1
|
Liu X, Mao B, Tang X, Zhang Q, Zhao J, Chen W, Cui S. Bacterial viability retention in probiotic foods: a review. Crit Rev Food Sci Nutr 2025:1-23. [PMID: 40215221 DOI: 10.1080/10408398.2025.2488228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2025]
Abstract
Probiotics offer substantial health benefits, leading to their increased consumption in various food products. The viability of probiotics is a critical factor that influences the nutritional and therapeutic efficacy of these foods. However, as probiotics often lose viability during production and oral administration, effective preservation and encapsulation technologies are needed to overcome this challenge. This review elucidates the diverse sources and incorporation strategies of probiotics, while systematically analyzing the effects of water transformation (ice front velocity, glass transition temperature, and collapse temperature), processing conditions (food matrix, temperature, and dissolved oxygen), and gastrointestinal challenges (gastric fluid, digestive enzymes, and bile salts) on probiotic viability. Effective strategies to strengthen probiotic viability encompass three primary domains: fermentation processes, production techniques, and encapsulation methods. Specifically, these include meticulous fermentation control (nitrogen sources, lipids, and carbon sources), pre-stress treatments (pre-cooling, heat shock, NaCl stress, and acid stress), optimized lyoprotectant selection (carbohydrates, proteins, and polyols), synergistic freeze-drying technologies (infrared technology, spray drying, and microwave), bulk encapsulation approaches (polysaccharide or protein-based microencapsulation), and single-cell encapsulation methods (self-assembly and surface functionalization). Despite these advancements, targeting specific probiotics and food matrices remains challenging, necessitating further research to enhance probiotic viability.
Collapse
Affiliation(s)
- Xuewu Liu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Bingyong Mao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Xin Tang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Qiuxiang Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- International Joint Research Laboratory for Maternal-Infant Microbiota and Health, Jiangnan University, Wuxi, China
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| | - Shumao Cui
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- International Joint Research Laboratory for Maternal-Infant Microbiota and Health, Jiangnan University, Wuxi, China
| |
Collapse
|
2
|
Chen S, Suo K, Kang Q, Zhu J, Shi Y, Yi J, Lu J. Active induction: a promising strategy for enhancing the bioactivity of lactic acid bacteria. Crit Rev Food Sci Nutr 2025:1-16. [PMID: 40114393 DOI: 10.1080/10408398.2025.2479069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Lactic acid bacteria (LAB), as key probiotic, play crucial roles in maintaining human health. However, their survival and functionality in diverse habitats depend on their ability to sense and respond to environmental stresses. Notably, active induction has emerged as a promising strategy for regulating the biological activity of LAB, potentially enhancing their health benefits. Therefore, this review summarizes the beneficial effects of active induction, including acid, bile, oxidation, ethanol, heat, cold, and radiation induction on the functional activities of LAB. In addition, omics methods, in silico analysis, and gene editing technologies have greatly facilitated the profound exploration of the stress regulatory network in LAB, thereby aiding the identification of active components and stress adaptors. Through these advancements, LAB provide health benefits by regulating stress-related genes and proteins, as well as inducing bioactive metabolite production. As a result, they could enhance stress tolerance, cross-protection, intestinal colonization, adhesion properties, and provide antialcohol and liver protection in vitro or in vivo. This study highlights the potential of active induction strategies in enhancing the functional role of LAB in food applications.
