1
|
Garfias Noguez C, Ramírez Damián M, Ortiz Moreno A, Márquez Flores YK, Alamilla Beltrán L, Márquez Lemus M, Bermúdez Humarán LG, Sánchez Pardo ME. Microencapsulation and Probiotic Characterization of Lactiplantibacillus plantarum LM-20: Therapeutic Application in a Murine Model of Ulcerative Colitis. Nutrients 2025; 17:749. [PMID: 40077619 PMCID: PMC11901509 DOI: 10.3390/nu17050749] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 02/16/2025] [Accepted: 02/18/2025] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND Microencapsulation improves the storage, handling, and administration of probiotics by protecting them from environmental factors and adverse conditions in the gastrointestinal tract. This process facilitates their controlled delivery in the body, which can simplify their use in therapies without compromising their therapeutic efficacy. OBJECTIVES This study investigates the microencapsulation of Lactiplantibacillus plantarum LM-20, its probiotic properties, and its effects in a murine model of ulcerative colitis. METHODS/RESULTS Synbiotic microencapsulation was carried out using spray drying with maltodextrin, gum Arabic, and inulin, achieving an encapsulation efficiency of 90.76%. The resulting microcapsules exhibited remarkable resistance to simulated gastrointestinal conditions in vitro, maintaining a survival rate of 90%. The drying process did not compromise the probiotic characteristics of the bacteria, as they demonstrated enhanced auto-aggregation, hydrophobicity, and phenol tolerance. The therapeutic potential of the microencapsulated synbiotic was evaluated in a murine model of dextran sodium sulfate-induced ulcerative colitis. The results revealed that mice treated with microencapsulated Lactiplantibacillus plantarum LM-20 showed an 83.3% reduction in the disease activity index (DAI) compared to the ulcerative colitis control group. Moreover, a significant decrease was observed in pro-inflammatory cytokine levels (IL-1β and TNF-α) and myeloperoxidase activity, with values comparable to those of the healthy control group. CONCLUSIONS These findings suggest that microencapsulated Lactiplantibacillus plantarum LM-20 could be a promising candidate for therapeutic applications in the prevention and management of ulcerative colitis.
Collapse
Affiliation(s)
- Cynthia Garfias Noguez
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Campus Zacatenco, Unidad Profesional Adolfo López Mateos, Zacatenco, Av. Wilfrido Massieu 399, Colonia Nueva Industrial Vallejo, Alcaldía Gustavo A. Madero, Ciudad de México 07738, Mexico; (C.G.N.); (M.R.D.); (A.O.M.); (Y.K.M.F.); (L.A.B.); (M.M.L.)
| | - Morayma Ramírez Damián
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Campus Zacatenco, Unidad Profesional Adolfo López Mateos, Zacatenco, Av. Wilfrido Massieu 399, Colonia Nueva Industrial Vallejo, Alcaldía Gustavo A. Madero, Ciudad de México 07738, Mexico; (C.G.N.); (M.R.D.); (A.O.M.); (Y.K.M.F.); (L.A.B.); (M.M.L.)
| | - Alicia Ortiz Moreno
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Campus Zacatenco, Unidad Profesional Adolfo López Mateos, Zacatenco, Av. Wilfrido Massieu 399, Colonia Nueva Industrial Vallejo, Alcaldía Gustavo A. Madero, Ciudad de México 07738, Mexico; (C.G.N.); (M.R.D.); (A.O.M.); (Y.K.M.F.); (L.A.B.); (M.M.L.)
| | - Yazmín Karina Márquez Flores
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Campus Zacatenco, Unidad Profesional Adolfo López Mateos, Zacatenco, Av. Wilfrido Massieu 399, Colonia Nueva Industrial Vallejo, Alcaldía Gustavo A. Madero, Ciudad de México 07738, Mexico; (C.G.N.); (M.R.D.); (A.O.M.); (Y.K.M.F.); (L.A.B.); (M.M.L.)
| | - Liliana Alamilla Beltrán
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Campus Zacatenco, Unidad Profesional Adolfo López Mateos, Zacatenco, Av. Wilfrido Massieu 399, Colonia Nueva Industrial Vallejo, Alcaldía Gustavo A. Madero, Ciudad de México 07738, Mexico; (C.G.N.); (M.R.D.); (A.O.M.); (Y.K.M.F.); (L.A.B.); (M.M.L.)
| | - Mario Márquez Lemus
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Campus Zacatenco, Unidad Profesional Adolfo López Mateos, Zacatenco, Av. Wilfrido Massieu 399, Colonia Nueva Industrial Vallejo, Alcaldía Gustavo A. Madero, Ciudad de México 07738, Mexico; (C.G.N.); (M.R.D.); (A.O.M.); (Y.K.M.F.); (L.A.B.); (M.M.L.)
| | - Luis G. Bermúdez Humarán
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Domain de Vilvert, 78350 Jouy-en-Josas, France;
| | - María Elena Sánchez Pardo
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Campus Zacatenco, Unidad Profesional Adolfo López Mateos, Zacatenco, Av. Wilfrido Massieu 399, Colonia Nueva Industrial Vallejo, Alcaldía Gustavo A. Madero, Ciudad de México 07738, Mexico; (C.G.N.); (M.R.D.); (A.O.M.); (Y.K.M.F.); (L.A.B.); (M.M.L.)
| |
Collapse
|
2
|
Barboza‐Pérez UE, Pérez‐Zavala MDL, Barboza‐Corona JE. Synthetic biology in Mexico: Brief history, current landscape, and perspectives towards a bio-based economy. ENGINEERING BIOLOGY 2025; 9:e12037. [PMID: 39950160 PMCID: PMC11817030 DOI: 10.1049/enb2.12037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 12/11/2024] [Accepted: 12/16/2024] [Indexed: 02/16/2025] Open
Abstract
Synthetic biology (SynBio) makes biology easier by leveraging engineering principles and other disciplines to design and construct biological systems with novel or enhanced functions. SynBio has led to the development of more sustainable biotechnological innovations that are in harmony with the environment, aiding the shift from a traditional to a bio-based economy. Mexico has made significant advancements in biotechnology in academia and industry, but progress in engineering biology has been different. Nevertheless, several initiatives, mainly supported by the participation of Mexican International Genetically Engineered Machine (iGEM) teams in the jamboree, have contributed to the interest of SynBio. This review provides a brief overview of the significant role of the iGEM competition and the current landscape of synthetic biology in Mexico, including educational and citizen science initiatives, as well as an overview of Synbio research and the industrial landscape. Additionally, a brief description of the current laws governing biotechnology in the country is provided. Finally, we highlight the challenges, opportunities and perspectives for the development of synthetic biology and the potential that Mexico has for a biologically based economy.
