1
|
Roca M, Pérez-Gálvez A. Absolute chlorophyll composition of commercial green food colorants and coloring foodstuff by HPLC-ESI-QTOF-MS/MS: Copper chlorophyllins. Food Chem 2024; 436:137728. [PMID: 37857195 DOI: 10.1016/j.foodchem.2023.137728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 09/15/2023] [Accepted: 10/08/2023] [Indexed: 10/21/2023]
Abstract
Sodium copper chlorophyllins (SCC) are used worldwide to brightly color green foods as authorized food colorants, although their composition is only partially known. This study applied a combination of experimental and in silico techniques to describe the SCC profile in commercial colorant products and coloring foods. Different approaches have allowed identifying five new chlorophyll compounds in the food colorants besides the description of unique product ions able to distinguish among different chlorophyll isomers for the first time. In addition, a detailed isotope cluster analysis has revealed the formation of two new structures of copper chlorophyllins, featuring the copper in peripheral positions instead of the central pocket. Finally, a computational study of thermodynamic parameters and molecular descriptors has determined the factors responsible for the formation of the two main copper chlorophyllins present in the food colorants. This information will sustain alternative processing leading to SCC products with tailored composition.
Collapse
Affiliation(s)
- María Roca
- Group of Chemistry and Biochemistry of Pigments. Food Phytochemistry Department, Instituto de la Grasa (CSIC), Campus Universitario, Building 46, 41013 Sevilla, Spain
| | - Antonio Pérez-Gálvez
- Group of Chemistry and Biochemistry of Pigments. Food Phytochemistry Department, Instituto de la Grasa (CSIC), Campus Universitario, Building 46, 41013 Sevilla, Spain.
| |
Collapse
|
2
|
Comprehensive chlorophyll composition of commercial green food colorants and coloring foodstuffs by HPLC-ESI-QTOF-MS/MS: Chlorophyllins. Food Chem 2023; 415:135746. [PMID: 36863233 DOI: 10.1016/j.foodchem.2023.135746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 02/06/2023] [Accepted: 02/16/2023] [Indexed: 03/04/2023]
Abstract
Consumers demand higher levels of food quality and safety, so food legislative organizations need full knowledge of food composition to develop regulations that guarantee quality and safety criteria. This is the context for green natural food colorants and the new category green "coloring foodstuffs". We have exploited the capabilities of targeted metabolomics assisted by powerful software and algorithms to unravel the comprehensive chlorophyll composition in commercial samples of both colorant categories. With the aid of an in-house library, at first, seven new chlorophylls have been identified, among all the samples analyzed, providing data on their structural configuration. Next, taking advantage of an expert-curated database, eight more chlorophylls non-described previously have been found, which will be significant for the chemistry of chlorophylls. Finally, we have deciphered the sequence of chemical reactions that take place during the manufacturing of green food colorants and propose the whole pathway that explains the occurrence of the chlorophylls they contain.
Collapse
|
3
|
Mandal BK, Ling YC. Analysis of Chlorophylls/Chlorophyllins in Food Products Using HPLC and HPLC-MS Methods. Molecules 2023; 28:molecules28104012. [PMID: 37241753 DOI: 10.3390/molecules28104012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Of the different quality parameters of any food commodity or beverage, color is the most important, attractive and choice-affecting sensory factor to consumers and customers. Nowadays, food industries are interested in making the appearance of their food products attractive and interesting in order to appeal to consumers/customers. Natural green colorants have been accepted universally due to their natural appeal as well as their nontoxic nature to consumers. In addition, several food safety issues mean that natural green colorants are preferable to synthetic food colorants, which are mostly unsafe to the consumers but are less costly, more stable, and create more attractive color hues in food processing. Natural colorants are prone to degradation into numerous fragments during food processing, and thereafter, in storage. Although different hyphenated techniques (especially high-performance liquid chromatography (HPLC), LC-MS/HRMS, and LC/MS-MS are extensively used to characterize all these degradants and fragments, some of them are not responsive to any of these techniques, and some substituents in the tetrapyrrole skeleton are insensitive to these characterization tools. Such circumstances warrant an alternative tool to characterize them accurately for risk assessment and legislation purposes. This review summarizes the different degradants of chlorophylls and chlorophyllins under different conditions, their separation and identification using various hyphenated techniques, national legislation regarding them, and the challenges involved in their analysis. Finally, this review proposes that a non-targeted analysis method that combines HPLC and HR-MS assisted by powerful software tools and a large database could be an effective tool to analyze all possible chlorophyll and chlorophyllin-based colorants and degradants in food products in the future.
