varying concentrations of soy protein isolate (SPI) (0-10% w/w), maltodextrin (MD) (0-20% w/w), and propylene glycol alginate (PGA) (0-0.5% w/w). A three-factor central composite design (CCD) combined with response surface methodology (RSM) was employed to establish 20 W1/O/W2 emulsions to analyze the effects of the formulation on emulsion properties. Additionally, the effects of different pH levels on emulsion stability were investigated. The results showed that the ratios of SPI, MD, and PGA significantly influenced particle size distribution, stability, and encapsulation efficiency. PGA enhanced the rigidity of the interfacial membrane, forming stable core-shell structures and reducing EVOO release. The optimal formulation (7.887% SPI, 15.774% MD, 0.395% PGA) achieved superior encapsulation efficiency (97.66%), long-term stability, and viscosity below 300 mPa·s. Cryo-TEM analysis confirmed the formation of core-shell structures, while Zeta potential measurements indicated smaller particle sizes and enhanced stability at pH 11. This optimized W1/O/W2 emulsion system offers a promising food-grade delivery platform for hydrophobic bioactive compounds, enabling enhanced stability and controlled release of EVOO polyphenols for applications in functional foods, nutraceuticals, and other industries.
Collapse
Affiliation(s)
- Xinyue Zheng
- Engineer Faculty, The University of Sydney, Sydney 2008, Australia;
| | - Xiaofang Chu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China;
| | - Hongyang Pan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- Analysis and Testing Center, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
5
|
Sereti F, Alexandri M, Papapostolou H, Papadaki A, Kopsahelis N. Recent progress in carotenoid encapsulation: Effects on storage stability, bioaccessibility and bioavailability for advanced innovative food applications. Food Res Int 2025; 203:115861. [PMID: 40022383 DOI: 10.1016/j.foodres.2025.115861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/25/2025] [Accepted: 01/27/2025] [Indexed: 03/03/2025]
Abstract
The incorporation of bioactive ingredients in food products has attracted considerable interest in recent years because of the numerous health benefits these compounds can offer to the human body. Carotenoids are a group of functional components with notable antioxidant and anti-inflammatory properties. Their addition to food products not only provides coloration but can also deliver certain bioactive effects, leading to both increased shelf life and beneficial health benefits. However, carotenoids are prone to oxidation, as they can be easily degraded from light or heat treatments. To address this, encapsulation has emerged as an effective method to protect carotenoids during their incorporation into foods as well as during storage. This review provides a comprehensive overview of the current state of the art regarding encapsulation methods utilized for carotenoids entrapment. The effect of various techniques- such as microemulsification, freeze- drying, spray- drying, and novel nanoencapsulation methods like electrospinning and formation of solid-liquid nanoparticles- are discussed with respect to their positive and negative impacts on carotenoid antioxidant activity, bioaccessibility, bioavailability and the shelf life of the final product. Depending on the type of carotenoid or its intended application, different methods could be employed, which could significantly enhance the overall biological activities of the final food product. This review critically presents the advantages and limitations of each method and highlights the potential health implications that nanoencapsulation techniques might pose before introducing new encapsulated products to the food market.
Collapse
Affiliation(s)
- Fani Sereti
- Department of Food Science and Technology, Ionian University, Argostoli, 28100, Kefalonia, Greece
| | - Maria Alexandri
- Department of Food Science and Technology, Ionian University, Argostoli, 28100, Kefalonia, Greece
| | - Harris Papapostolou
- Department of Food Science and Technology, Ionian University, Argostoli, 28100, Kefalonia, Greece
| | - Aikaterini Papadaki
- Department of Food Science and Technology, Ionian University, Argostoli, 28100, Kefalonia, Greece
| | - Nikolaos Kopsahelis
- Department of Food Science and Technology, Ionian University, Argostoli, 28100, Kefalonia, Greece.
| |
Collapse
|
6
|
Rivera-Hernández G, Roether JA, Aquino C, Boccaccini AR, Sánchez ML. Delivery systems for astaxanthin: A review on approaches for in situ dosage in the treatment of inflammation associated diseases. Int J Pharm 2025; 669:125017. [PMID: 39626846 DOI: 10.1016/j.ijpharm.2024.125017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 11/14/2024] [Accepted: 11/29/2024] [Indexed: 12/17/2024]
Abstract
Astaxanthin is a red-orange keto-carotenoid exhibiting antioxidant activity. AST is mainly used in the cosmetic, food, and healthcare industries. Nevertheless, because of its anti-inflammatory effects and immune modulation activity, AST use in pharmacology has been proposed as an alternative for treating neurodegenerative disorders, inflammatory bowel disease, arthritis, atherosclerosis, or diabetic foot ulcers, among others. However, before an AST clinical implementation, it is still necessary to solve challenges related to the use of AST, such as lack of solubility, poor bioavailability, and sensitivity to light, oxygen, and temperature. For that reason, the development of several biomaterials to encapsulate, protect, and dosage AST has been proposed in recent years. This review discusses the use of liposomes, hydrogels, and polymer micro and nanoparticles as vehicles for AST release based on available literature. Additionally, an analysis of released, encapsulated, and effective AST doses is presented, as well as the regulatory landscape of different delivery systems to reveal details of AST delivery, which should inform future strategies for implementing AST in the clinic.
Collapse
Affiliation(s)
- Gabriela Rivera-Hernández
- Laboratorio de Farmacología Molecular, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Argentina; Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Cauerstrasse 6, Erlangen 91058, Germany; Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Monterrey, Mexico
| | - Judith A Roether
- Institute of Polymer Materials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Erlangen 91058, Germany
| | - Carolina Aquino
- Departamento de ingeniería y ciencias exactas y naturales, Universidad Favaloro, Buenos Aires, Argentina
| | - Aldo R Boccaccini
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Cauerstrasse 6, Erlangen 91058, Germany.
| | - Mirna L Sánchez
- Laboratorio de Farmacología Molecular, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Argentina; Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Cauerstrasse 6, Erlangen 91058, Germany.
| |
Collapse
|
7
|
Guo Y, Wang F, Yang T, Li S, Dong J, Fan Y, Zhang Z, Zhao X, Hou H. Enhancement of vitamin B stability with the protection of whey protein and their interaction mechanisms. Food Chem 2024; 460:140521. [PMID: 39083964 DOI: 10.1016/j.foodchem.2024.140521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 08/02/2024]
Abstract
Vitamin B is easily degraded by light and heat during storage, which results in nutritional loss of food. Whey protein is expected to protect vitamin B by forming complexes through secondary bonds. The properties of the complexes and protective effects of whey protein on vitamins B1, B2, B3 and B6 were characterized. The percentage losses of vitamin B were decreased by more than 60% with the protection of whey protein. FTIR, fluorescence spectroscopy, thermodynamic analysis and molecular docking were used to investigate the binding interaction between vitamin B and whey protein. Vitamin B quenched the intrinsic fluorescence of whey protein, mainly with a static nature (Kq > 2.0 × 1010 L/(mol·s)). The interactions between whey protein and vitamin B were mostly mediated by hydrogen bonds and van der Waals forces, as demonstrated by the thermodynamic parameters and molecular docking.
Collapse
Affiliation(s)
- Yueting Guo
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No.1299, Sansha Road, Qingdao, Shandong Province, 266404, PR China
| | - Feifei Wang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No.1299, Sansha Road, Qingdao, Shandong Province, 266404, PR China
| | - Tingting Yang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No.1299, Sansha Road, Qingdao, Shandong Province, 266404, PR China
| | - Shiqi Li
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No.1299, Sansha Road, Qingdao, Shandong Province, 266404, PR China
| | - Jingning Dong
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No.1299, Sansha Road, Qingdao, Shandong Province, 266404, PR China
| | - Yan Fan
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No.1299, Sansha Road, Qingdao, Shandong Province, 266404, PR China
| | - Zhaohui Zhang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No.1299, Sansha Road, Qingdao, Shandong Province, 266404, PR China
| | - Xue Zhao
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No.1299, Sansha Road, Qingdao, Shandong Province, 266404, PR China
| | - Hu Hou
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No.1299, Sansha Road, Qingdao, Shandong Province, 266404, PR China.; Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, 266237, PR China.; Sanya Oceanographic Institution, Ocean University of China, Sanya, Hainan Province, 572024, PR China.; Qingdao Institute of Marine Bioresources for Nutrition & Health Innovation, Qingdao, Shandong Province, 266000, PR China..
| |
Collapse
|
8
|
Zheng J, Ding L, Yi J, Zhou L, Zhao L, Cai S. Revealing the potential effects of oil phase on the stability and bioavailability of astaxanthin contained in Pickering emulsions: In vivo, in vitro and molecular dynamics simulation analysis. Food Chem 2024; 456:139935. [PMID: 38870805 DOI: 10.1016/j.foodchem.2024.139935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 06/15/2024]
Abstract
This study investigated the effects of oil phases on the encapsulation rate, storage stability, and bioavailability of astaxanthin (ASTA) in Pickering emulsions (PEs). Results showed PEs of mixed oils (olive oil/edible tea oil) had excellent encapsulation efficiency (about 96.0%) and storage stability of ASTA. In vitro simulated gastrointestinal digestion results showed the mixed oil PE with a smaller interfacial area and higher monounsaturated fatty acid content may play a better role in improving ASTA retention and bioaccessibility. In vivo absorption results confirmed the mixed oil PE with an olive oil/edible tea oil of 7:3 was more favorable for ASTA absorption. Molecular dynamics simulation showed ASTA bound more strongly and stably to fatty acid molecules in the system of olive oil/edible tea oil of 7:3; and van der Waals force was the main binding force. NMR further proved there really were interactions between ASTA and four main fatty acids.