Collapse
Affiliation(s)
- Uriel E. Barboza‐Pérez
- Centre for Engineering BiologySchool of Biological SciencesThe University of EdinburghEdinburghUK
| | - Ma de L. Pérez‐Zavala
- Department of AgronomyLife Science DivisionUniversity of GuanajuatoIrapuatoGuanajuatoMexico
| | - José E. Barboza‐Corona
- Department of Food SciencesGraduate Program in BioScienceLife Science DivisionUniversity of GuanajuatoGuanajuatoMexico
| |
Collapse
|
3
|
Malik S, Kumaraguru G, Bruat M, Chefdor F, Depierreux C, Héricourt F, Carpin S, Shanmugam G, Lamblin F. Organic extracts from sustainable hybrid poplar hairy root cultures as potential natural antimicrobial and antibiofilm agents. PROTOPLASMA 2024; 261:1311-1326. [PMID: 39060468 DOI: 10.1007/s00709-024-01971-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024]
Abstract
In order to meet growing consumer demands in terms of naturalness, the pharmaceutical, food, and cosmetic industries are looking for active molecules of plant origin. In this context, hairy roots are considered a promising biotechnological system for the sustainable production of compounds of interest. Poplars (genus Populus, family Salicaceae) are trees of ecological interest in temperate alluvial forests and are also cultivated for their industrial timber. Poplar trees also produce specialized metabolites with a wide range of bioactive properties. The present study aimed to assess the hybrid poplar hairy root extracts for antimicrobial and antibiofilm activities against four main life-threatening strains of Gram-positive (Staphylococcus aureus, Bacillus subtilis) and Gram-negative (Escherichia coli, Pseudomonas aeruginosa) bacteria. Ethyl acetate extracts from two hairy root lines (HP15-3 and HP A4-12) showed significant antibacterial properties as confirmed by disc diffusion assay. Antibiofilm activities were found to be dose dependent with significant biofilm inhibition (75-95%) recorded at 1000 µg.mL-1 in all the bacterial strains tested. Dose-dependent enhancement in the release of exopolysaccharides was observed in response to treatment with extracts, possibly because of stress and bacterial cell death. Fluorescence microscopy confirmed loss of cell viability of treated bacterial cells concomitant with increased production of reactive oxygen species compared to the untreated control. Overall, this study demonstrates for the first time a high potential of poplar hairy root extracts as a natural and safe platform to produce antimicrobial agents in pharmaceutical, food, industrial water management, or cosmetic industries.
Collapse
Affiliation(s)
- Sonia Malik
- Laboratory of Physiology, Ecology and Environment, INRAE, Orléans University, USC1328, 45067 Orléans Cedex 2, Orléans, France
| | - Gowtham Kumaraguru
- Department of Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu, India
| | - Margot Bruat
- Laboratory of Physiology, Ecology and Environment, INRAE, Orléans University, USC1328, 45067 Orléans Cedex 2, Orléans, France
| | - Françoise Chefdor
- Laboratory of Physiology, Ecology and Environment, INRAE, Orléans University, USC1328, 45067 Orléans Cedex 2, Orléans, France
| | - Christiane Depierreux
- Laboratory of Physiology, Ecology and Environment, INRAE, Orléans University, USC1328, 45067 Orléans Cedex 2, Orléans, France
| | - François Héricourt
- Laboratory of Physiology, Ecology and Environment, INRAE, Orléans University, USC1328, 45067 Orléans Cedex 2, Orléans, France
| | - Sabine Carpin
- Laboratory of Physiology, Ecology and Environment, INRAE, Orléans University, USC1328, 45067 Orléans Cedex 2, Orléans, France
| | - Girija Shanmugam
- Department of Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu, India
| | - Frédéric Lamblin
- Laboratory of Physiology, Ecology and Environment, INRAE, Orléans University, USC1328, 45067 Orléans Cedex 2, Orléans, France.
| |
Collapse
|
4
|
Jin R, Song J, Liu C, Lin R, Liang D, Aweya JJ, Weng W, Zhu L, Shang J, Yang S. Synthetic microbial communities: Novel strategies to enhance the quality of traditional fermented foods. Compr Rev Food Sci Food Saf 2024; 23:e13388. [PMID: 38865218 DOI: 10.1111/1541-4337.13388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/27/2024] [Accepted: 05/19/2024] [Indexed: 06/14/2024]
Abstract
Consumers are attracted to traditional fermented foods due to their unique flavor and nutritional value. However, the traditional fermentation technique can no longer accommodate the requirements of the food industry. Traditional fermented foods produce hazardous compounds, off-odor, and anti-nutritional factors, reducing product stability. The microbial system complexity of traditional fermented foods resulting from the open fermentation process has made it challenging to regulate these problems by modifying microbial behaviors. Synthetic microbial communities (SynComs) have been shown to simplify complex microbial communities and allow for the targeted design of microbial communities, which has been applied in processing traditional fermented foods. Herein, we describe the theoretical information of SynComs, particularly microbial physiological processes and their interactions. This paper discusses current approaches to creating SynComs, including designing, building, testing, and learning, with typical applications and fundamental techniques. Based on various traditional fermented food innovation demands, the potential and application of SynComs in enhancing the quality of traditional fermented foods are highlighted. SynComs showed superior performance in regulating the quality of traditional fermented foods using the interaction of core microorganisms to reduce the hazardous compounds of traditional fermented foods and improve flavor. Additionally, we presented the current status and future perspectives of SynComs for improving the quality of traditional fermented foods.
Collapse
Affiliation(s)
- Ritian Jin
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, China
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Jimei University, Xiamen, China
| | - Jing Song
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, China
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Jimei University, Xiamen, China
| | - Chang Liu
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, China
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Jimei University, Xiamen, China
| | - Rong Lin
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, China
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Jimei University, Xiamen, China
| | - Duo Liang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, China
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Jimei University, Xiamen, China
| | - Jude Juventus Aweya
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, China
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Jimei University, Xiamen, China
| | - Wuyin Weng
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, China
| | - Longji Zhu
- Institute of Urban Environment, Chinese Academy of Science, Xiamen, China
| | - Jiaqi Shang
- Key Laboratory of Bionic Engineering, College of Biological and Agricultural Engineering, Jilin University, Changchun, China
| | - Shen Yang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, China
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Jimei University, Xiamen, China
| |
Collapse
|
5
|
Rebaza-Cardenas T, Montes-Villanueva ND, Fernández M, Delgado S, Ruas-Madiedo P. Microbiological and physical-chemical characteristics of the Peruvian fermented beverage "Chicha de siete semillas": Towards the selection of strains with acidifying properties. Int J Food Microbiol 2023; 406:110353. [PMID: 37591132 DOI: 10.1016/j.ijfoodmicro.2023.110353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 06/29/2023] [Accepted: 08/05/2023] [Indexed: 08/19/2023]
Abstract
Traditional fermented beverages have been consumed worldwide for centuries. Such is the case of "Chicha de siete semillas" which is originally from the province of Huanta, in Ayacucho, Peru. In this work we have analyzed the chemical composition and bacterial diversity of products manufactured from six producers, who have used different combinations of cereals, pseudocereals, legumes and aromatic herbs, although maize was present in all of them. The fermented beverages had a low pH, mainly due to the production of lactic acid, whereas ethanol was, in general, present in low concentrations. Most of the products were rich in GABA, the content of biogenic amines being very low, as corresponds to a product with a short maturation time (less than 4 days). A metataxonomic analysis revealed that Streptococcaceae and Leuconostocaceae families were dominant in the majority of the beverages, Streptococcus spp. and Leuconostoc spp. being the representative genera, respectively. The result was corroborated by culture-dependent techniques, since these were the most abundant genera isolated and identified in all samples, with Streptococcus macedonicus and Leuconostoc lactis as representative species. In lower proportions other isolates were identified as Lactobacillus delbrueckii, Lactiplantibacillus plantarum, Furfurilactobacillus rossiae, Weissella confusa and Enterococcus faecium. The genetic profile of 26 S. macedonicus isolates was determined by RAPD-PCR and REP-PCR, showing five different patterns distinguishable with the first technique. One representative strain from each genetic pattern was further characterized and used to ferment a maize-based matrix (with saccharose) in order to know their technological potential. All strains were able to ferment the beverage at 30 °C in a short time (about 6 h) reaching a pH below 4.5 and they remained viable after 24 h; the main organic acid contributing to the pH decrease was lactic acid. Therefore, S. macedonicus is a good candidate for being part of a putative starter culture, since it is a species well adapted to this cereal-based food niche.