Collapse
Affiliation(s)
- Sisi Chen
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
- Food Laboratory of Zhongyuan Zhengzhou University, Luohe, China
| | - Keke Suo
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
- Food Laboratory of Zhongyuan Zhengzhou University, Luohe, China
| | - Qiaozhen Kang
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
- Food Laboratory of Zhongyuan Zhengzhou University, Luohe, China
| | - Jiaqing Zhu
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
- Food Laboratory of Zhongyuan Zhengzhou University, Luohe, China
| | - Yanling Shi
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
- Food Laboratory of Zhongyuan Zhengzhou University, Luohe, China
| | - Juanjuan Yi
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
- Food Laboratory of Zhongyuan Zhengzhou University, Luohe, China
| | - Jike Lu
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
- Food Laboratory of Zhongyuan Zhengzhou University, Luohe, China
| |
Collapse
|
3
|
Noufeu T, Li Y, Toure NF, Yao H, Zeng X, Du Q, Pan D. Overview of Glycometabolism of Lactic Acid Bacteria During Freeze-Drying: Changes, Influencing Factors, and Application Strategies. Foods 2025; 14:743. [PMID: 40077446 PMCID: PMC11898726 DOI: 10.3390/foods14050743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/18/2025] [Accepted: 02/20/2025] [Indexed: 03/14/2025] Open
Abstract
Lactic acid bacteria (LAB) play a vital role in food fermentation and probiotics microeconomics. Freeze-drying (FD) is a commonly used method for preserving LAB powder to extend its shelf life. However, FD induces thermal, osmotic, and mechanical stresses that can impact the glycometabolism of LAB, which is the process of converting carbohydrates into energy. This review explores the effect of FD on glycometabolism, factors influencing glycometabolism, and feasible strategies in the FD process of LAB. During the three stages of FD, freezing, primary drying or sublimation, and second drying, the glycolytic activity of LAB is disrupted in the freezing stage; further, the function of glycolytic enzymes such as hexokinase, phosphofructokinase, and pyruvate kinase is hindered, and adenosine triphosphate (ATP) production drops significantly in the sublimation stage; these enzyme activities and ATP production nearly cease and exopolysaccharide (EPS) synthesis alters during the secondary drying stage. Factors such as strain variations, pretreatment techniques, growth medium components, FD parameters, and water activity influence these changes. To counteract the effects of FD on LAB glycometabolism, strategies like cryoprotectants, encapsulation, and genetic engineering can help preserve their glycometabolic activity. These methods protect LAB from harsh FD conditions, safeguarding glycolytic flux and enzymatic processes involved in carbohydrate metabolism. A deeper understanding of these glycometabolic changes is essential for optimizing FD processes and enhancing the use of LAB in food, medicine, and biotechnology, ultimately improving their performance upon rehydration.
Collapse
Affiliation(s)
- Tchouli Noufeu
- State Key Laboratory for Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China
- College of Food Science and Engineering, Ningbo University, Ningbo 315800, China
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo 315800, China
| | - Yueqin Li
- State Key Laboratory for Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China
- College of Food Science and Engineering, Ningbo University, Ningbo 315800, China
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo 315800, China
| | - Ndeye Fatou Toure
- State Key Laboratory for Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China
- College of Food Science and Engineering, Ningbo University, Ningbo 315800, China
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo 315800, China
| | - Hui Yao
- State Key Laboratory for Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China
- College of Food Science and Engineering, Ningbo University, Ningbo 315800, China
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo 315800, China
| | - Xiaoqun Zeng
- State Key Laboratory for Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China
- College of Food Science and Engineering, Ningbo University, Ningbo 315800, China
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo 315800, China
| | - Qiwei Du
- State Key Laboratory for Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China
- College of Food Science and Engineering, Ningbo University, Ningbo 315800, China
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo 315800, China
| | - Daodong Pan
- State Key Laboratory for Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China
- College of Food Science and Engineering, Ningbo University, Ningbo 315800, China
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo 315800, China
| |
Collapse
|
4
|
Liu J, Du J, Wu D, Ji X, Zhao X. Impact of Arsenic Stress on the Antioxidant System and Photosystem of Arthrospira platensis. BIOLOGY 2024; 13:1049. [PMID: 39765716 PMCID: PMC11673294 DOI: 10.3390/biology13121049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/07/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025]
Abstract
Arthrospira platensis exhibits high tolerance to arsenic; however, the mechanisms underlying its response to the arsenic stress have not been fully elucidated. This study investigated the growth and resistance mechanisms of A. platensis under As3+ stress by measuring physiological and biochemical indices, conducting transcriptome sequencing, and validating the results through qPCR. The findings show that arsenic stress affected the antioxidant system and photosynthetic pigment synthesis in A. platensis. The algae mitigated arsenic-induced oxidative stress by increasing cellular metabolic rates, enhancing cell wall stability, and reducing membrane lipid peroxidation. Transcriptome analysis revealed that pathways related to oxidative phosphorylation and chlorophyll degradation were upregulated under arsenic stress, while the expression of membrane transporters was significantly downregulated. Additionally, the algae alleviated arsenic stress by producing hydrogen and polyamine compounds. This study provides insights into the mechanisms of A. platensis response to arsenic stress and elucidates the molecular pathways involved in the stress response to As3+.