Collapse
Affiliation(s)
- Jingyi Zheng
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Lixin Ding
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Junjie Yi
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Linyan Zhou
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Lei Zhao
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China.
| | - Shengbao Cai
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China.
| |
Collapse
|
9
|
Chen H, Su Y, Li H, Wang Z, Kan J. Effects of synchronous intermissive multi-ultrasound and esterification dual modification on functionalities of starch and its emulsion stabilization ability. Food Chem 2024; 450:139412. [PMID: 38643646 DOI: 10.1016/j.foodchem.2024.139412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/06/2024] [Accepted: 04/16/2024] [Indexed: 04/23/2024]
Abstract
Dodecenylsuccinic anhydride (DDSA) has been widely used to obtain amphiphilic starches. In this study, we investigated the functionalities of synchronous intermissive multi-ultrasound-assisted esterified starch. Compared to native starch (NS), it was deduced that multi-ultrasound-modified starch (US), esterified starch (ES), and multi-ultrasound-assisted esterified starch (UES) exhibited increased viscosities but reduced gelatinization temperatures and thermal stabilities. The viscoelastic moduli, retrogradation behaviors and hydrophobicity of the ES and UES species significantly altered. Moreover, the results of structural characterization suggested that esterification reduced the molecular weight and structural order of starch, whereas the intermissive ultrasonication treatment did not aggravate the structural disruption of ES. Additionally, compared with NS and US, the emulsification abilities of the ES and UES specimens were improved, leading to the desirable effect of stabilizing astaxanthin. Overall, this study provides a method for preparing amphiphilic starch, which can be exploited as a potential emulsifier and emulsion stabilizer for bioactive compounds.
Collapse
Affiliation(s)
- Huijing Chen
- Chinese-Hungarian Cooperative Research Centre for Food Science, College of Food Science, Southwest University, Chongqing 400715, PR China; Laboratory of Quality & Safety Risk Assessment for Agri-products on Storage and Preservation (Chongqing), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Chongqing 400715, PR China
| | - Yaoyao Su
- Chinese-Hungarian Cooperative Research Centre for Food Science, College of Food Science, Southwest University, Chongqing 400715, PR China; Laboratory of Quality & Safety Risk Assessment for Agri-products on Storage and Preservation (Chongqing), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Chongqing 400715, PR China
| | - Huiying Li
- Chinese-Hungarian Cooperative Research Centre for Food Science, College of Food Science, Southwest University, Chongqing 400715, PR China; Laboratory of Quality & Safety Risk Assessment for Agri-products on Storage and Preservation (Chongqing), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Chongqing 400715, PR China
| | - Zhirong Wang
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, PR China
| | - Jianquan Kan
- Chinese-Hungarian Cooperative Research Centre for Food Science, College of Food Science, Southwest University, Chongqing 400715, PR China; Laboratory of Quality & Safety Risk Assessment for Agri-products on Storage and Preservation (Chongqing), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Chongqing 400715, PR China.
| |
Collapse
|
10
|
Li Z, Zhong S, Kopec RE. Carotenoid Bioaccessibility and Caco-2 Cell Uptake Following Novel Encapsulation Using Medium Chain Triglycerides. J Diet Suppl 2024; 21:756-770. [PMID: 39135478 DOI: 10.1080/19390211.2024.2386255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Carotenoids are especially hydrophobic and dissolve poorly in water. Encapsulation is used to increase their solubility in water-based food products. However, it is not yet known whether encapsulation with a combination of lecithin and medium-chain triglycerides improves carotenoid bioaccessibility and intestinal cell uptake. The relative bioaccessibility and Caco-2 cell uptake of two water-soluble carotenoid (i.e. lutein and astaxanthin) dispersions in a liquid form (VitaSperse®) and a powdered form (VitaDry®) were compared to the carotenoid ingredient alone. An in vitro digestion model was used to assess bioaccessibility, measuring the micellarized fraction postdigestion. The micelle fraction was incubated with Caco-2 cells to assess intestinal uptake of carotenoids. Encapsulation (by either VitaDry® or Vitasperse®) increased total astaxanthin bioaccessibility 2-2.4× and cell uptake by ∼2× relative to control. Encapsulation also increased total lutein bioaccessibility by 3-5× and cell uptake 2.3× relative to control. There was no significant difference between VitaDry® and VitaSperse® products in regards to Caco-2 cell uptake. Increased bioaccessibility largely drove increased carotenoid cell uptake from the encapsulated formulations. These results suggest further study is warranted to determine if this encapsulation approach increases carotenoid bioavailability in human studies.
Collapse
Affiliation(s)
- Ziqi Li
- Department of Food Science and Technology, The OH State University, Columbus, OH, USA
| | - Siqiong Zhong
- OSU Interdisciplinary Nutrition Program, The Ohio State University, Columbus, OH, USA
| | - Rachel E Kopec
- OSU Interdisciplinary Nutrition Program, The Ohio State University, Columbus, OH, USA
- Foods for Health Discovery Theme, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
11
|
Dai C, Li W, Zhang C, Shen X, Wan Z, Deng X, Liu F. Microencapsule delivery systems of functional substances for precision nutrition. ADVANCES IN FOOD AND NUTRITION RESEARCH 2024; 112:199-255. [PMID: 39218503 DOI: 10.1016/bs.afnr.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Microencapsulation, a typical core-shell structure technology, encapsulates functional active ingredients for protection, controlled release, and targeted delivery. In precise nutrition, the focus is on utilizing microcapsule delivery systems for personalized dietary supplements and disease intervention. This chapter outlines the morphological structure of microcapsules, common wall materials, and preparation techniques. It discusses the characteristics of different hydrophilic and lipophilic functional factors and their function as dietary supplements. The role of microencapsulation on the controlled release, odor masking, and enhanced bioavailability of functional factors is explored. Additionally, the application of microcapsule delivery systems in nutritional interventions for diseases like inflammatory bowel disease, alcoholic/fatty liver disease, diabetes, and cancer is introduced in detail. Lastly, the chapter proposes the future developments of anticipation in responsive wall materials for precise nutrition interventions, including both challenges and opportunities.
Collapse
Affiliation(s)
- Chenlin Dai
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, P.R. China
| | - Wenhan Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, P.R. China
| | - Chairui Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, P.R. China
| | - Xuelian Shen
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, P.R. China
| | - Ziyan Wan
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, P.R. China
| | - Xiaofan Deng
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, P.R. China
| | - Fuguo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, P.R. China.
| |
Collapse
|
12
|
Wang S, Qin Y, Liu Y, Liu G, Cheng G, Soteyome T. Controlling release of astaxanthin in β-sitosterol oleogel-based emulsions via different self-assembled mechanisms and composition of the oleogelators. Food Res Int 2024; 186:114350. [PMID: 38729698 DOI: 10.1016/j.foodres.2024.114350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/27/2024] [Accepted: 04/17/2024] [Indexed: 05/12/2024]
Abstract
In this study, three types of β-sitosterol-based oleogels (β-sitosterol + γ-oryzanol oleogels, β-sitosterol + lecithin, oleogels and β-sitosterol + monostearate oleogels), loaded with astaxanthin, were employed as the oil phase to create oleogel-based emulsions (SO, SL, and SM) using high-pressure homogenization. The microstructure revealed that fine-scale crystals were dispersed within the oil phase of the droplets in the β-sitosterol oleogel-based emulsion. The bioaccessibility of astaxanthin was found to be 58.13 %, 51.24 %, 36.57 %, and 45.72 % for SM, SL, SO, and the control group, respectively. Interestingly, the release of fatty acids was positively correlated with the availability of astaxanthin (P = 0.981). Further analysis of FFAs release and kinetics indicated that the structural strength of the oil-phase in the emulsions influenced the degree and rate of lipolysis. Additionally, the micellar fraction analysis suggested that the nature and composition of the oleogelators in SM and SL also impacted lipolysis and the bioaccessibility of astaxanthin. Furthermore, interfacial binding of lipase and isothermal titration calorimetry (ITC) measurements revealed that the oleogel network within the oil phase of the emulsion acted as a physical barrier, hindering the interaction between lipase and lipid. Overall, β-sitosterol oleogel-based emulsions offer a versatile platform for delivering hydrophobic molecules, enhancing the bioavailability of active compounds, and achieving sustained release.
Collapse
Affiliation(s)
- Shujie Wang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650550, China
| | - Yuyue Qin
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650550, China
| | - Yaping Liu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650550, China
| | - Guoqin Liu
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Products Safety, South China University of Technology, Guangzhou 510640, China
| | - Guiguang Cheng
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650550, China.
| | - Thanapop Soteyome
- School of Food Science and Technology, Rajamangala University of Technology Phra Nakhon, 168 Thanon Si Ayutthaya, Khwaeng Wachira Phayaban, Khet Dusit, Krung Thep Maha Nakhon 10300, Thailand.
| |
Collapse
|
13
|
Meng W, Sun H, Mu T, Garcia-Vaquero M. Spray-drying and rehydration on β-carotene encapsulated Pickering emulsion with chitosan and seaweed polyphenol. Int J Biol Macromol 2024; 268:131654. [PMID: 38641273 DOI: 10.1016/j.ijbiomac.2024.131654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/07/2024] [Accepted: 04/15/2024] [Indexed: 04/21/2024]
Abstract
The spray-drying process to generate microcapsules from Pickering emulsions needs high temperatures, leading to instability of emulsions and degradation of encapsulated thermosensitive compounds (β-carotene). However, these effects may be attenuated by the introduction of seaweed polyphenols into the emulsion interfacial layers, although the effects underlying this protective mechanism have not been explored. This study evaluates the effects of spray-drying/rehydration on the morphology, encapsulation efficiency, redispersibility, and stability of β-carotene loaded Pickering emulsions stabilized by chitosan (PESC) and Pickering emulsions stabilized by chitosan/seaweed polyphenols (PESCSP). The encapsulation efficiency of β-carotene in PESCSP microcapsules (61.13 %) was higher than PESC (53.91 %). Rehydrated PESCSP exhibited more regular droplet size distribution, higher stability, stronger 3D network morphology, and lower redispersibility index (1.5) compared to rehydrated PESC. Analyses of interfacial layers of emulsions revealed that chitosan covalently bound fatty acids at their hydrophobic side. Polyphenols were linked to chitosan at the hydrophilic side of emulsions through hydrogen bonds, providing 3D network between droplets and antioxidant activities to inhibit the degradation of β-carotene. This study emphasized the role of polyphenols in the interfacial layers of Pickering emulsions for the development of efficient delivery systems and protection of β-carotene and other thermosensitive bioactive compounds during spray-drying and rehydration.