Collapse
Affiliation(s)
- Teresa Rebaza-Cardenas
- Instituto de Productos Lácteos de Asturias (IPLA), CSIC, Paseo Río Linares s/n, 33300 Villaviciosa, Asturias, Spain; Facultad de Ingeniería Agraria, Universidad Católica Sedes Sapientiae (UCSS), Lima, Peru
| | | | - María Fernández
- Instituto de Productos Lácteos de Asturias (IPLA), CSIC, Paseo Río Linares s/n, 33300 Villaviciosa, Asturias, Spain
| | - Susana Delgado
- Instituto de Productos Lácteos de Asturias (IPLA), CSIC, Paseo Río Linares s/n, 33300 Villaviciosa, Asturias, Spain
| | - Patricia Ruas-Madiedo
- Instituto de Productos Lácteos de Asturias (IPLA), CSIC, Paseo Río Linares s/n, 33300 Villaviciosa, Asturias, Spain.
| |
Collapse
|
6
|
Dobreva L, Borisova D, Paunova-Krasteva T, Dimitrova PD, Hubenov V, Atanasova N, Ivanov I, Danova S. From Traditional Dairy Product "Katak" to Beneficial Lactiplantibacillus plantarum Strains. Microorganisms 2023; 11:2847. [PMID: 38137991 PMCID: PMC10745348 DOI: 10.3390/microorganisms11122847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/18/2023] [Accepted: 11/21/2023] [Indexed: 12/24/2023] Open
Abstract
Traditional milk products, widely consumed in many countries for centuries, have been drawing renewed attention in recent years as sources of bacteria with possible bioprotective properties. One such product for which only limited information exists is the traditional Bulgarian "katak". This fermented yogurt-like product, renowned for its taste and long-lasting properties, possesses specific sensory characteristics. In this study, 18 lactic acid bacteria (LABs) were isolated from artisanal samples made in the Northwest part of Bulgaria. A polyphasic taxonomic approach combining classical phenotypic and molecular taxonomic methods, such as multiplex PCR, 16S rDNA sequencing, and MALDI-TOF MS, was applied, leading to the identification of 13 strains. The dominance of Lactiplantibacillus plantarum was confirmed. In vitro tests with the identified strains in model systems showed a promising broad strain-specific spectrum of activity against food-borne and human pathogens (Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli). Non-purified Lactobacillus postbiotics, produced during fermentation in skimmed and soya milks and in MRS broth, were estimated as limiting agents of virulence factors. The LAB's production of lactate, acetate, and butyrate is a promising probiotic feature. A further characterization of the active strains and analysis of the purified post-metabolites are needed and are still in progress.
Collapse
Affiliation(s)
- Lili Dobreva
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 26 Acad. G. Bonchev Str., 1113 Sofia, Bulgaria; (L.D.); (D.B.); (T.P.-K.); (P.D.D.); (V.H.); (N.A.)
| | - Dayana Borisova
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 26 Acad. G. Bonchev Str., 1113 Sofia, Bulgaria; (L.D.); (D.B.); (T.P.-K.); (P.D.D.); (V.H.); (N.A.)
| | - Tsvetelina Paunova-Krasteva
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 26 Acad. G. Bonchev Str., 1113 Sofia, Bulgaria; (L.D.); (D.B.); (T.P.-K.); (P.D.D.); (V.H.); (N.A.)
| | - Petya D. Dimitrova
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 26 Acad. G. Bonchev Str., 1113 Sofia, Bulgaria; (L.D.); (D.B.); (T.P.-K.); (P.D.D.); (V.H.); (N.A.)
| | - Venelin Hubenov
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 26 Acad. G. Bonchev Str., 1113 Sofia, Bulgaria; (L.D.); (D.B.); (T.P.-K.); (P.D.D.); (V.H.); (N.A.)
| | - Nikoleta Atanasova
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 26 Acad. G. Bonchev Str., 1113 Sofia, Bulgaria; (L.D.); (D.B.); (T.P.-K.); (P.D.D.); (V.H.); (N.A.)
| | - Ivan Ivanov
- National Center of Infectious and Parasitic Diseases, bvd. “Yanko Sakazov” 26, 1504 Sofia, Bulgaria;
| | - Svetla Danova
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 26 Acad. G. Bonchev Str., 1113 Sofia, Bulgaria; (L.D.); (D.B.); (T.P.-K.); (P.D.D.); (V.H.); (N.A.)
| |
Collapse
|
7
|
Naseem A, Akhtar S, Ismail T, Qamar M, Sattar DES, Saeed W, Esatbeyoglu T, Bartkiene E, Rocha JM. Effect of Growth Stages and Lactic Acid Fermentation on Anti-Nutrients and Nutritional Attributes of Spinach ( Spinacia oleracea). Microorganisms 2023; 11:2343. [PMID: 37764187 PMCID: PMC10535161 DOI: 10.3390/microorganisms11092343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/14/2023] [Accepted: 09/16/2023] [Indexed: 09/29/2023] Open
Abstract
Spinach (Spinacia oleracea) is a winter-season green, leafy vegetable grown all over the world, belonging to the family Amaranthus, sub-family Chenopodiaceae. Spinach is a low-caloric food and an enormous source of micronutrients, e.g., calcium, folates, zinc, retinol, iron, ascorbic acid and magnesium. Contrarily, it also contains a variety of anti-nutritional factors, e.g., alkaloids, phytates, saponins, oxalates, tannins and many other natural toxicants which may hinder nutrient-absorption. This study was aimed at investigating the effect of fermentation on improving the nutrient-delivering potential of spinach and mitigating its burden of antinutrients and toxicants at three growth stages: the 1st growth stage as baby leaves, the 2nd growth stage at the coarse stage, and the 3rd growth stage at maturation. The results revealed the significant (p < 0.05) effect of fermentation on increasing the protein and fiber content of spinach powder from 2.53 to 3.53% and 19.33 to 22.03%, respectively, and on reducing total carbohydrate content from 52.92 to 40.52%; the effect was consistent in all three growth stages. A significant decline in alkaloids (6.45 to 2.20 mg/100 g), oxalates (0.07 mg/100 g to 0.02 mg/100 g), phytates (1.97 to 0.43 mg/100 g) and glucosinolates (201 to 10.50 µmol/g) was observed as a result of fermentation using Lactiplantibacillus plantarum. Fermentation had no impact on total phenolic content and the antioxidant potential of spinach, as evaluated using 2,2-diphenyl-1-picrylhydrazyl (DPPH) and ferric-reducing antioxidant power (FRAP) assays. This study proposes fermentation as a safer bioprocess for improving the nutrient-delivering potential of spinach, and suggests processed powders made from spinach as a cost-effective complement to existing plant proteins.
Collapse
Affiliation(s)
- Adila Naseem
- Department of Food Science and Nutrition, Faculty of Food Science and Nutrition, Bahauddin Zakariya University, Multan 60000, Pakistan; (A.N.); (S.A.); (M.Q.); (D.-e.-s.S.); (W.S.)
| | - Saeed Akhtar
- Department of Food Science and Nutrition, Faculty of Food Science and Nutrition, Bahauddin Zakariya University, Multan 60000, Pakistan; (A.N.); (S.A.); (M.Q.); (D.-e.-s.S.); (W.S.)
| | - Tariq Ismail
- Department of Food Science and Nutrition, Faculty of Food Science and Nutrition, Bahauddin Zakariya University, Multan 60000, Pakistan; (A.N.); (S.A.); (M.Q.); (D.-e.-s.S.); (W.S.)
| | - Muhammad Qamar
- Department of Food Science and Nutrition, Faculty of Food Science and Nutrition, Bahauddin Zakariya University, Multan 60000, Pakistan; (A.N.); (S.A.); (M.Q.); (D.-e.-s.S.); (W.S.)
| | - Dur-e-shahwar Sattar
- Department of Food Science and Nutrition, Faculty of Food Science and Nutrition, Bahauddin Zakariya University, Multan 60000, Pakistan; (A.N.); (S.A.); (M.Q.); (D.-e.-s.S.); (W.S.)