Collapse
Affiliation(s)
- Jiawei Liu
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot 010010, China;
| | - Jie Du
- Bayannur Center for Disease Control and Prevention, Bayannaoer 015000, China;
| | - Di Wu
- Department of Chemical and Environment Engineering, Hetao College, Bayannaoer 015000, China;
| | - Xiang Ji
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot 010010, China;
- Department of Chemical and Environment Engineering, Hetao College, Bayannaoer 015000, China;
| | - Xiujuan Zhao
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot 010010, China;
| |
Collapse
|
5
|
Guo H, Zhou Y, Xie Q, Chen H, Zhang M, Yu L, Yan G, Chen Y, Lin X, Zhang Y, Hong Z. Protective Effects of Laminaria japonica Polysaccharide Composite Microcapsules on the Survival of Lactobacillus plantarum during Simulated Gastrointestinal Digestion and Heat Treatment. Mar Drugs 2024; 22:308. [PMID: 39057417 PMCID: PMC11277663 DOI: 10.3390/md22070308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024] Open
Abstract
To improve probiotics' survivability during gastrointestinal digestion and heat treatment, Lactobacillus plantarum was microencapsulated by spray-drying using Laminaria japonica polysaccharide/sodium caseinate/gelatin (LJP/SC/GE) composites. Thermogravimetry and differential scanning calorimetry results revealed that the denaturation of LJP/SC/GE microcapsules requires higher thermal energy than that of SC/GE microcapsules, and the addition of LJP may improve thermal stability. Zeta potential measurements indicated that, at low pH of the gastric fluid, the negatively charged LJP attracted the positively charged SC/GE, helping to maintain an intact microstructure without disintegration. The encapsulation efficiency of L. plantarum-loaded LJP/SC/GE microcapsules reached about 93.4%, and the survival rate was 46.9% in simulated gastric fluid (SGF) for 2 h and 96.0% in simulated intestinal fluid (SIF) for 2 h. In vitro release experiments showed that the LJP/SC/GE microcapsules could protect the viability of L. plantarum in SGF and release probiotics slowly in SIF. The cell survival of LJP/SC/GE microcapsules was significantly improved during the heat treatment compared to SC/GE microcapsules and free cells. LJP/SC/GE microcapsules can increase the survival of L. plantarum by maintaining the lactate dehydrogenase and Na+-K+-ATPase activity. Overall, this study demonstrates the great potential of LJP/SC/GE microcapsules to protect and deliver probiotics in food and pharmaceutical systems.
Collapse
Affiliation(s)
- Honghui Guo
- Engineering Technology Innovation Center for the Development and Utilization of Marine Living Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China; (Y.Z.); (H.C.); (M.Z.); (Y.Z.)
- Xiamen Ocean Vocational College, Xiamen 361100, China; (L.Y.); (G.Y.)
- Fujian Key Laboratory of Island Monitoring and Ecological Development, Island Research Center, Ministry of Natural Resources, Pingtan 350400, China
| | - Yelin Zhou
- Engineering Technology Innovation Center for the Development and Utilization of Marine Living Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China; (Y.Z.); (H.C.); (M.Z.); (Y.Z.)
- College of Advanced Manufacturing, Fuzhou University, Quanzhou 362200, China
| | - Quanling Xie
- Engineering Technology Innovation Center for the Development and Utilization of Marine Living Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China; (Y.Z.); (H.C.); (M.Z.); (Y.Z.)
- Xiamen Ocean Vocational College, Xiamen 361100, China; (L.Y.); (G.Y.)
- Fujian Key Laboratory of Island Monitoring and Ecological Development, Island Research Center, Ministry of Natural Resources, Pingtan 350400, China
| | - Hui Chen
- Engineering Technology Innovation Center for the Development and Utilization of Marine Living Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China; (Y.Z.); (H.C.); (M.Z.); (Y.Z.)
- Xiamen Ocean Vocational College, Xiamen 361100, China; (L.Y.); (G.Y.)
- Fujian Key Laboratory of Island Monitoring and Ecological Development, Island Research Center, Ministry of Natural Resources, Pingtan 350400, China
| | - Ming’en Zhang
- Engineering Technology Innovation Center for the Development and Utilization of Marine Living Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China; (Y.Z.); (H.C.); (M.Z.); (Y.Z.)
| | - Lei Yu
- Xiamen Ocean Vocational College, Xiamen 361100, China; (L.Y.); (G.Y.)
| | - Guangyu Yan
- Xiamen Ocean Vocational College, Xiamen 361100, China; (L.Y.); (G.Y.)
| | - Yan Chen
- Haijia Flour Milling Company Limited, China Oil & Foodstuffs Corporation, Xiamen 361026, China
| | - Xueliang Lin
- Haijia Flour Milling Company Limited, China Oil & Foodstuffs Corporation, Xiamen 361026, China
| | - Yiping Zhang
- Engineering Technology Innovation Center for the Development and Utilization of Marine Living Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China; (Y.Z.); (H.C.); (M.Z.); (Y.Z.)