Collapse
Affiliation(s)
- Weihao Meng
- Laboratory of Food Chemistry and Nutrition Science, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, No.2 Yuan Ming Yuan West Road, Haidian District, P.O. Box 5109, Beijing 100193, PR China; School of Agriculture and Food Science, University College Dublin, Belfield Dublin 4, Ireland
| | - Hongnan Sun
- Laboratory of Food Chemistry and Nutrition Science, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, No.2 Yuan Ming Yuan West Road, Haidian District, P.O. Box 5109, Beijing 100193, PR China.
| | - Taihua Mu
- Laboratory of Food Chemistry and Nutrition Science, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, No.2 Yuan Ming Yuan West Road, Haidian District, P.O. Box 5109, Beijing 100193, PR China.
| | - Marco Garcia-Vaquero
- School of Agriculture and Food Science, University College Dublin, Belfield Dublin 4, Ireland.
| |
Collapse
|
14
|
Burgos-Díaz C, Leal-Calderon F, Mosi-Roa Y, Chacón-Fuentes M, Garrido-Miranda K, Opazo-Navarrete M, Quiroz A, Bustamante M. Enhancing the Retention and Oxidative Stability of Volatile Flavors: A Novel Approach Utilizing O/W Pickering Emulsions Based on Agri-Food Byproducts and Spray-Drying. Foods 2024; 13:1326. [PMID: 38731696 PMCID: PMC11083764 DOI: 10.3390/foods13091326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
Spray-drying is a commonly used method for producing powdered flavors, but the high temperatures involved often result in the loss of volatile molecules. To address this issue, our study focused on a novel approach: developing O/W Pickering emulsions with agri-food byproducts to encapsulate and protect D-limonene during spray-drying and storage. Emulsions formulated with lupin hull, lupin-byproduct (a water-insoluble protein-fiber byproduct derived from the production of lupin protein isolate), and camelina press-cake were subjected to spray-drying at 160 °C. The results revealed that these emulsions exhibited good stability against creaming. The characteristics of the dry emulsions (powders) were influenced by the concentration of byproducts. Quantitative analysis revealed that Pickering emulsions enhanced the retention of D-limonene during spray-drying, with the highest retention achieved using 3% lupin hull and 1% camelina press-cake. Notably, lupin-stabilized emulsions yielded powders with enhanced oxidative stability compared to those stabilized with camelina press-cake. Our findings highlight the potential of food-grade Pickering emulsions to improve the stability of volatile flavors during both processing and storage.
Collapse
Affiliation(s)
- César Burgos-Díaz
- Agriaquaculture Nutritional Genomic Center, CGNA, Temuco 4780000, Chile
| | | | - Yohanna Mosi-Roa
- Agriaquaculture Nutritional Genomic Center, CGNA, Temuco 4780000, Chile
| | | | - Karla Garrido-Miranda
- Agriaquaculture Nutritional Genomic Center, CGNA, Temuco 4780000, Chile
- Scientific and Technological Bioresource Nucleus (BIOREN-UFRO), Universidad de La Frontera, Temuco 4811230, Chile
| | | | - Andrés Quiroz
- Laboratorio de Química Ecológica, Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Temuco 4811230, Chile
- Centro de Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA), Universidad de La Frontera, Temuco 4811230, Chile
| | - Mariela Bustamante
- Scientific and Technological Bioresource Nucleus (BIOREN-UFRO), Universidad de La Frontera, Temuco 4811230, Chile
- Department of Chemical Engineering and Centre for Biotechnology and Bioengineering (CeBiB), Universidad de La Frontera, Temuco 4811230, Chile
| |
Collapse
|
15
|
Nyström L, Mira I, Benjamins JW, Gopaul S, Granfeldt A, Abrahamsson B, von Corswant C, Abrahmsén-Alami S. In Vitro and In Vivo Performance of Pickering Emulsion-Based Powders of Omega-3 Polyunsaturated Fatty Acids. Mol Pharm 2024; 21:677-687. [PMID: 38133148 DOI: 10.1021/acs.molpharmaceut.3c00804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Omega-3 polyunsaturated fatty acids (n-3 PUFA) are essential nutrients for human health and have been linked to a variety of health benefits, including reducing the risk of cardiovascular diseases. In this paper, a spray-dried powder formulation based on Pickering emulsions stabilized with cellulose nanocrystals (CNC) and hydroxypropyl methylcellulose (HPMC) has been developed. The formulation was compared in vitro and in vivo to reference emulsions (conventional Self-Emulsifying Drug Delivery System, SEDDS) to formulate n-3 PUFA pharmaceutical products, specifically in free fatty acid form. The results of in vivo studies performed in fasted dogs showed that Pickering emulsions reconstituted from powders are freely available (fast absorption) with a similar level of bioavailability as reference emulsions. In the studies performed with dogs in the fed state, the higher bioavailability combined with slower absorption observed for the Pickering emulsion, compared to the reference, was proposed to be the result of the protection of the n-3 PUFAs (in free fatty acid form) against oxidation in the stomach by the solid particles stabilizing the emulsion. This observation was supported by promising results from short-term studies of chemical stability of powders with n-3 PUFA loads as high as 0.8 g oil/g powder that easily regain the original emulsion drop sizes upon reconstitution. The present work has shown that Pickering emulsions may offer a promising strategy for improving the bioavailability and stability as well as providing an opportunity to produce environmentally friendly (surfactant free) and patient-acceptable solid oral dosage forms of n-3 PUFA in the free fatty acid form.
Collapse
Affiliation(s)
- Lina Nyström
- Chemical Processes and Pharmaceutical Development, RISE, 114 28 Stockholm, Sweden
| | - Isabel Mira
- Chemical Processes and Pharmaceutical Development, RISE, 114 28 Stockholm, Sweden
| | - Jan-Willem Benjamins
- Chemical Processes and Pharmaceutical Development, RISE, 114 28 Stockholm, Sweden
| | - Sashi Gopaul
- DMPK, Early Cardiovascular and Metabolic Diseases, Biopharmaceutical R&D, AstraZeneca Gothenburg, 431 83 Mölndal, Sweden
| | - Andreas Granfeldt
- Oral Product Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Gothenburg, 431 83 Mölndal, Sweden
| | - Bertil Abrahamsson
- Oral Product Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Gothenburg, 431 83 Mölndal, Sweden
| | - Christian von Corswant
- Oral Product Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Gothenburg, 431 83 Mölndal, Sweden
| | - Susanna Abrahmsén-Alami
- Sustainable Innovation & Transformational Excellence, Pharmaceutical Technology & Development, Operations, AstraZeneca Gothenburg, 431 83 Mölndal, Sweden
| |
Collapse
|
16
|
Rodriguez-Amaya DB, Esquivel P, Meléndez-Martínez AJ. Comprehensive Update on Carotenoid Colorants from Plants and Microalgae: Challenges and Advances from Research Laboratories to Industry. Foods 2023; 12:4080. [PMID: 38002140 PMCID: PMC10670565 DOI: 10.3390/foods12224080] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/03/2023] [Accepted: 11/04/2023] [Indexed: 11/26/2023] Open
Abstract
The substitution of synthetic food dyes with natural colorants continues to be assiduously pursued. The current list of natural carotenoid colorants consists of plant-derived annatto (bixin and norbixin), paprika (capsanthin and capsorubin), saffron (crocin), tomato and gac fruit lycopene, marigold lutein, and red palm oil (α- and β-carotene), along with microalgal Dunaliella β-carotene and Haematococcus astaxanthin and fungal Blakeslea trispora β-carotene and lycopene. Potential microalgal sources are being sought, especially in relation to lutein, for which commercial plant sources are lacking. Research efforts, manifested in numerous reviews and research papers published in the last decade, have been directed to green extraction, microencapsulation/nanoencapsulation, and valorization of processing by-products. Extraction is shifting from conventional extraction with organic solvents to supercritical CO2 extraction and different types of assisted extraction. Initially intended for the stabilization of the highly degradable carotenoids, additional benefits of encapsulation have been demonstrated, especially the improvement of carotenoid solubility and bioavailability. Instead of searching for new higher plant sources, enormous effort has been directed to the utilization of by-products of the fruit and vegetable processing industry, with the application of biorefinery and circular economy concepts. Amidst enormous research activities, however, the gap between research and industrial implementation remains wide.
Collapse
Affiliation(s)
- Delia B. Rodriguez-Amaya
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas 13083-862, SP, Brazil
| | - Patricia Esquivel
- Centro Nacional de Ciencia y Tecnología (CITA), Universidad de Costa Rica, San José 11501, Costa Rica;
- Escuela de Tecnología de Alimentos, Universidad de Costa Rica, San José 11501, Costa Rica
| | | |
Collapse
|
17
|
Kim SH, Bae IS, Lee HU, Moon JY, Lee YC. A Bioactive Compound-Loaded Zinc-Aminoclay Encapsulated, Pickering Emulsion System for Treating Acne-Inducing Microbes. Int J Mol Sci 2023; 24:9669. [PMID: 37298619 PMCID: PMC10253637 DOI: 10.3390/ijms24119669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/30/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
Acne is a common skin condition caused by the growth of certain bacteria. Many plant extracts have been investigated for their potential to combat acne-inducing microbes, and one such plant extract is microwave-assisted Opuntia humifusa extract (MA-OHE). The MA-OHE was loaded onto zinc-aminoclay (ZnAC) and encapsulated in a Pickering emulsion system (MA-OHE/ZnAC PE) to evaluate its therapeutic potential against acne-inducing microbes. Dynamic light scattering and scanning electron microscopy were used to characterize MA-OHE/ZnAC PE with a mean particle diameter of 353.97 nm and a PDI of 0.629. The antimicrobial effect of MA-OHE/ZnAC was evaluated against Staphylococcus aureus (S. aureus) and Cutibacterium acnes (C. acnes), which contribute to acne inflammation. The antibacterial activity of MA-OHE/ZnAC was 0.1 and 0.025 mg/mL to S. aureus and C. acnes, respectively, which were close to naturally derived antibiotics. Additionally, the cytotoxicity of MA-OHE, ZnAC, and MA-OHE/ZnAC was tested, and the results showed that they had no cytotoxic effects on cultured human keratinocytes in a range of 10-100 μg/mL. Thus, MA-OHE/ZnAC is suggested to be a promising antimicrobial agent for treating acne-inducing microbes, while MA-OHE/ZnAC PE is a potentially advantageous dermal delivery system.