| | - Wisha Saeed
- Department of Food Science and Nutrition, Faculty of Food Science and Nutrition, Bahauddin Zakariya University, Multan 60000, Pakistan; (A.N.); (S.A.); (M.Q.); (D.-e.-s.S.); (W.S.)
| | - Tuba Esatbeyoglu
- Department of Food Development and Food Quality, Institute of Food Science and Human Nutrition, Gottfried Wilhelm Leibniz University Hannover, Am Kleinen Felde 30, 30167 Hannover, Germany
| | - Elena Bartkiene
- Department of Food Safety and Quality, Faculty of Veterinary, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania;
- Faculty of Animal Sciences, Institute of Animal Rearing Technologies, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania
| | - João Miguel Rocha
- Universidade Católica Portuguesa, CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal;
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal
| |
Collapse
|
8
|
Icer MA, Özbay S, Ağagündüz D, Kelle B, Bartkiene E, Rocha JMF, Ozogul F. The Impacts of Acidophilic Lactic Acid Bacteria on Food and Human Health: A Review of the Current Knowledge. Foods 2023; 12:2965. [PMID: 37569234 PMCID: PMC10418883 DOI: 10.3390/foods12152965] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/28/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023] Open
Abstract
The need to improve the safety/quality of food and the health of the hosts has resulted in increasing worldwide interest in acidophilic lactic acid bacteria (LAB) for the food, livestock as well as health industries. In addition to the use of acidophilic LAB with probiotic potential for food fermentation and preservation, their application in the natural disposal of acidic wastes polluting the environment is also being investigated. Considering this new benefit that has been assigned to probiotic microorganisms in recent years, the acceleration in efforts to identify new, efficient, promising probiotic acidophilic LAB is not surprising. One of these effots is to determine both the beneficial and harmful compounds synthesized by acidophilic LAB. Moreover, microorganisms are of concern due to their possible hemolytic, DNase, gelatinase and mucinolytic activities, and the presence of virulence/antibiotic genes. Hence, it is argued that acidophilic LAB should be evaluated for these parameters before their use in the health/food/livestock industry. However, this issue has not yet been fully discussed in the literature. Thus, this review pays attention to the less-known aspects of acidophilic LAB and the compounds they release, clarifying critical unanswered questions, and discussing their health benefits and safety.
Collapse
Affiliation(s)
- Mehmet Arif Icer
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Amasya University, Amasya 05100, Turkey;
| | - Sena Özbay
- Department of Food Technology, Kaman Vocational School, Kırşehir Ahi Evran University, Kırşehir 40360, Turkey;
| | - Duygu Ağagündüz
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Gazi University, Emek, Ankara 06490, Turkey
| | - Bayram Kelle
- Department of Physical Medicine and Rehabilitation, Faculty of Medicine, Cukurova University, Adana 01330, Turkey;
| | - Elena Bartkiene
- Department of Food Safety and Quality, Lithuanian University of Health Sciences Tilzes 18, LT-47181 Kaunas, Lithuania;
- Institute of Animal Rearing Technologies, Lithuanian University of Health Sciences, Tilzes Street 18, LT-47181 Kaunas, Lithuania
| | - João Miguel F. Rocha
- Universidade Católica Portuguesa, CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal
| | - Fatih Ozogul
- Department of Seafood Processing Technology, Cukurova University, Balcalı, Adana 01330, Turkey;
- Biotechnology Research and Application Center, Cukurova University, Adana 01330, Turkey
| |
Collapse
|
9
|
García-Reyes RA, García-Cancino A, Arrevillaga-Boni G, Espinoza-Monje M, Gutiérrez-Zamorano C, Arrizon J, González-Avila M. Identification and Characterization of Probiotic Lactiplantibacillus plantarum BI-59.1 Isolated from tejuino and Its Capacity to Produce Biofilms. Curr Microbiol 2023; 80:220. [PMID: 37204589 DOI: 10.1007/s00284-023-03319-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 04/30/2023] [Indexed: 05/20/2023]
Abstract
Tejuino is a popular and traditional beverage consumed in north and western of Mexico, due to its biological properties, it is considered a natural source of probiotics. Nevertheless, few studies have been performed on Tejuino microbiota. In this work, the probiotic potential of the tejuino isolated Lactiplantibacillus plantarum BI-59.1 strain was investigated. Its effectiveness was compared with a commercial Lactobacillus spp and identified by 16S rDNA sequence homology. Lactiplantibacillus plantarum BI-59.1 strain showed probiotic properties, i.e., production of antimicrobial compounds (lactic acid and presence of plantaricin A gene), inhibition of entero-pathogens by planktonic cells and metabolites (Salmonella enterica serovar Typhimurium inhibition to HT29-MTX adhesion), biofilm formation, bacterial adhesion (HT29-MTX, 3.96 CFU/cell), and tolerance to stimulated gastrointestinal conditions (tolerance to pH 3 and bile salts). The strain was gamma hemolytic, susceptible to most antibiotics and negative for gelatinase production; thus, the Lactiplantibacillus. plantarum BI-59.1 strain is suitable for its use as a probiotic for nutraceutical or pharmaceutical formulations.
Collapse
Affiliation(s)
- Rudy Antonio García-Reyes
- Ex-Vivo Digestion Laboratory, Medical and Pharmaceutical Biotechnology Unit, Center for Research and Applied Technology in Jalisco (CIATEJ), Normalistas 800, Colinas de La Normal, 44270, Guadalajara, Jalisco, Mexico
| | - Apolinaria García-Cancino
- Laboratory of Bacterial Pathogenicity, Faculty of Biological Sciences, University of Concepcion, Chacabuco, 4030000, Concepción, Bío-Bío, Chile
| | - Gerardo Arrevillaga-Boni
- Ex-Vivo Digestion Laboratory, Medical and Pharmaceutical Biotechnology Unit, Center for Research and Applied Technology in Jalisco (CIATEJ), Normalistas 800, Colinas de La Normal, 44270, Guadalajara, Jalisco, Mexico
| | - Marcela Espinoza-Monje
- Laboratory of Bacterial Pathogenicity, Faculty of Biological Sciences, University of Concepcion, Chacabuco, 4030000, Concepción, Bío-Bío, Chile
| | - Cristian Gutiérrez-Zamorano
- Laboratory of Bacterial Pathogenicity, Faculty of Biological Sciences, University of Concepcion, Chacabuco, 4030000, Concepción, Bío-Bío, Chile
| | - Javier Arrizon
- Industrial Biotechnology Unit, Center for Research and Applied Technology in Jalisco (CIATEJ), Camino Arenero 1227, El Bajío del Arenal, 45019, Zapopan, Jalisco, Mexico
| | - Marisela González-Avila
- Ex-Vivo Digestion Laboratory, Medical and Pharmaceutical Biotechnology Unit, Center for Research and Applied Technology in Jalisco (CIATEJ), Normalistas 800, Colinas de La Normal, 44270, Guadalajara, Jalisco, Mexico.
| |
Collapse
|
10
|
Nieto-Sarabia VL, Melgar-Lalanne G, Ballinas-Cesatti CB, García-García FA, Jose-Salazar JA, Flores-Ortiz CM, Cristiani-Urbina E, Morales-Barrera L. Brewing a Craft Belgian-Style Pale Ale Using Pichia kudriavzevii 4A as a Starter Culture. Microorganisms 2023; 11:microorganisms11040977. [PMID: 37110400 PMCID: PMC10146434 DOI: 10.3390/microorganisms11040977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/01/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
There is an expanding market for beer of different flavors. This study aimed to prepare a craft Belgian-style pale ale with a non-Saccharomyces yeast. Pichia kudriavzevii 4A was used as a sole starter culture, and malted barley as the only substrate. The ingredients and brewing process were carefully monitored to ensure the quality and innocuousness of the beverage. During fermentation, the yeast consumed 89.7% of total sugars and produced 13.8% v/v of ethanol. The product was fermented and then aged for 8 days, adjusted to 5% v/v alcohol, and analyzed. There were no traces of mycotoxins, lead, arsenic, methanol, or microbiological contamination that would compromise consumer health. According to the physicochemical analysis, the final ethanol concentration (5.2% v/v) and other characteristics complied with national and international guidelines. The ethyl acetate and isoamyl alcohol present are known to confer sweet and fruity flavors. The sensory test defined the beverage as refreshing and as having an apple and pear flavor, a banana aroma, and a good level of bitterness. The judges preferred it over a commercial reference sample of Belgian-style pale ale made from S. cerevisiae. Hence, P. kudriavzevii 4A has the potential for use in the beer industry.