Collapse
Affiliation(s)
- Badal Kumar Mandal
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632014, India
| | - Yong-Chien Ling
- Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan
| |
Collapse
|
4
|
Zheng Y, Mao S, Zhu J, Fu L, Zare N, Karimi F. Current status of electrochemical detection of sunset yellow based on bibliometrics. Food Chem Toxicol 2022; 164:113019. [DOI: 10.1016/j.fct.2022.113019] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/01/2022] [Accepted: 04/11/2022] [Indexed: 12/20/2022]
|
5
|
Zhu C, Lai G, Jin Y, Xu D, Chen J, Jiang X, Wang S, Liu G, Xu N, Shen R, Wang L, Zhu M, Wu C. Suspect screening and untargeted analysis of veterinary drugs in food by LC-HRMS: Application of background exclusion-dependent acquisition for retrospective analysis of unknown xenobiotics. J Pharm Biomed Anal 2022; 210:114583. [PMID: 35033942 DOI: 10.1016/j.jpba.2022.114583] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 12/07/2021] [Accepted: 01/05/2022] [Indexed: 01/08/2023]
Abstract
The presence of veterinary drug and pesticide residues in food products pose considerable threats to human health. Monitoring of these residues in food is mainly carried out using targeted analysis by triple quadrupole mass spectrometry. However, these methods are not suitable for suspect screening and untargeted analysis of unknowns. The main objectives of this study were to develop a new high-resolution mass spectrometry (HRMS)-based analytical strategy for retrospective analysis of suspect and unknown xenobiotics and to evaluate its performance in the tentative identification of 48 veterinary drugs as "unknowns" spiked in a pork sample. In the analysis, a newly developed background exclusion data-dependent acquisition (BE-DDA) technique was employed to trigger the product ion (MS/MS) spectral acquisition of the "unknowns", and an in-house precise-and-thorough background-subtraction (PATBS) technique was applied to detect these "unknowns". Results showed that untargeted data mining of the acquired LC-MS dataset by PATBS was able to find all the 48 veterinary drugs and 46 of them were triggered by BE-DDA to generate accurate MS/MS spectra. The dataset of recorded accurate full-scan mass and MS/MS spectra of all the xenobiotics of the test pork sample is defined as the xenobiotics profile. Searching the xenobiotic profile of the test pork sample using mass spectral data of selected veterinary drugs (as suspects) from the mzCloud spectral library led to the correct hits. Searching against the mzCloud spectral library using the mass spectral data of selected individual veterinary drugs (as unknowns) from the xenobiotics profile tentatively confirmed their identities. In contrast, analysis of the same sample using ion intensity-data dependent acquisition only recorded the MS/MS spectra for 34 veterinary drugs. In addition, a data independent acquisition method enabled the acquisition of the fragment spectra for 44 veterinary drugs, but their spectral data displayed only one or a few true product ions of individual analytes of interest along with many fragments from coeluted biological components and background noises. This study demonstrates that this analytical strategy has a potential to become a practical tool for the retrospective suspect screening and untargeted analysis of unknown xenobiotics in a biological sample such as veterinary drugs and pesticides in food products.