Collapse
Affiliation(s)
- Seong-Hyeon Kim
- Department of BioNano Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Republic of Korea;
| | - In-Sun Bae
- Swsonaki Inc., Gwangyang Frontier-Valley 3rd, 30 Gaseok-ro, Incheon 22827, Republic of Korea;
| | - Hyun Uk Lee
- Research Center for Materials Analysis, Korea Basic Science Institute, Daejeon 34133, Republic of Korea;
| | - Ju-Young Moon
- Department of Beauty Design Management, Hansung University, 116, Samseongyo-ro 16gil, Seoul 02876, Republic of Korea
| | - Young-Chul Lee
- Department of BioNano Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Republic of Korea;
| |
Collapse
|
18
|
Xue Y, Liao Y, Wang H, Li S, Gu Z, Adu-Frimpong M, Yu J, Xu X, Smyth HDC, Zhu Y. Preparation and evaluation of astaxanthin-loaded 2-hydroxypropyl-beta-cyclodextrin and Soluplus® nanoparticles based on electrospray technology. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:3628-3637. [PMID: 36840513 DOI: 10.1002/jsfa.12527] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 02/20/2023] [Accepted: 02/25/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Astaxanthin is a type of food-derived active ingredient with antioxidant, antidiabetic and non-toxicity functions, but its poor solubility and low bioavailability hinder further application in food industry. In the present study, through inclusion technologies, micellar solubilization and electrospray techniques, we prepared astaxanthin nanoparticles before optimizing the formulation to regulate the physical and chemical properties of micelles. We accomplished the preparation of astaxanthin nanoparticle delivery system based on single needle electrospray technology through use of 2-hydroxypropyl-β-cyclodextrin and Soluplus® to improveme the release behavior of the nanocarrier. RESULTS Through this experiment, we successfully prepared astaxanthin nanoparticles with a particle size of approximately 80 nm, which was further verified with scanning electron microscopy and transmission electron microscopy. Furthermore, the encapsulation of astaxanthin molecules into the carrier nanoparticles was verified via the results of attenuated total reflectance intensity and X-ray powder diffraction techniques. The in vitro release behavior of astaxanthin nanoparticles was different in media that contained 0.5% Tween 80 (pH 1.2, 4.5 and 6.8) buffer solution and distilled water. Also, we carried out a pharmacokinetic study of astaxanthin nanoparticles, in which it was observed that astaxanthin nanoparticle showed an effect of immediate release and significant improved bioavailability. CONCLUSION 2-hydroxypropyl-β-cyclodextrin and Soluplus® were used in the present study as a hydrophilic nanocarrier that could provide a simple way of encapsulating natural function food with repsect to improving the solubility and bioavailability of poorly water-soluble ingredients. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yuanyuan Xue
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, China
| | - Youwu Liao
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, China
| | - Haiqiao Wang
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, China
| | - Shuang Li
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, China
| | - Zhengqing Gu
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, China
| | - Michael Adu-Frimpong
- Department of Biochemistry and Forensic Sciences, School of Chemical and Biochemical Sciences, C. K. Tedam University of Technology and Applied Sciences (CKT-UTAS), Navrongo, Ghana
| | - Jiangnan Yu
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, China
| | - Ximing Xu
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, China
| | - Hugh D C Smyth
- College of Molecular Pharmaceutics & Drug Delivery, The University of Texas at Austin, Austin, TX, USA
| | - Yuan Zhu
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
19
|
Bennacef C, Desobry S, Probst L, Desobry-Banon S. Alginate Based Core-Shell Capsules Production through Coextrusion Methods: Recent Applications. Foods 2023; 12:foods12091788. [PMID: 37174326 PMCID: PMC10177967 DOI: 10.3390/foods12091788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/14/2023] [Accepted: 04/19/2023] [Indexed: 05/15/2023] Open
Abstract
Encapsulation is used in various industries to protect active molecules and control the release of the encapsulated materials. One of the structures that can be obtained using coextrusion encapsulation methods is the core-shell capsule. This review focuses on coextrusion encapsulation applications for the preservation of oils and essential oils, probiotics, and other bioactives. This technology isolates actives from the external environment, enhances their stability, and allows their controlled release. Coextrusion offers a valuable means of preserving active molecules by reducing oxidation processes, limiting the evaporation of volatile compounds, isolating some nutrients or drugs with undesired taste, or stabilizing probiotics to increase their shelf life. Being environmentally friendly, coextrusion offers significant application opportunities for the pharmaceutical, food, and agriculture sectors.
Collapse
Affiliation(s)
- Chanez Bennacef
- Laboratoire d'Ingénierie des Biomolécules (LIBio), ENSAIA-Université de Lorraine, 2 Avenue de la Forêt de Haye, BP 20163, 54505 Vandoeuvre-lès-Nancy Cedex, France
- Cookal SAS Company, 19 Avenue de la Meurthe, 54320 Maxéville, France
| | - Stéphane Desobry
- Laboratoire d'Ingénierie des Biomolécules (LIBio), ENSAIA-Université de Lorraine, 2 Avenue de la Forêt de Haye, BP 20163, 54505 Vandoeuvre-lès-Nancy Cedex, France
| | - Laurent Probst
- Cookal SAS Company, 19 Avenue de la Meurthe, 54320 Maxéville, France
| | - Sylvie Desobry-Banon
- Laboratoire d'Ingénierie des Biomolécules (LIBio), ENSAIA-Université de Lorraine, 2 Avenue de la Forêt de Haye, BP 20163, 54505 Vandoeuvre-lès-Nancy Cedex, France
| |
Collapse
|
20
|
Burgos-Díaz C, Garrido-Miranda KA, Palacio DA, Chacón-Fuentes M, Opazo-Navarrete M, Bustamante M. Food-Grade Oil-in-Water (O/W) Pickering Emulsions Stabilized by Agri-Food Byproduct Particles. COLLOIDS AND INTERFACES 2023. [DOI: 10.3390/colloids7020027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
In recent years, emulsions stabilized by solid particles (known as Pickering emulsions) have gained considerable attention due to their excellent stability and for being environmentally friendly compared to the emulsions stabilized by synthetic surfactants. In this context, edible Pickering stabilizers from agri-food byproducts have attracted much interest because of their noteworthy benefits, such as easy preparation, excellent biocompatibility, and unique interfacial properties. Consequently, different food-grade particles have been reported in recent publications with distinct raw materials and preparation methods. Moreover, emulsions stabilized by solid particles can be applied in a wide range of industrial fields, such as food, biomedicine, cosmetics, and fine chemical synthesis. Therefore, this review aims to provide a comprehensive overview of Pickering emulsions stabilized by a diverse range of edible solid particles, specifically agri-food byproducts, including legumes, oil seeds, and fruit byproducts. Moreover, this review summarizes some aspects related to the factors that influence the stabilization and physicochemical properties of Pickering emulsions. In addition, the current research trends in applications of edible Pickering emulsions are documented. Consequently, this review will detail the latest progress and new trends in the field of edible Pickering emulsions for readers.
Collapse
|
21
|
Tan M, Zhang X, Sun S, Cui G. Nanostructured steady-state nanocarriers for nutrients preservation and delivery. ADVANCES IN FOOD AND NUTRITION RESEARCH 2023; 106:31-93. [PMID: 37722776 DOI: 10.1016/bs.afnr.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
Food bioactives possess specific physiological benefits of preventing certain diet-related chronic diseases or maintain human health. However, the limitations of the bioactives are their poor stability, lower water solubility and unacceptable bioaccessibility. Structure damage or degradation is often found for the bioactives under certain environmental conditions like high temperature, strong light, extreme pH or high oxygen concentration during food processing, packaging, storage and absorption. Nanostructured steady-state nanocarriers have shown great potential in overcoming the drawbacks for food bioactives. Various delivery systems including solid form delivery system, liquid form delivery system and encapsulation technology have been developed. The embedded food nutrients can largely decrease the loss and degradation during food processing, packaging and storage. The design and application of stimulus and targeted delivery systems can improve the stability, bioavailability and efficacy of the food bioactives upon oral consumption due to enzymatic degradation in the gastrointestinal tract. The food nutrients encapsulated in the smart delivery system can be well protected against degradation during oral administration, thus improving the bioavailability and releazing controlled or targeted release for food nutrients. The encapsulated food bioactives show great potential in nutrition therapy for sub-health status and disease. Much effort is required to design and prepare more biocompatible nanostructured steady-state nanocarriers using food-grade protein or polysaccharides as wall materials, which can be used in food industry and maintain the human health.