Collapse
Affiliation(s)
- Vogar Leonel Nieto-Sarabia
- Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu s/n, Unidad Profesional Adolfo López Mateos, Ciudad de México 07738, Estado de México, Mexico
| | - Guiomar Melgar-Lalanne
- Instituto de Ciencias Básicas, Universidad Veracruzana, Av. Castelazo Anaya s/n, Industrial Ánimas, Xalapa 91190, Veracruz, Mexico
| | - Christian Bryan Ballinas-Cesatti
- Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu s/n, Unidad Profesional Adolfo López Mateos, Ciudad de México 07738, Estado de México, Mexico
| | - Fernando Abiram García-García
- Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu s/n, Unidad Profesional Adolfo López Mateos, Ciudad de México 07738, Estado de México, Mexico
- Unidad de Biotecnología y Prototipos, Facultad de Estudios Superiores-Iztacala, Universidad Nacional Autónoma de México, Los Reyes Iztacala, Tlalnepantla 54090, Estado de México, Mexico
- Laboratorio Nacional en Salud, Facultad de Estudios Superiores-Iztacala, Universidad Nacional Autónoma de México, Los Reyes Iztacala, Tlalnepantla 54090, Estado de México, Mexico
| | - Jorge Alberto Jose-Salazar
- Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu s/n, Unidad Profesional Adolfo López Mateos, Ciudad de México 07738, Estado de México, Mexico
| | - César Mateo Flores-Ortiz
- Unidad de Biotecnología y Prototipos, Facultad de Estudios Superiores-Iztacala, Universidad Nacional Autónoma de México, Los Reyes Iztacala, Tlalnepantla 54090, Estado de México, Mexico
- Laboratorio Nacional en Salud, Facultad de Estudios Superiores-Iztacala, Universidad Nacional Autónoma de México, Los Reyes Iztacala, Tlalnepantla 54090, Estado de México, Mexico
| | - Eliseo Cristiani-Urbina
- Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu s/n, Unidad Profesional Adolfo López Mateos, Ciudad de México 07738, Estado de México, Mexico
| | - Liliana Morales-Barrera
- Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu s/n, Unidad Profesional Adolfo López Mateos, Ciudad de México 07738, Estado de México, Mexico
| |
Collapse
|
11
|
Rebaza-Cardenas TD, Silva-Cajaleón K, Sabater C, Delgado S, Montes-Villanueva ND, Ruas-Madiedo P. "Masato de Yuca" and "Chicha de Siete Semillas" Two Traditional Vegetable Fermented Beverages from Peru as Source for the Isolation of Potential Probiotic Bacteria. Probiotics Antimicrob Proteins 2023; 15:300-311. [PMID: 34453308 PMCID: PMC10024669 DOI: 10.1007/s12602-021-09836-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/11/2021] [Indexed: 10/20/2022]
Abstract
In this work, two Peruvian beverages "Masato de Yuca," typical of the Amazonian communities made from cassava (Manihot esculenta), and "Chicha de Siete Semillas," made from different cereal, pseudo-cereal, and legume flours, were explored for the isolation of lactic acid bacteria after obtaining the permission of local authorities following Nagoya protocol. From an initial number of 33 isolates, 16 strains with different RAPD- and REP-PCR genetic profiles were obtained. In Chicha, all strains were Lactiplantibacillus plantarum (formerly Lactobacillus plantarum), whereas in Masato, in addition to this species, Limosilactobacillus fermentum (formerly Lactobacillus fermentum), Pediococcus acidilactici, and Weissella confusa were also identified. Correlation analysis carried out with their carbohydrate fermentation patterns and enzymatic profiles allowed a clustering of the lactobacilli separated from the other genera. Finally, the 16 strains were submitted to a static in vitro digestion (INFOGEST model) that simulated the gastrointestinal transit. Besides, their ability to adhere to the human epithelial intestinal cell line HT29 was also determined. Following both procedures, the best probiotic candidate was Lac. plantarum Ch13, a robust strain able to better face the challenging conditions of the gastrointestinal tract and showing higher adhesion ability to the intestinal epithelium in comparison with the commercial probiotic strain 299v. In order to characterize its benefit for human health, this Ch13 strain will be deeply studied in further works.
Collapse
Affiliation(s)
- Teresa D Rebaza-Cardenas
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias - Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Villaviciosa, Asturias, Spain
- Facultad de Ingeniería Agraria, Universidad Católica Sedes Sapientiae (UCSS), Lima, Peru
| | - Kenneth Silva-Cajaleón
- Facultad de Ingeniería Agraria, Universidad Católica Sedes Sapientiae (UCSS), Lima, Peru
| | - Carlos Sabater
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias - Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Villaviciosa, Asturias, Spain
- Group Functionality and Ecology of Beneficial Microbes, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Asturias, Oviedo, Spain
| | - Susana Delgado
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias - Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Villaviciosa, Asturias, Spain
- Group Functionality and Ecology of Beneficial Microbes, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Asturias, Oviedo, Spain
| | | | - Patricia Ruas-Madiedo
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias - Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Villaviciosa, Asturias, Spain.
- Group Functionality and Ecology of Beneficial Microbes, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Asturias, Oviedo, Spain.
| |
Collapse
|
12
|
Ojeda-Linares CI, Vallejo M, Casas A. Disappearance and survival of fermented beverages in the biosphere reserve Tehuacán-Cuicatlán, Mexico: The cases of Tolonche and Lapo. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2023. [DOI: 10.3389/fsufs.2022.1067598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Traditional fermented products are disappearing from the local foodscapes due to social pressures and ecological changes that affect their production; it is therefore crucial to document local knowledge, which is crucial to maintain and recover local biocultural heritage and to contribute to food security. This study aims to document and foster the production of local traditional beverages by registering recipes of fermented beverages in the Tehuacán-Cuicatlán biosphere reserve in central Mexico, a region recognized for its great biocultural diversity. We conducted a search of peer-reviewed literature. Additionally, we included ethnographic research and participatory methods to engage residents in different steps of the production process. We identified five main fermented beverages in the research area, the most common beverages are those produced by agave species which include, mescal, pulque and an almost extinct beverage known as lapo which involves sugar cane as main substrate. We also identified a fermented beverage produced with several cacti fruits known as nochoctli and a traditional a fermented beverage produced with fruits of Schinus molle known as tolonche. We highlight the production of lapo and tolonche since these involved the incorporation of foreign substrates into the region after the Spaniard conquest and to their restricted distribution and almost extinction. The beverages tolonche and lapo are nowadays almost lost and only a few producers still prepare them to follow modified versions of the original recipe. Lapo and tolonche were once important in the research area but almost became extinct until local people started to recently recover them. Traditional fermented beverages in Mexico play an important role in cultural identity and contribute to the local diet; nevertheless, several fermented beverages have not been recorded and have even become extinct. This work is an effort to promote and conserve traditional fermented beverages as valuable biocultural heritage by empowering people to make decisions about the use of locally available resources, which is crucial in times when food systems are highly vulnerable.