Collapse
Affiliation(s)
- Chunyan Zhu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Guoyin Lai
- Xiamen Customs Technology Center, Xiamen, China
| | - Ying Jin
- Department of Cardiology, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Dunming Xu
- Xiamen Customs Technology Center, Xiamen, China
| | - Jiayun Chen
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Xiaojuan Jiang
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Suping Wang
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | | | | | - Rong Shen
- School of Medicine, Xiamen University, Xiamen, China
| | - Luxiao Wang
- Xiamen Customs Technology Center, Xiamen, China
| | - Mingshe Zhu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China; MassDefect Technologies, Princeton, NJ, USA.
| | - Caisheng Wu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China.
| |
Collapse
|
6
|
Roca M, Pérez-Gálvez A. Metabolomics of Chlorophylls and Carotenoids: Analytical Methods and Metabolome-Based Studies. Antioxidants (Basel) 2021; 10:1622. [PMID: 34679756 PMCID: PMC8533378 DOI: 10.3390/antiox10101622] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/03/2021] [Accepted: 10/12/2021] [Indexed: 01/27/2023] Open
Abstract
Chlorophylls and carotenoids are two families of antioxidants present in daily ingested foods, whose recognition as added-value ingredients runs in parallel with the increasing number of demonstrated functional properties. Both groups include a complex and vast number of compounds, and extraction and analysis methods evolved recently to a modern protocol. New methodologies are more potent, precise, and accurate, but their application requires a better understanding of the technical and biological context. Therefore, the present review compiles the basic knowledge and recent advances of the metabolomics of chlorophylls and carotenoids, including the interrelation with the primary metabolism. The study includes material preparation and extraction protocols, the instrumental techniques for the acquisition of spectroscopic and spectrometric properties, the workflows and software tools for data pre-processing and analysis, and the application of mass spectrometry to pigment metabolomics. In addition, the review encompasses a critical description of studies where metabolomics analyses of chlorophylls and carotenoids were developed as an approach to analyzing the effects of biotic and abiotic stressors on living organisms.
Collapse
Affiliation(s)
| | - Antonio Pérez-Gálvez
- Food Phytochemistry Department, Instituto de la Grasa (CSIC), Building 46, 41013 Sevilla, Spain;
| |
Collapse
|
7
|
Li W, Miao Y, Fei C, Zhang H, Li B, Zhang K. Enhanced photothermal signal detection by graphene oxide integrated long period fiber grating for on-site quantification of sodium copper chlorophyllin. Analyst 2021; 146:3617-3622. [PMID: 33928968 DOI: 10.1039/d1an00444a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
An enhanced photothermal signal detection method based on graphene oxide (GO) integrated long period fiber grating (LPFG) for on-site sodium copper chlorophyllin (SCC) quantification is proposed. SCC, as a porphyrin compound, can be photonically excited to induce a stronger photothermal effect. GO offers superior molecular adsorption and thermal conductivity properties; depositing it on the LPFG surface significantly improves the sensitivity and detection efficiency of the SCC photothermal signal, when irradiated with a 405 nm laser. The experimental results showed improved performance compared with those from uncoated LPFG, with a sensitivity of 0.0587 dB (mg L-1)-1 and a limit of detection (LOD) of 0.17 mg kg-1, which is also an order of magnitude lower than that of traditional high-performance liquid chromatography. The proposed method has potential applications in the fields of real-time food safety monitoring, environmental pollutant detection, and disease diagnosis.
Collapse
Affiliation(s)
- Wenjie Li
- Tianjin Key Laboratory of Film Electronic and Communicate Devices, School of Electrical and Electronic Engineering, Tianjin University of Technology, Tianjin 300384, China.
| | - Yinping Miao
- Tianjin Key Laboratory of Film Electronic and Communicate Devices, School of Electrical and Electronic Engineering, Tianjin University of Technology, Tianjin 300384, China.
| | - Chengwei Fei
- Department of Aeronautics and Astronautics, Fudan University, Shanghai 200433, China
| | - Hongmin Zhang
- Tianjin Key Laboratory of Film Electronic and Communicate Devices, School of Electrical and Electronic Engineering, Tianjin University of Technology, Tianjin 300384, China.
| | - Bin Li
- Tianjin Key Laboratory of Film Electronic and Communicate Devices, School of Electrical and Electronic Engineering, Tianjin University of Technology, Tianjin 300384, China.
| | - Kailiang Zhang
- Tianjin Key Laboratory of Film Electronic and Communicate Devices, School of Electrical and Electronic Engineering, Tianjin University of Technology, Tianjin 300384, China.
| |
Collapse
|