Collapse
Affiliation(s)
- Mingqian Tan
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, P.R. China.
| | - Xuedi Zhang
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, P.R. China
| | - Shan Sun
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, P.R. China
| | - Guoxin Cui
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, P.R. China
| |
Collapse
|
22
|
Wu Y, Wang X, Yin Z, Dong J. Geotrichum candidum arthrospore cell wall particles as a novel carrier for curcumin encapsulation. Food Chem 2023; 404:134308. [PMID: 36323008 DOI: 10.1016/j.foodchem.2022.134308] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 09/09/2022] [Accepted: 09/14/2022] [Indexed: 11/24/2022]
Abstract
We report for the first time that curcumin is successfully encapsulated into a new natural pre-formed carrier, which was derived from arthrospore cell wall particles (APs) of probiotic Geotrichum candidum LG-8 and mainly composed of beta-1,4-glucan. Vacuum infusion process was used for efficient encapsulation of curcumin. The results showed that the encapsulation efficiency and yield of APs were 36.5 ± 0.9 % and 730.6 ± 26.5 μg/g (wet basis), respectively. Compared with the other probiotic carriers such as Saccharomyces cerevisiae, it could more effectively maintain the antioxidant property and storage capacity of curcumin under high temperature conditions. Simulated digestion was conducted to study in vitro release of curcumin encapsulated in APs, and showed a maximum bioaccessibility of 65.6 ± 3.8 %. In view of low-cost culture method, simple encapsulation process and high encapsulation capacity, G. candidum arthrospores as new natural encapsulation carriers have potential superiority in the practical application in food industry.
Collapse
Affiliation(s)
- Yueran Wu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; College of Food Science and Technology, Nanjing Agricultural University, 210095 Nanjing, Jiangsu, China
| | - Xiangnan Wang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Key Research Laboratory of Chinese Medicine Processing of Jiangsu Province, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zhenzhen Yin
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Key Research Laboratory of Chinese Medicine Processing of Jiangsu Province, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jiajia Dong
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Key Research Laboratory of Chinese Medicine Processing of Jiangsu Province, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
23
|
Cassani L, Prieto MA, Gomez-Zavaglia A. Effect of food-grade biopolymers coated Pickering emulsions on carotenoids' stability during processing, storage, and passage through the gastrointestinal tract. Curr Opin Food Sci 2023. [DOI: 10.1016/j.cofs.2023.101031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
24
|
Meira ACFDO, Morais LCD, Figueiredo JDA, Veríssimo LAA, Botrel DA, Resende JVD. Microencapsulation of β-carotene using barley residue proteins from beer waste as coating material. J Microencapsul 2023; 40:171-185. [PMID: 36803148 DOI: 10.1080/02652048.2023.2183277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
This study aimed to produce and characterise microparticles produced from barley residue proteins (BRP) enriched with β-carotene. The microparticles were obtained by freeze-drying five emulsion formulations with 0.5% w/w whey protein concentrate and different concentrations of maltodextrin and BRP (0, 1.5, 3.0, 4.5 and 6.0% w/w), with the dispersed phase consisting of corn oil enriched with β-carotene. The mixtures were mechanically mixed and sonicated, the formed emulsions were freeze-drying. The microparticles obtained were tested for encapsulation efficiency, humidity, hygroscopicity, apparent density, scanning electron microscopy (SEM), accelerated stability and bioaccessibility. Microparticles produced with the emulsion containing 6% w/w BRP had lower moisture content (3.47 ± 0.05%), higher encapsulation efficiency (69.11 ± 3.36%), bioaccessibility value of 84.1% and greater β-carotene protection against thermal degradation. SEM analysis showed that microparticles had sizes ranging from 74.4 to 244.8 µm. These results show that BRP are viable for the microencapsulation of bioactive compounds by freeze-drying.
Collapse
|
25
|
Cai L, Gan M, Regenstein JM, Luan Q. Improving the biological activities of astaxanthin using targeted delivery systems. Crit Rev Food Sci Nutr 2023; 64:6902-6923. [PMID: 36779336 DOI: 10.1080/10408398.2023.2176816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
The antioxidant and anti-inflammatory properties of astaxanthin (AST) enable it to protect against oxidative stress-related and inflammatory diseases with a range of biological effects. These activities provide the potential to develop healthier food products. Therefore, it would be beneficial to design delivery systems for AST to overcome its low stability, control its release, and/or improve its bioavailability. This review discusses the basis for AST's various biological activities and the factors limiting these activities, including stability, solubility, and bioavailability. It also discusses the different systems available for the targeted delivery of AST and their applications in enhancing the biological activity of AST. These include systems that are candidates for preventive and therapeutic effects, which include nerves, liver, and skin, particularly for possible cancer reduction. Targeted delivery of AST to specific regions of the gastrointestinal tract, or more selectively to target tissues and cells, can be achieved using targeted delivery systems to increase the biological activities of AST.
Collapse
Affiliation(s)
- Luyun Cai
- Ningbo Innovation Center, College of Biosystems Engineering and Food Science, Zhejiang University, Ningbo, Zhejiang, China
| | - Miaoyu Gan
- Ningbo Innovation Center, College of Biosystems Engineering and Food Science, Zhejiang University, Ningbo, Zhejiang, China
| | - Joe M Regenstein
- Department of Food Science, Cornell University, Ithaca, New York, USA
| | - Qian Luan
- Ningbo Innovation Center, College of Biosystems Engineering and Food Science, Zhejiang University, Ningbo, Zhejiang, China
| |
Collapse
|
26
|
Otchere E, McKay BM, English MM, Aryee ANA. Current trends in nano-delivery systems for functional foods: a systematic review. PeerJ 2023; 11:e14980. [PMID: 36949757 PMCID: PMC10026715 DOI: 10.7717/peerj.14980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 02/09/2023] [Indexed: 03/19/2023] Open
Abstract
Background Increased awareness of the relationship between certain components in food beyond basic nutrition and health has generated interest in the production and consumption. Functional foods owe much of their health benefits to the presence of bioactive components. Despite their importance, their poor stability, solubility, and bioavailability may require the use of different strategies including nano-delivery systems (NDS) to sustain delivery and protection during handling, storage, and ingestion. Moreover, increasing consumer trend for non-animal sourced ingredients and interest in sustainable production invigorate the need to evaluate the utility of plant-based NDS. Method In the present study, 129 articles were selected after screening from Google Scholar searches using key terms from current literature. Scope This review provides an overview of current trends in the use of bioactive compounds as health-promoting ingredients in functional foods and the main methods used to stabilize these components. The use of plant proteins as carriers in NDS for bioactive compounds and the merits and challenges of this approach are also explored. Finally, the review discusses the application of protein-based NDS in food product development and highlights challenges and opportunities for future research. Key Findings Plant-based NDS is gaining recognition in food research and industry for their role in improving the shelf life and bioavailability of bioactives. However, concerns about safety and possible toxicity limit their widespread application. Future research efforts that focus on mitigating or enhancing their safety for food applications is warranted.
Collapse
Affiliation(s)
- Emmanuel Otchere
- Department of Human Ecology, Delaware State University, Dover, Delaware, United States
| | - Brighid M. McKay
- Department of Human Nutrition, St. Francis Xavier University, Antigonish, Nova Scotia, Canada
| | - Marcia M. English
- Department of Human Nutrition, St. Francis Xavier University, Antigonish, Nova Scotia, Canada
| | - Alberta N. A. Aryee
- Department of Human Ecology, Delaware State University, Dover, Delaware, United States
| |
Collapse
|
27
|
Effect of Enzymatic Hydrolysis on Solubility and Emulsifying Properties of Lupin Proteins (Lupinus luteus). COLLOIDS AND INTERFACES 2022. [DOI: 10.3390/colloids6040082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Solubility and emulsifying properties are important functional properties associated with proteins. However, many plant proteins have lower techno-functional properties, which limit their functional performance in many formulations. Therefore, the objective of this study was to investigate the effect of protein hydrolysis by commercial enzymes to improve their solubility and emulsifying properties. Lupin protein isolate (LPI) was hydrolyzed by 7 commercial proteases using different E/S ratios and hydrolysis times while the solubility and emulsifying properties were evaluated. The results showed that neutral and alkaline proteases are most efficient in hydrolyzing lupin proteins than acidic proteases. Among the proteases, Protamex® (alkaline protease) showed the highest DH values after 5 h of protein hydrolysis. Meanwhile, protein solubility of LPI hydrolysates was significantly higher (p < 0.05) than untreated LPI at all pH analyzed values. Moreover, the emulsifying capacity (EC) of undigested LPI was lower than most of the hydrolysates, except for acidic proteases, while emulsifying stability (ES) was significantly higher (p < 0.05) than most LPI hydrolysates by acidic proteases, except for LPI hydrolyzed with Acid Stable Protease with an E/S ratio of 0.04. In conclusion, the solubility, and emulsifying properties of lupin (Lupinus luteus) proteins can be improved by enzymatic hydrolysis using commercial enzymes.
Collapse
|
28
|
Comparison of the Retention Rates of Synthetic and Natural Astaxanthin in Feeds and Their Effects on Pigmentation, Growth, and Health in Rainbow Trout ( Oncorhynchus mykiss). Antioxidants (Basel) 2022; 11:antiox11122473. [PMID: 36552680 PMCID: PMC9774906 DOI: 10.3390/antiox11122473] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/09/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
The coloring efficiency and physiological function of astaxanthin in fish vary with its regions. The aim of this study was to compare the retention rates of dietary astaxanthin from different sources and its effects on growth, pigmentation, and physiological function in Oncorhynchus mykiss. Fish were fed astaxanthin-supplemented diets (LP: 0.1% Lucantin® Pink CWD; CP: 0.1% Carophyll® Pink; EP: 0.1% Essention® Pink; PR: 1% Phaffia rhodozyma; HP: 1% Haematococcus pluvialis), or a diet without astaxanthin supplementation, for 56 days. Dietary astaxanthin enhanced pigmentation as well as the growth of the fish. The intestinal morphology of fish was improved, and the crude protein content of dorsal muscle significantly increased in fish fed with astaxanthin. Moreover, astaxanthin led to a decrease in total cholesterol levels and alanine aminotransferase and aspartate aminotransferase activity in plasma. Fish fed on the CP diet also produced the highest level of umami amino acids (aspartic acid and glutamic acid). Regarding antioxidant capacity, astaxanthin increased Nrf2/HO-1 signaling and antioxidant enzyme activity. Innate immune responses, including lysozyme and complement systems, were also stimulated by astaxanthin. Lucantin® Pink CWD had the highest stability in feed and achieved the best pigmentation, Essention® Pink performed best in growth promotion and Carophyll® Pink resulted in the best flesh quality. H. pluvialis was the astaxanthin source for achieving the best antioxidant properties and immunity of O. mykiss.