Collapse
|
13
|
Exploring the Core Microbiota of Four Different Traditional Fermented Beverages from the Colombian Andes. FERMENTATION 2022. [DOI: 10.3390/fermentation8120733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Fermentation is an ancient process used to prepare and preserve food. Currently, fermented beverages are part of the culture of people living in the Colombian Andean Region, and they are a vital part of their cosmology and ancestral vision. Chicha, Forcha, Champús, and Masato are some of the most common Colombian Andes region’s traditional fermented beverages. These drinks come from the fermentation of maize (Zea maize), but other cereals such as wheat or rye, could be used. The fermentation is carried out by a set of bacteria and yeasts that provide characteristic organoleptic properties of each beverage. In this work, the information collected from the metagenomics analyses by sequencing ITS 1-4 (Internal Transcriber Spacer) and the 16S ribosomal gene for fungi and the V3-V4 region of the rDNA for bacteria allowed us to identify the diversity present in these autochthonous fermented beverages made with maize. The sequencing analysis showed the presence of 39 bacterial and 20 fungal genera. In addition, we determined that only nine genera of bacteria and two genera of fungi affect the organoleptic properties of smell, colour, and flavour, given the production of compounds such as lactic acid, alcohol, and phenols, highlighting the critical role of these microorganisms. Our findings provide new insights into the core microbiota of these beverages, represented by Lactobacillus fermentum, Acetobacter pasteurianus, and Saccharomyces cerevisiae.
Collapse
|
14
|
Non-Dairy Fermented Beverages Produced with Functional Lactic Acid Bacteria. Microorganisms 2022; 10:microorganisms10122314. [PMID: 36557567 PMCID: PMC9781336 DOI: 10.3390/microorganisms10122314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/19/2022] [Accepted: 11/21/2022] [Indexed: 11/24/2022] Open
Abstract
At present, there is an increasing interest in beverages of non-dairy origin, as alternatives to those based on milk, but having similar health-promoting properties. Fermentation with specific bacteria or consortia may enhance the functionality of these products. In our study, selected lactic acid bacteria, that have been previously shown to possess functional properties (antimicrobial activity, probiotic potential), were used for the fermentation of wheat bran combined with root vegetables. Strains were investigated for their safety, while the obtained beverages were characterized in terms of microbial content, physical, chemical, nutritional, and functional properties. None of the strains harbors virulence genes, but all of them possess genes for survival at low pH, starch metabolism, and vitamin biosynthesis. Three strains (Lactiplantibacillus plantarum BR9, L. plantarum P35, and Lactobacillus acidophilus IBB801) and two substrates (5% wheat bran with 10% red beetroot/carrots) were selected based on a preliminary assessment of the beverage's sensory acceptability. These strains showed good growth and stability over time in the stored beverages. No enterobacteria were detected at the end of fermentations, while the final pH was, in most cases, below 3.5. Free phenolics, flavonoids, and DPPH scavenging effect increased during fermentation in all drinks, reaching 24h values that were much higher than in the unfermented substrates. Most of the obtained drinks were able to prevent the growth of certain pathogens, including Listeria monocytogenes ATCC 19111, Salmonella enterica ATCC 14028, Staphylococcus aureus ATCC 25923, and Escherichia coli ATCC 25922. The obtained beverages would combine the nutritiveness of the raw ingredients with the beneficial effect of fermentation (increasing shelf life, health-promoting effect, pleasant flavor, etc.). They would also fill a gap in the non-dairy probiotics sector, which is constantly increasing due to the increasing number of vegan people or people that cannot consume dairy products.
Collapse
|
15
|
Madilo FK, Kunadu APH, Tano-Debrah K, Mensah GI, Saalia KF, Kolanisi U. Process and Product Characterization of Aliha, A Maize-Based Ghanaian Indigenous Fermented Beverage. J FOOD QUALITY 2022; 2022:1-16. [DOI: 10.1155/2022/5604342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/26/2023] Open
Abstract
Aliha is a maize-based traditional fermented beverage prepared and consumed in Ghana, predominantly in the Volta Region and other parts of Ghana. The study sought to characterize the production processes, the nutritional values, and microbial composition of aliha. A total of 126 aliha producers in the Volta, Greater Accra, and Ashanti Regions were sampled using snowballing to identify and to recruit the producers for the study, using a pretested self-administered questionnaire. The physicochemical and microbial composition were carried out using standard methods. Four different production techniques were identified across the production sites. The variations identified during the production existed across the production chain. The main ingredients used for aliha production are corn, caramel, sugar, and water. However, aliha produced by the ‘original’ method (DN2) presented the best nutritional values (proteins, energy, and calcium), followed by backslopping techniques, AG1 (total carbohydrates and ash), and AG2 (fats and oils and phosphorus). Fungi and Enterobacteriaceae dominated the initial fermentation stages (24 h) with low acid values. However, as the fermentation time increased from 24 h to 72 h, the acid contents of the fermenting beverage increased sharply leading to a drastic reduction of fungi and Enterobacteriaceae contents with increasing records of lactic acid bacterial counts. Even though DN2 presented the best nutritional values, it was highly contaminated. Hence, the producers must be encouraged to use backslopping techniques for safety and to shorten the duration of production.
Collapse
Affiliation(s)
- Felix Kwashie Madilo
- Department of Food Science and Technology, Faculty of Applied Sciences and Technology, Ho Technical University, Volta Region, Ho, Ghana
- Department of Nutrition and Food Science, University of Ghana, Greater Accra Region, Legon Accra, Ghana
| | | | - Kwaku Tano-Debrah
- Department of Nutrition and Food Science, University of Ghana, Greater Accra Region, Legon Accra, Ghana
| | - Gloria Ivy Mensah
- Bateriology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Greater Accra Region, Legon Accra, Ghana
| | - Kwesi Firibu Saalia
- Department of Nutrition and Food Science, University of Ghana, Greater Accra Region, Legon Accra, Ghana
| | - Unathi Kolanisi
- Department of Consumer Science, Faculty of Science and Agriculture, University of Zululand, Richards Bay, South Africa
| |
Collapse
|
16
|
Guerra LS, Cevallos-Cevallos JM, Weckx S, Ruales J. Traditional Fermented Foods from Ecuador: A Review with a Focus on Microbial Diversity. Foods 2022; 11:foods11131854. [PMID: 35804670 PMCID: PMC9265738 DOI: 10.3390/foods11131854] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/11/2022] [Accepted: 06/14/2022] [Indexed: 11/23/2022] Open
Abstract
The development of early civilizations was greatly associated with populations’ ability to exploit natural resources. The development of methods for food preservation was one of the pillars for the economy of early societies. In Ecuador, food fermentation significantly contributed to social advances and fermented foods were considered exclusive to the elite or for religious ceremonies. With the advancement of the scientific research on bioprocesses, together with the implementation of novel sequencing tools for the accurate identification of microorganisms, potential health benefits and the formation of flavor and aroma compounds in fermented foods are progressively being described. This review focuses on describing traditional fermented foods from Ecuador, including cacao and coffee as well as less popular fermented foods. It is important to provide new knowledge associated with nutritional and health benefits of the traditional fermented foods.
Collapse
Affiliation(s)
- Luis Santiago Guerra
- Department of Food Science and Biotechnology, Escuela Politécnica Nacional, P.O. Box 17-01-2759, Quito 170517, Ecuador;
| | - Juan Manuel Cevallos-Cevallos
- Centro de Investigaciones Biotecnologicas del Ecuador (CIBE), Campus Gustavo Galindo, Escuela Superior Politécnica del Litoral (ESPOL), Km 30.5 Vía Perimetral, P.O. Box 09-01-5863, Guayaquil 090112, Ecuador;
| | - Stefan Weckx
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel (VUB), Pleinlaan 2, B-1050 Brussels, Belgium;
| | - Jenny Ruales
- Department of Food Science and Biotechnology, Escuela Politécnica Nacional, P.O. Box 17-01-2759, Quito 170517, Ecuador;
- Correspondence:
| |
Collapse
|
17
|
Gutiérrez-Sarmiento W, Peña-Ocaña BA, Lam-Gutiérrez A, Guzmán-Albores JM, Jasso-Chávez R, Ruíz-Valdiviezo VM. Microbial community structure, physicochemical characteristics and predictive functionalities of the Mexican tepache fermented beverage. Microbiol Res 2022; 260:127045. [DOI: 10.1016/j.micres.2022.127045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 03/24/2022] [Accepted: 04/17/2022] [Indexed: 11/24/2022]
|
18
|
Looking inside Mexican Traditional Food as Sources of Synbiotics for Developing Novel Functional Products. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8030123] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Currently, emerging alimentary alternatives are growing, leading to the consumption of natural products including bio, fermented, and traditional foods. The studies over functional properties of food matrices and their derived compounds have resulted in the development of new functional alimentary items. However, most of the population still has limited access to, and information about, suitable foods. Analyzing traditional fermented products, we found fermented food matrices containing beneficial bacteria, with the possibility of exerting effects on different substrates enhancing the bioavailability of short-chain fatty acids (SFCAs), antioxidants, among other food-derived products. Maize (Zea mays L.), agave varieties, nopal (Opuntia ficus-indica), and beans (Phaseolus vulgaris L.) were key foods for the agricultural and nutritional development of Mesoamerica. We believe that the traditional Mexican diet has relevant ingredients with these functionalities and their association will allow us to develop functional food suitable for each population and their current needs. In this review, the functional properties of maize, agave, nopal, and frijol are detailed, and the functional food innovation and development opportunities for these food matrices are analyzed, which may be an important precedent for future basic and applied research.
Collapse
|
19
|
Abstract
The growing interest in the consumption and study of traditionally fermented food worldwide has led to the development of numerous scientific investigations that have focused on analyzing the microbial and nutritional composition and the health effects derived from the consumption of these foods. Traditionally fermented foods and beverages are a significant source of nutrients, including proteins, essential fatty acids, soluble fiber, minerals, vitamins, and some essential amino acids. Additionally, fermented foods have been considered functional due to their prebiotic content, and the presence of specific lactic acid bacterial strains (LAB), which have shown positive effects on the balance of the intestinal microbiota, providing a beneficial impact in the treatment of diseases. This review presents a bibliographic compilation of scientific studies assessing the effect of the nutritional content and LAB profile of traditional fermented foods on different conditions such as obesity, diabetes, and gastrointestinal disorders.
Collapse
|
20
|
De Obeso Fernandez Del Valle A, Scheckhuber CQ. From Past to Present: Biotechnology in Mexico Using Algae and Fungi. PLANTS 2021; 10:plants10112530. [PMID: 34834893 PMCID: PMC8621983 DOI: 10.3390/plants10112530] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 10/19/2021] [Accepted: 10/21/2021] [Indexed: 11/16/2022]
Abstract
Algae and fungi share a rich history in the fields of basic and applied natural science. In biotechnology, in particular, algae and fungi are of paramount importance, due to the production and development of valuable compounds, such as pharmaceuticals, enzymes, and biofuels. They are also used in waste fermentation, biocontrol of pathogens, and food processing and improvement, among other fields. Although a substantial number of different microorganisms are utilized for these purposes, there lies tremendous potential in uncharacterized microbial species. For this reason, biodiversity hotspots offer a wealth of potential in the discovery of new products and processing strategies based on these microorganisms. This review presents an overview of the use of algae and fungi in pre-Hispanic times/modern-day Mexico for the benefits of mankind. One of our objectives is to raise awareness about the potential of developing research projects for identification and biotechnological utilization of algae and fungi in a megadiverse country, such as Mexico.
Collapse
|
21
|
Abstract
Exopolysaccharides (EPS) are biopolymers produced by many microorganisms, including some species of the genus Acetobacter, Bacillus, Fructobacillus, Leuconostoc, Lactobacillus, Lactiplantibacillus, Pediococcus, Pichia, Rhodotorula, Saccharomycodes, Schizosaccharomyces, and Sphingomonas, which have been reported in the microbiota of traditional fermented beverages. Dextran, levan, glucan, gellan, and cellulose, among others, are EPS produced by these genera. Extracellular biopolymers are responsible for contributing to specific characteristics to fermented products, such as modifying their organoleptic properties or contributing to biological activities. However, EPS can be easily found in the dairy industry, where they affect rheological properties in products such as yogurt or cheese, among others. Over the years, LAB has been recognized as good starter strains in spontaneous fermentation, as they can contribute beneficial properties to the final product in conjunction with yeasts. To the best our knowledge, several articles have reported that the EPS produced by LAB and yeasts possess many both biological and technological properties that can be influenced by many factors in which fermentation occurs. Therefore, this review presents traditional Mexican fermented beverages (tavern, tuba, sotol, and aguamiel) and relates them to the microbial EPS, which affect biological and techno-functional activities.
Collapse
|
22
|
Keșa AL, Pop CR, Mudura E, Salanță LC, Pasqualone A, Dărab C, Burja-Udrea C, Zhao H, Coldea TE. Strategies to Improve the Potential Functionality of Fruit-Based Fermented Beverages. PLANTS (BASEL, SWITZERLAND) 2021; 10:2263. [PMID: 34834623 PMCID: PMC8623731 DOI: 10.3390/plants10112263] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/13/2021] [Accepted: 10/17/2021] [Indexed: 06/01/2023]
Abstract
It is only recently that fermentation has been facing a dynamic revival in the food industry. Fermented fruit-based beverages are among the most ancient products consumed worldwide, while in recent years special research attention has been granted to assess their functionality. This review highlights the functional potential of alcoholic and non-alcoholic fermented fruit beverages in terms of chemical and nutritional profiles that impact on human health, considering the natural occurrence and enrichment of fermented fruit-based beverages in phenolic compounds, vitamins and minerals, and pro/prebiotics. The health benefits of fruit-based beverages that resulted from lactic, acetic, alcoholic, or symbiotic fermentation and specific daily recommended doses of each claimed bioactive compound were also highlighted. The latest trends on pre-fermentative methods used to optimize the extraction of bioactive compounds (maceration, decoction, and extraction assisted by supercritical fluids, microwave, ultrasound, pulsed electric fields, high pressure homogenization, or enzymes) are critically assessed. As such, optimized fermentation processes and post-fermentative operations, reviewed in an industrial scale-up, can prolong the shelf life and the quality of fermented fruit beverages.