Collapse
|
29
|
Jia Z, Song R, Xu Y, Liu X, Zhang X. Astaxanthin absorption modulated antioxidant enzyme activity and targeted specific metabolic pathways in rats. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:7003-7016. [PMID: 35689476 DOI: 10.1002/jsfa.12062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 01/25/2022] [Accepted: 06/11/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Saponification contributed to an increase in the in vitro antioxidant activity of astaxanthin (Asta) extracts derived from Penaeus sinensis (Solenocera crassicornis) by-products. However, the influence of non-saponification (N-Asta) and saponification Asta (S-Asta) absorption on antioxidant activity in vivo was limited. The antioxidant properties of N-Asta and S-Asta were therefore compared in Sprague Dawley male rats after 6 h and 12 of absorption using biochemistry assays combined with an untargeted metabonomics strategy. RESULTS Non-saponified Asta and S-Asta showed similar digestive properties in a stimulated gastrointestinal tract. Increased glutathione content and decreased malondialdehyde content were measured in the liver tissues of N-Asta and S-Asta treated rats after 12 h of absorption. Absorption of N-Asta increased liver total superoxide dismutase, glutathione peroxidase, and catalase activity. Treatment with S-Asta up-regulated NAD(P)H: quinine oxidoreductase-1, and heme oxygenase-1 expression was associated with the nuclear erythroid 2-related factor 2/antioxidant responsive element pathway at the end of 12 h absorption. With partial least square-discriminant analysis and metabolite heatmap profiles, the S-Asta group was clearly separated from the N-Asta group. The S-Asta treatment also demonstrated stronger influences on plasma metabolites than the N-Asta treatment. Both N-Asta and S-Asta absorption showed critical roles in the regulation of specific metabolites, and 15 potential biomarkers were identified in eight key pathways to separate these experimental groups after 12 h of absorption. However, an increased serotonin level was only detected in the S-Asta group after 12 h absorption. CONCLUSION Absorption of N-Asta and S-Asta induced different antioxidant effects in normal rats, which were associated with metabolite changes. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhe Jia
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, School of Food Science and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Ru Song
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, School of Food Science and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Yan Xu
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, School of Food Science and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Xinyan Liu
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, School of Food Science and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Xiaoxia Zhang
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, School of Food Science and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| |
Collapse
|
30
|
Preparation of powdered oil by spray drying the Pickering emulsion stabilized by ovalbumin - Gum Arabic polyelectrolyte complex. Food Chem 2022; 391:133223. [PMID: 35598390 DOI: 10.1016/j.foodchem.2022.133223] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 05/02/2022] [Accepted: 05/13/2022] [Indexed: 11/22/2022]
Abstract
The suitability of the perilla seed oil Pickering emulsion stabilized by the ovalbumin (OVA) - gum Arabic (GA) polyelectrolyte complex for spray drying was investigated and the resultant powder was characterized. The OVA - GA complex conferred enhanced stability to the emulsion than OVA, GA, and their mixture. The viscosity of the Pickering emulsion was highly sensitive to stabilizer concentration and that fabricated by 2% OVA - GA complex showed acceptable viscosity and powder yield. The Pickering emulsion was more effective in preventing oil leakage during spray drying than the OVA-stabilized emulsion and the resultant powder possessed an oil content of up to 77.7%. Besides, the spray-dried Pickering emulsion powder showed greater rehydration and better flowability than that of the OVA-stabilized emulsion powder. Hence, the Pickering emulsion stabilized by the OVA - GA polyelectrolyte complex is promising as a novel feed for the production of oil powders by spray drying.
Collapse
|
31
|
Wang T, Zhang L, Chen L, Li X. Preparation of Oxidized Starch/β-Lactoglobulin Complex Particles Using Microfluidic Chip for the Stabilization of Astaxanthin Emulsion. Foods 2022; 11:3078. [PMID: 36230154 PMCID: PMC9563734 DOI: 10.3390/foods11193078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 09/26/2022] [Accepted: 09/29/2022] [Indexed: 11/17/2022] Open
Abstract
Here, we designed an oxidized starch/β-lactoglobulin (OS/β-lg) complex colloidal particle using a dual-channel microfluidic chip for the stabilization of astaxanthin emulsion. The effect of the mixing ratio, pH, and the degree of substitution (DS) of the oxidized starch on the formation of OS/β-lg complex particles was investigated in detail. The optimal complexation occurred at a pH of 3.6, a mixing ratio of 2:10, and a DS of 0.72%, giving an ideal colloidal particle with near-neutral wettability. With this optimum agent, the astaxanthin-loaded oil-in-water emulsions were successfully prepared. The obtained emulsions showed the typical non-Newton fluid behavior, and the rheological data met the Herschel-Bulkley model. The microscopic images confirmed the dense adsorption of the particle on the oil/water interface. In vitro release and stability studies demonstrated this compact layer contributed to the controlled-release and excellent stability of astaxanthin emulsions facing heat, ultraviolet, and oxidative intervention. This work suggests the potential of microfluidics for the production of food-grade solid emulsifiers.
Collapse
Affiliation(s)
| | | | | | - Xiaoxi Li
- Ministry of Education Engineering Research Center of Starch and Protein Processing, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
32
|
Yu D, Luo Q, Yang C, Yang C, Li S, Wang Z, Wang Q, Liu W, Wang H, Ji D. Electrostatic complexes of ethyl lauroyl arginate/nano-montmorillonite as a food-grade pickering stabiliser: Emulsification performance and mechanism. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
33
|
Advances in Nanofabrication Technology for Nutraceuticals: New Insights and Future Trends. BIOENGINEERING (BASEL, SWITZERLAND) 2022; 9:bioengineering9090478. [PMID: 36135026 PMCID: PMC9495680 DOI: 10.3390/bioengineering9090478] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 08/26/2022] [Accepted: 09/06/2022] [Indexed: 11/19/2022]
Abstract
Bioactive components such as polyphenolics, flavonoids, bioactive peptides, pigments, and essential fatty acids were known to ward off some deadliest diseases. Nutraceuticals are those beneficial compounds that may be food or part of food that has come up with medical or health benefits. Nanoencapsulation and nanofabricated delivery systems are an imminent approach in the field of food sciences. The sustainable fabrication of nutraceuticals and biocompatible active components indisputably enhances the food grade and promotes good health. Nanofabricated delivery systems include carbohydrates-based, lipids (solid and liquid), and proteins-based delivery systems. Solid nano-delivery systems include lipid nanoparticles. Liquid nano-delivery systems include nanoliposomes and nanoemulsions. Physicochemical properties of nanoparticles such as size, charge, hydrophobicity, and targeting molecules affect the absorption, distribution, metabolism, and excretion of nano delivery systems. Advance research in toxicity studies is necessary to ensure the safety of the nanofabricated delivery systems, as the safety of nano delivery systems for use in food applications is unknown. Therefore, improved nanotechnology could play a pivotal role in developing functional foods, a contemporary concept assuring the consumers to provide programmed, high-priced, and high-quality research toward nanofabricated delivery systems.
Collapse
|
34
|
Chen Y, Su W, Tie S, Zhang L, Tan M. Advances of astaxanthin-based delivery systems for precision nutrition. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
35
|
Comparative Study of Food-Grade Pickering Stabilizers Obtained from Agri-Food Byproducts: Chemical Characterization and Emulsifying Capacity. Foods 2022; 11:foods11162514. [PMID: 36010516 PMCID: PMC9407277 DOI: 10.3390/foods11162514] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/08/2022] [Accepted: 08/16/2022] [Indexed: 11/16/2022] Open
Abstract
Natural Pickering emulsions are gaining popularity in several industrial fields, especially in the food industry and plant-based alternative sector. Therefore, the objective of this study was to characterize and compare six agri-food wastes/byproducts (lupin hull, canola press-cake, lupin byproduct, camelina press-cake, linseed hull, and linseed press-cake) as potential sources of food-grade Pickering stabilizers. The results showed that all samples contained surface-active agents such as proteins (46.71-17.90 g/100 g) and dietary fiber (67.10-38.58 g/100 g). Canola press-cake, camelina press-cake, and linseed hull exhibited the highest concentrations of polyphenols: 2891, 2549, and 1672 mg GAE/100 g sample, respectively. Moreover, the agri-food byproduct particles presented a partial wettability with a water contact angle (WCA) between 77.5 and 42.2 degrees, and they were effective for stabilizing oil-in-water (O/W) emulsions. The emulsions stabilized by Camelina press-cake, lupin hull, and lupin by-product (≥3.5%, w/w) were highly stable against creaming during 45 days of storage. Furthermore, polarized and confocal microscopy revealed that the particles were anchored to the interfaces of oil droplets, which is a demonstration of the formation of a Pickering emulsion stabilized by solid particles. These results suggest that agri-food wastes/byproducts are good emulsifiers that can be applied to produce stable Pickering emulsions.
Collapse
|
36
|
Li KY, Zhang XR, Huang GQ, Teng J, Guo LP, Li XD, Xiao JX. Complexation between ovalbumin and gum Arabic in high total biopolymer concentrations and the emulsifying ability of the complexes. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128624] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
37
|
Preparation and Evaluation of Undaria pinnatifida Nanocellulose in Fabricating Pickering Emulsions for Protection of Astaxanthin. Foods 2022; 11:foods11060876. [PMID: 35327298 PMCID: PMC8956011 DOI: 10.3390/foods11060876] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/14/2022] [Accepted: 03/16/2022] [Indexed: 02/01/2023] Open
Abstract
Pickering emulsions stabilized from natural sources are often used to load unstable bio-active ingredients, such as astaxanthin (AXT), to improve their functionality. In this study, AXT-loaded Pickering emulsions were successfully prepared by 2,2,6,6-tetramethy-1-piperidine oxide (TEMPO)-oxidized cellulose nanofibers (TOCNFs) from Undaria pinnatifida. The morphology analysis showed that TOCNFs had a high aspect ratio and dispersibility, which could effectively prevent the aggregation of oil droplets. The stable emulsion was obtained after exploring the influence of different factors (ultrasonic intensity, TOCNFs concentration, pH, and ionic strength). As expected, AXT-loaded Pickering emulsions showed good stability at 50 °C and 14 days of storage. The results of simulated in vitro digestion showed that the emulsions exhibited higher release of free fatty acids (FFAs) and bioaccessibility of AXT than those in sunflower oil. Hence, our work brought new insights into the preparation of Pickering emulsions and their applications in protection and sustained, controlled release of AXT.
Collapse
|
38
|
Ge S, Jia R, Li Q, Liu W, Liu M, Cai D, Zheng M, Liu H, Liu J. Pickering emulsion stabilized by zein/Adzuki bean seed coat polyphenol nanoparticles to enhance the stability and bioaccessibility of astaxanthin. J Funct Foods 2022. [DOI: 10.1016/j.jff.2021.104867] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
39
|
Su Y, Sun M, Zhao M, Xu B, Li J, Zheng T. Enhancement of the physicochemical and
in vitro
release properties of lutein by gelatin/octenyl succinic anhydride (OSA)‐modified starch composite as vehicles. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ya Su
- School of Food Science and Pharmaceutical Engineering Nanjing Normal University Nanjing Jiangsu 210046 China
| | - Menglin Sun
- School of Food Science and Pharmaceutical Engineering Nanjing Normal University Nanjing Jiangsu 210046 China
| | - Mengyuan Zhao
- School of Food Science and Pharmaceutical Engineering Nanjing Normal University Nanjing Jiangsu 210046 China
| | - Baoguo Xu
- School of Food and Biological Engineering Jiangsu University Zhenjiang Jiangsu 212013 China
| | - Jianlin Li
- School of Food Science and Pharmaceutical Engineering Nanjing Normal University Nanjing Jiangsu 210046 China
| | - Tiesong Zheng
- School of Food Science and Pharmaceutical Engineering Nanjing Normal University Nanjing Jiangsu 210046 China
| |
Collapse
|
40
|
Boonlao N, Ruktanonchai UR, Anal AK. Enhancing bioaccessibility and bioavailability of carotenoids using emulsion-based delivery systems. Colloids Surf B Biointerfaces 2021; 209:112211. [PMID: 34800865 DOI: 10.1016/j.colsurfb.2021.112211] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/25/2021] [Accepted: 11/07/2021] [Indexed: 02/07/2023]
Abstract
The consumption of foods rich in antioxidants, vitamins, minerals including carotenoids etc. can boost the immune system to help fight off various infections including SARS- CoV 2 and other viruses. Carotenoids have been gaining attention particularly in food and pharmaceutical industries owing to their diverse functions including their role as pro-vitamin A activity, potent antioxidant properties, and quenching of reactive oxygen (ROS), such as singlet oxygen and lipid peroxides within the lipid bilayer of the cell membrane. Nevertheless, carotenoids being lipophilic, have poor solubility in aqueous medium and are also chemically instable. They are susceptible to degrade under stimuli environmental conditions during food processing, storage and gastrointestinal passage. They also exhibit poor oral bioavailability, thus, their applications in aqueous-based foods are limited. As a consequent, suitable delivery systems including colloids-based are needed to enhance the solubility, stability and bioavailability of carotenoids. This review presents challenges of incorporation and delivery of carotenoids focusing on stability and factors affecting bioavailability. Furthermore, designed factors impacting bioaccessibility and bioavailability of carotenoids using emulsion-based delivery systems are explicitly explained. Each delivery system exhibits its own advantages and disadvantages; thus, the delivery systems should be designed based on their targets and their further applications.
Collapse
Affiliation(s)
- Nuntarat Boonlao
- Department of Food, Agriculture and Bioresources, Asian Institute of Technology, P.O. Box 4, Klong Luang, Pathum Thani 12120, Thailand
| | | | - Anil Kumar Anal
- Department of Food, Agriculture and Bioresources, Asian Institute of Technology, P.O. Box 4, Klong Luang, Pathum Thani 12120, Thailand.
| |
Collapse
|
41
|
Sun J, Wei Z, Xue C. Recent research advances in astaxanthin delivery systems: Fabrication technologies, comparisons and applications. Crit Rev Food Sci Nutr 2021:1-22. [PMID: 34657544 DOI: 10.1080/10408398.2021.1989661] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Astaxanthin (AST) is classified as a kind of carotenoid with bright red color, powerful antioxidant activity as well as a range of health benefits. AST-based functional foods present a new thought of healthy diets with both the enhancement of food color and incorporation of nutrients. However, the poor water solubility, easy oxidation, light instability, thermal instability and peculiar smell excessively restrict its application in the food industry. In this review, common bio-based materials for various AST delivery systems suitable for different food products are highlighted. Moreover, characteristics of different delivery systems and current applications in food products are also compared and summarized. This review provides some ideas on the research trends and applications of AST delivery systems in food. The joint use of two or more materials can significantly enhance the stability of delivery systems. All of the encapsulation systems slow down the degradation of AST to a certain extent and can be applied to different food systems. However, studies and applications are still focused on emulsions and microcapsules with unsatisfactory odor masking effects. In the future, diverse AST-loaded delivery systems with high encapsulation efficacy, good stability, odor masking effects and cost-effective preparation technologies will be the major research trends.
Collapse
Affiliation(s)
- Jialin Sun
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Zihao Wei
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao, China.,Laboratory of Marine Drugs and Biological Products, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
42
|
Franco Ribeiro E, Carregari Polachini T, Dutra Alvim I, Quiles A, Hernando I, Nicoletti VR. Microencapsulation of roasted coffee oil Pickering emulsions using spray‐ and freeze‐drying: physical, structural and
in vitro
bioaccessibility studies. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15378] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Elisa Franco Ribeiro
- São Paulo State University (Unesp) Institute of Biosciences, Humanities and Exact Sciences (Ibilce) Campus São José do Rio Preto São Paulo 15054‐000 Brazil
- Food Microstructure and Chemistry Research Group Universitat Politècnica de València (UPV) Valencia 46022 Spain
| | - Tiago Carregari Polachini
- São Paulo State University (Unesp) Institute of Biosciences, Humanities and Exact Sciences (Ibilce) Campus São José do Rio Preto São Paulo 15054‐000 Brazil
| | - Izabela Dutra Alvim
- Cereal and Chocolate Technology Center Food Technology Institute (ITAL) Campinas São Paulo 13070‐178 Brazil
| | - Amparo Quiles
- Food Microstructure and Chemistry Research Group Universitat Politècnica de València (UPV) Valencia 46022 Spain
| | - Isabel Hernando
- Food Microstructure and Chemistry Research Group Universitat Politècnica de València (UPV) Valencia 46022 Spain
| | - Vania Regina Nicoletti
- São Paulo State University (Unesp) Institute of Biosciences, Humanities and Exact Sciences (Ibilce) Campus São José do Rio Preto São Paulo 15054‐000 Brazil
| |
Collapse
|
43
|
Xu L, yan W, Zhang M, Hong X, Liu Y, Li J. Application of ultrasound in stabilizing of Antarctic krill oil by modified chickpea protein isolate and ginseng saponin. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111803] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
44
|
Liu C, Fan L, Yang Y, Jiang Q, Xu Y, Xia W. Characterization of surimi particles stabilized novel pickering emulsions: Effect of particles concentration, pH and NaCl levels. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106731] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
45
|
Taboada ML, Heiden‐Hecht T, Brückner‐Gühmann M, Karbstein HP, Drusch S, Gaukel V. Spray drying of emulsions: Influence of the emulsifier system on changes in oil droplet size during the drying step. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15753] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Martha L. Taboada
- Institute of Process Engineering in Life Sciences, Chair of Food Process Engineering Karlsruhe Institute of Technology Karlsruhe Germany
| | - Theresia Heiden‐Hecht
- Institute of Food Technology and Food Chemistry, Department of Food Technology and Food Material Science Technische Universität Berlin Berlin Germany
| | - Monika Brückner‐Gühmann
- Institute of Food Technology and Food Chemistry, Department of Food Technology and Food Material Science Technische Universität Berlin Berlin Germany
| | - Heike P. Karbstein
- Institute of Process Engineering in Life Sciences, Chair of Food Process Engineering Karlsruhe Institute of Technology Karlsruhe Germany
| | - Stephan Drusch
- Institute of Food Technology and Food Chemistry, Department of Food Technology and Food Material Science Technische Universität Berlin Berlin Germany
| | - Volker Gaukel
- Institute of Process Engineering in Life Sciences, Chair of Food Process Engineering Karlsruhe Institute of Technology Karlsruhe Germany
| |
Collapse
|
46
|
Cabanillas-Bojórquez LA, Gutiérrez-Grijalva EP, González-Aguilar GA, López-Martinez LX, Castillo-López RI, Bastidas-Bastidas PDJ, Heredia JB. Valorization of Fermented Shrimp Waste with Supercritical CO 2 Conditions: Extraction of Astaxanthin and Effect of Simulated Gastrointestinal Digestion on Its Antioxidant Capacity. Molecules 2021; 26:4465. [PMID: 34361618 PMCID: PMC8348114 DOI: 10.3390/molecules26154465] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/20/2021] [Accepted: 07/20/2021] [Indexed: 11/16/2022] Open
Abstract
Lactic acid fermentation increases the bioactive properties of shrimp waste. Astaxanthin is the principal carotenoid present in shrimp waste, which can be found esterified in the liquid fraction (liquor) after its lactic acid fermentation. Supercritical CO2 technology has been proposed as a green alternative to obtain astaxanthin from fermented shrimp waste. This study aimed to optimize astaxanthin extraction by supercritical CO2 technology from fermented liquor of shrimp waste and study bioaccessibility using simulated gastrointestinal digestion (GD) of the optimized extract. A Box-Behnken design with three variables (pressure, temperature, and flow rate) was used to optimize the supercritical CO2 extraction. The optimized CO2 extract was obtained at 300 bar, 60 °C, and 6 mL/min, and the estimated characteristics showed a predictive extraction yield of 11.17%, antioxidant capacity of 1.965 mmol of Trolox equivalent (TE)/g, and astaxanthin concentration of 0.6353 µg/g. The experiment with optimal conditions performed to validate the predicted values showed an extraction yield of 12.62%, an antioxidant capacity of 1.784 mmol TE/g, and an astaxanthin concentration of 0.52 µg/g. The astaxanthin concentration decreased, and the antioxidant capacity of the optimized extract increased during gastrointestinal digestion. In conclusion, our optimized supercritical CO2 process is suitable for obtaining astaxanthin from shrimp by-products after lactic acid fermentation.