Collapse
Affiliation(s)
- Ancuța-Liliana Keșa
- Department of Food Engineering, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania; (A.-L.K.); (E.M.)
| | - Carmen Rodica Pop
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (C.R.P.); (L.C.S.)
| | - Elena Mudura
- Department of Food Engineering, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania; (A.-L.K.); (E.M.)
| | - Liana Claudia Salanță
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (C.R.P.); (L.C.S.)
| | - Antonella Pasqualone
- Department of Soil, Plant and Food Sciences, University of Bari ‘Aldo Moro’, Via Amendola, 165/A, 70126 Bari, Italy;
| | - Cosmin Dărab
- Department of Electric Power Systems, Faculty of Electrical Engineering, Technical University of Cluj-Napoca, 400027 Cluj-Napoca, Romania;
| | - Cristina Burja-Udrea
- Industrial Engineering and Management Department, Faculty of Engineering, Lucian Blaga University of Sibiu, 10 Victoriei Blv., 550024 Sibiu, Romania;
| | - Haifeng Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China;
- Research Institute for Food Nutrition and Human Health, Guangzhou 510640, China
| | - Teodora Emilia Coldea
- Department of Food Engineering, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania; (A.-L.K.); (E.M.)
| |
Collapse
|
23
|
Traditional Fermented Beverages of Mexico: A Biocultural Unseen Foodscape. Foods 2021; 10:foods10102390. [PMID: 34681439 PMCID: PMC8535898 DOI: 10.3390/foods10102390] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/01/2021] [Accepted: 10/07/2021] [Indexed: 12/22/2022] Open
Abstract
Mexico is one of the main regions of the world where the domestication of numerous edible plant species originated. Its cuisine is considered an Intangible Cultural Heritage of Humanity and ferments are important components but have been poorly studied. Traditional fermented foods are still diverse, but some are endangered, requiring actions to promote their preservation. Our study aimed to (1) systematize information on the diversity and cultural history of traditional Mexican fermented beverages (TMFB), (2) document their spatial distribution, and (3) identify the main research trends and topics needed for their conservation and recovery. We reviewed information and constructed a database with biocultural information about TMFB prepared and consumed in Mexico, and we analyzed the information through network approaches and mapped it. We identified 16 TMFB and 143 plant species involved in their production, species of Cactaceae, Asparagaceae, and Poaceae being the most common substrates. Microbiological research has been directed to the potential biotechnological applications of Lactobacillus, Bacillus, and Saccharomyces. We identified a major gap of research on uncommon beverages and poor attention on the cultural and technological aspects. TMFB are dynamic and heterogenous foodscapes that are valuable biocultural reservoirs. Policies should include their promotion for conservation. The main needs of research and policies are discussed.
Collapse
|
24
|
Robledo-Márquez K, Ramírez V, González-Córdova AF, Ramírez-Rodríguez Y, García-Ortega L, Trujillo J. Research opportunities: Traditional fermented beverages in Mexico. Cultural, microbiological, chemical, and functional aspects. Food Res Int 2021; 147:110482. [PMID: 34399478 DOI: 10.1016/j.foodres.2021.110482] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 05/13/2021] [Accepted: 05/23/2021] [Indexed: 12/19/2022]
Abstract
In Mexico, close to 200 fermented products have been described, of which, approximately 20 are beverages. They were obtained through rustic and ancestral fermentation methods by different indigenous Mexican communities; most of them were used in ceremonies, agricultural work, and other occasions. For their elaboration, different substrates obtained from plants are used, where uncontrolled and low-scale spontaneous anaerobic fermentation occurs. In Mexico, some of these products are considered as nutritional sources and functional beverages; the study of those products has revealed the presence of multiple compounds of biological importance. Additionally, elder generations attribute healing properties against diverse illnesses to these beverages. The aim of this review is to highlight the available information on twelve traditional Mexican fermented beverages, their traditional uses, and their fermentation processes along with toxicological, chemical, nutritional, and functional studies as seen from different areas of investigation. In the literature, pulque, cocoa, and pozol were the beverages with the greatest amount of described health properties; sendechó and guarapo were less characterized. Polyphenols, gallic and ferulic acid, anthocyanins and saponins were the most abundant molecules in all beverages. Finally, it is important to continue this research in order to determine the microorganisms that are involved in the fermentation process, as well as the organoleptic and beneficial properties they lend to the traditional Mexican fermented beverages.
Collapse
Affiliation(s)
- K Robledo-Márquez
- División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica (IPICYT), San Luis Potosí 78216, Mexico
| | - V Ramírez
- Departamento de Cirugía Experimental, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Tlalpan, Ciudad de México 14080, Mexico
| | - A F González-Córdova
- Laboratorio de Calidad, Autenticidad y Trazabilidad de los Alimentos y de Química y Biotecnología de Productos Lácteos, Coordinación de Tecnología de Alimentos de Origen Animal (CTAOA), Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD), La Victoria, Hermosillo, Sonora 83304, Mexico
| | - Y Ramírez-Rodríguez
- División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica (IPICYT), San Luis Potosí 78216, Mexico; Consejo Nacional de Ciencia y Tecnología-Instituto Potosino de Investigación Científica y Tecnológica-Consorcio de Investigación, Innovación y Desarrollo para las Zonas Áridas (CONACYT-CIIDZA-IPICYT), San Luis Potosí 78216, Mexico
| | - L García-Ortega
- Departamento de Ingeniería Genética. Centro de Investigación y Estudios Avanzados de IPN (Cinvestav), Irapuato, Guanajuato 36824, Mexico
| | - J Trujillo
- Consejo Nacional de Ciencia y Tecnología-Instituto Potosino de Investigación Científica y Tecnológica-Consorcio de Investigación, Innovación y Desarrollo para las Zonas Áridas (CONACYT-CIIDZA-IPICYT), San Luis Potosí 78216, Mexico.
| |
Collapse
|
25
|
Pimentel TC, Gomes de Oliveira LI, de Lourdes Chaves Macedo E, Costa GN, Dias DR, Schwan RF, Magnani M. Understanding the potential of fruits, flowers, and ethnic beverages as valuable sources of techno-functional and probiotics strains: Current scenario and main challenges. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.05.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
26
|
Janiszewska‐Turak E, Hornowska Ł, Pobiega K, Gniewosz M, Witrowa‐Rajchert D. The influence of
Lactobacillus
bacteria type and kind of carrier on the properties of spray‐dried microencapsules of fermented beetroot powders. Int J Food Sci Technol 2020. [DOI: 10.1111/ijfs.14915] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Emilia Janiszewska‐Turak
- Department of Food Engineering and Process Management Institute of Food Sciences Warsaw University of Life Sciences (SGGW) Nowoursynowska 159c Warsaw02‐776Poland
| | - Łucja Hornowska
- Department of Food Engineering and Process Management Institute of Food Sciences Warsaw University of Life Sciences (SGGW) Nowoursynowska 159c Warsaw02‐776Poland
| | - Katarzyna Pobiega
- Department of Food Biotechnology and Microbiology Institute of Food Sciences Warsaw University of Life Sciences (SGGW) Nowoursynowska 159c Warsaw02‐776Poland
| | - Małgorzata Gniewosz
- Department of Food Biotechnology and Microbiology Institute of Food Sciences Warsaw University of Life Sciences (SGGW) Nowoursynowska 159c Warsaw02‐776Poland
| | - Dorota Witrowa‐Rajchert
- Department of Food Engineering and Process Management Institute of Food Sciences Warsaw University of Life Sciences (SGGW) Nowoursynowska 159c Warsaw02‐776Poland
| |
Collapse
|
27
|
Bernal‐Gil NY, Favila‐Cisneros HJ, Zaragoza‐Alonso J, Cuffia F, Rojas‐Rivas E. Using projective techniques and Food Neophobia Scale to explore the perception of traditional ethnic foods in Central Mexico: A preliminary study on the beverage
Sende. J SENS STUD 2020. [DOI: 10.1111/joss.12606] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Norma Yareli Bernal‐Gil
- Universidad de Ixtlahuaca CUI, Escuela Profesional de Gastronomía Ixtlahuaca de Rayón State of Mexico Mexico
| | | | - Jazmín Zaragoza‐Alonso
- Universidad de Ixtlahuaca CUI, Escuela Profesional de Gastronomía Ixtlahuaca de Rayón State of Mexico Mexico
| | | | - Edgar Rojas‐Rivas
- Universidad de Ixtlahuaca CUI, Escuela Profesional de Gastronomía Ixtlahuaca de Rayón State of Mexico Mexico
| |
Collapse
|