Collapse
Affiliation(s)
- Luis Angel Cabanillas-Bojórquez
- Centro de Investigación en Alimentación y Desarrollo, A. C. Carretera a Eldorado Km 5.5 Col. Campo El Diez, Culiacán CP 80110, Sinaloa, Mexico; (L.A.C.-B.); (P.d.J.B.-B.)
| | - Erick Paul Gutiérrez-Grijalva
- Cátedras CONACyT-Centro de Investigación en Alimentación y Desarrollo, A. C. Carretera a Eldorado Km 5.5 Col. Campo El Diez, Culiacán CP 80110, Sinaloa, Mexico;
| | - Gustavo Adolfo González-Aguilar
- Centro de Investigación en Alimentación y Desarrollo, A. C. CTAOV, Carretera Gustavo Enrique Astiazarán Rosas, No. 46, Col. La Victoria, Hermosillo CP 83304, Sonora, Mexico;
| | - Leticia Xochitl López-Martinez
- Cátedras CONACyT-Centro de Investigación en Alimentación y Desarrollo, A. C. Carretera Gustavo Enrique Astiazarán Rosas, No. 46, Col. La Victoria, Hermosillo CP 83304, Sonora, Mexico;
| | - Ramón Ignacio Castillo-López
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Ciudad Universitaria, Culiacán CP 80013, Sinaloa, Mexico;
| | - Pedro de Jesús Bastidas-Bastidas
- Centro de Investigación en Alimentación y Desarrollo, A. C. Carretera a Eldorado Km 5.5 Col. Campo El Diez, Culiacán CP 80110, Sinaloa, Mexico; (L.A.C.-B.); (P.d.J.B.-B.)
| | - José Basilio Heredia
- Centro de Investigación en Alimentación y Desarrollo, A. C. Carretera a Eldorado Km 5.5 Col. Campo El Diez, Culiacán CP 80110, Sinaloa, Mexico; (L.A.C.-B.); (P.d.J.B.-B.)
| |
Collapse
|
47
|
Sánchez CO, Zavaleta EB, García GU, Solano GL, Díaz MR. Krill oil microencapsulation: Antioxidant activity, astaxanthin retention, encapsulation efficiency, fatty acids profile, in vitro bioaccessibility and storage stability. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111476] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
48
|
Akbarbaglu Z, Peighambardoust SH, Sarabandi K, Jafari SM. Spray drying encapsulation of bioactive compounds within protein-based carriers; different options and applications. Food Chem 2021; 359:129965. [PMID: 33975145 DOI: 10.1016/j.foodchem.2021.129965] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 04/18/2021] [Accepted: 04/24/2021] [Indexed: 12/16/2022]
Abstract
Spray-drying is known as a common and economical technique for the encapsulation of various nutrients and bioactive compounds. However, shear and thermal tensions during atomization and dehydration, as well as physicochemical instability during storage, result in a loss of these compounds. As a solution, bioactives are stabilized into different carriers, among which proteins and peptides are of particular importance due to their functional properties, surface activity, and film/shell formability around particles. Given the importance of stabilization of bioactive compounds during spray drying, this paper focuses on the role of composition and type of carriers, as well as the characteristics and efficiency of various protein-based carriers in the encapsulation and maintaining of physicochemical, structural, and functional properties, along with biological activity of bioactive compounds (e.g., oleoresins, sterols, polyphenols, anthocyanins, carotenoids, probiotics, and peptides), and nutrients (e.g., vitamins, fatty acids and minerals) alone or in combination with other biopolymers.
Collapse
Affiliation(s)
- Zahra Akbarbaglu
- Department of Food Science, College of Agriculture, University of Tabriz, Tabriz 5166616471, Iran
| | | | - Khashayar Sarabandi
- Department of Food Science & Technology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Seid Mahdi Jafari
- Faculty of Food Science & Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
| |
Collapse
|
49
|
|
50
|
Pereira AG, Otero P, Echave J, Carreira-Casais A, Chamorro F, Collazo N, Jaboui A, Lourenço-Lopes C, Simal-Gandara J, Prieto MA. Xanthophylls from the Sea: Algae as Source of Bioactive Carotenoids. Mar Drugs 2021; 19:md19040188. [PMID: 33801636 PMCID: PMC8067268 DOI: 10.3390/md19040188] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/18/2021] [Accepted: 03/25/2021] [Indexed: 12/15/2022] Open
Abstract
Algae are considered pigment-producing organisms. The function of these compounds in algae is to carry out photosynthesis. They have a great variety of pigments, which can be classified into three large groups: chlorophylls, carotenoids, and phycobilins. Within the carotenoids are xanthophylls. Xanthophylls (fucoxanthin, astaxanthin, lutein, zeaxanthin, and β-cryptoxanthin) are a type of carotenoids with anti-tumor and anti-inflammatory activities, due to their chemical structure rich in double bonds that provides them with antioxidant properties. In this context, xanthophylls can protect other molecules from oxidative stress by turning off singlet oxygen damage through various mechanisms. Based on clinical studies, this review shows the available information concerning the bioactivity and biological effects of the main xanthophylls present in algae. In addition, the algae with the highest production rate of the different compounds of interest were studied. It was observed that fucoxanthin is obtained mainly from the brown seaweeds Laminaria japonica, Undaria pinnatifida, Hizikia fusiformis, Sargassum spp., and Fucus spp. The main sources of astaxanthin are the microalgae Haematococcus pluvialis, Chlorella zofingiensis, and Chlorococcum sp. Lutein and zeaxanthin are mainly found in algal species such as Scenedesmus spp., Chlorella spp., Rhodophyta spp., or Spirulina spp. However, the extraction and purification processes of xanthophylls from algae need to be standardized to facilitate their commercialization. Finally, we assessed factors that determine the bioavailability and bioaccesibility of these molecules. We also suggested techniques that increase xanthophyll’s bioavailability.
Collapse
Affiliation(s)
- Antia G. Pereira
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, Ourense Campus, University of Vigo, E-32004 Ourense, Spain; (A.G.P.); (P.O.); (J.E.); (A.C.-C.); (F.C.); (N.C.); (A.J.); (C.L.-L.)
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolonia, 5300-253 Bragança, Portugal
| | - Paz Otero
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, Ourense Campus, University of Vigo, E-32004 Ourense, Spain; (A.G.P.); (P.O.); (J.E.); (A.C.-C.); (F.C.); (N.C.); (A.J.); (C.L.-L.)
| | - Javier Echave
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, Ourense Campus, University of Vigo, E-32004 Ourense, Spain; (A.G.P.); (P.O.); (J.E.); (A.C.-C.); (F.C.); (N.C.); (A.J.); (C.L.-L.)
| | - Anxo Carreira-Casais
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, Ourense Campus, University of Vigo, E-32004 Ourense, Spain; (A.G.P.); (P.O.); (J.E.); (A.C.-C.); (F.C.); (N.C.); (A.J.); (C.L.-L.)
| | - Franklin Chamorro
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, Ourense Campus, University of Vigo, E-32004 Ourense, Spain; (A.G.P.); (P.O.); (J.E.); (A.C.-C.); (F.C.); (N.C.); (A.J.); (C.L.-L.)
| | - Nicolas Collazo
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, Ourense Campus, University of Vigo, E-32004 Ourense, Spain; (A.G.P.); (P.O.); (J.E.); (A.C.-C.); (F.C.); (N.C.); (A.J.); (C.L.-L.)
| | - Amira Jaboui
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, Ourense Campus, University of Vigo, E-32004 Ourense, Spain; (A.G.P.); (P.O.); (J.E.); (A.C.-C.); (F.C.); (N.C.); (A.J.); (C.L.-L.)
| | - Catarina Lourenço-Lopes
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, Ourense Campus, University of Vigo, E-32004 Ourense, Spain; (A.G.P.); (P.O.); (J.E.); (A.C.-C.); (F.C.); (N.C.); (A.J.); (C.L.-L.)
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, Ourense Campus, University of Vigo, E-32004 Ourense, Spain; (A.G.P.); (P.O.); (J.E.); (A.C.-C.); (F.C.); (N.C.); (A.J.); (C.L.-L.)
- Correspondence: (J.S.-G.); (M.A.P.)
| | - Miguel A. Prieto
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, Ourense Campus, University of Vigo, E-32004 Ourense, Spain; (A.G.P.); (P.O.); (J.E.); (A.C.-C.); (F.C.); (N.C.); (A.J.); (C.L.-L.)
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolonia, 5300-253 Bragança, Portugal
- Correspondence: (J.S.-G.); (M.A.P.)
| |
Collapse
|