- Xiamen Ocean Vocational College, Xiamen 361100, China; (L.Y.); (G.Y.)
- Fujian Key Laboratory of Island Monitoring and Ecological Development, Island Research Center, Ministry of Natural Resources, Pingtan 350400, China
| | - Zhuan Hong
- Engineering Technology Innovation Center for the Development and Utilization of Marine Living Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China; (Y.Z.); (H.C.); (M.Z.); (Y.Z.)
- Xiamen Ocean Vocational College, Xiamen 361100, China; (L.Y.); (G.Y.)
- Fujian Key Laboratory of Island Monitoring and Ecological Development, Island Research Center, Ministry of Natural Resources, Pingtan 350400, China
| |
Collapse
|
6
|
Kim YY, Kim JC, Kim S, Yang JE, Kim HM, Park HW. Heterotypic stress-induced adaptive evolution enhances freeze-drying tolerance and storage stability of Leuconostoc mesenteroides WiKim33. Food Res Int 2024; 175:113731. [PMID: 38128991 DOI: 10.1016/j.foodres.2023.113731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/15/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023]
Abstract
Lactic acid bacteria (LAB) are currently being investigated for their potential use as probiotics and starter cultures. Researchers have developed powdering processes for the commercialization of LAB. Previous studies have focused on identifying innovative cryoprotective agents and freeze-drying (FD) techniques to enhance the stability of LAB. In this study, adaptive laboratory evolution (ALE) was employed to develop a strain with high FD tolerance and enhanced storage stability. Leuconostoc mesenteroids WiKim33 was subjected to heterotypic shock (heat and osmosis shock) to induce the desired phenotype and genotype. An FD-tolerant enhanced Leu. mesenteroides WiKim33 strain (ALE50) was obtained, which harbored a modified fatty acid composition and cell envelope characteristics. Specifically, ALE50 showed a lower unsaturated fatty acid (UFA)/saturated fatty acid (SFA) ratio and a higher cyclic fatty acid (CFA) composition. Moreover, the exopolysaccharide (EPS) thickness increased significantly by 331% compared to that of the wild type (WT). FD tolerance, which was evaluated using viability testing after FD, was enhanced by 33.4%. Overall, we demonstrated the feasibility of ALE to achieve desirable characteristics and provided insights into the mechanisms underlying increased FD tolerance.
Collapse
Affiliation(s)
- Yeong Yeol Kim
- Technology Innovation Research Division, World Institute of Kimchi, Gwangju 61755, Republic of Korea; Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Jong-Cheol Kim
- Technology Innovation Research Division, World Institute of Kimchi, Gwangju 61755, Republic of Korea
| | - Seulbi Kim
- Technology Innovation Research Division, World Institute of Kimchi, Gwangju 61755, Republic of Korea; Division of Applied Bioscience & Biotechnology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Jung Eun Yang
- Technology Innovation Research Division, World Institute of Kimchi, Gwangju 61755, Republic of Korea
| | - Ho Myeong Kim
- Technology Innovation Research Division, World Institute of Kimchi, Gwangju 61755, Republic of Korea.
| | - Hae Woong Park
- Technology Innovation Research Division, World Institute of Kimchi, Gwangju 61755, Republic of Korea.
| |
Collapse
|
7
|
Tianwitawat C, Klaiprasitti P. Rice bran as an encapsulating material to produce a healthy synbiotic product with improved gastrointestinal tolerance. Arch Microbiol 2023; 205:265. [PMID: 37322321 DOI: 10.1007/s00203-023-03586-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 05/07/2023] [Accepted: 05/16/2023] [Indexed: 06/17/2023]
Abstract
To date, the coffee industry has the second highest market value in the world and consumer behavior has transitioned from drinking coffee just for its caffeine content to reduce sleepiness into an overall experience. Instant cold brew coffee in powder form can preserve the taste of coffee well; moreover, it is easy to transport. Several consumers have increasing interests in implementing lactic acid bacteria in healthy food due to their growing awareness of the probiotic's role. Several scholars have presented stress adaptation characteristics of single probiotic strains; however, comparisons of the stress-tolerant capacities of different probiotic strains are incomplete. Five lactic acid strains are tested for adaptation under four sublethal conditions. Lactobacillus casei is the most resilient probiotic in terms of heat and cold adaptation, while Lactobacillus acidophilus is more tolerant to low acid and bile salt; Then, these probiotics are subjected to a stress challenge that stimulates drying temperature, including a heat and cold stress challenge. The results show that acid adaptation can improve Lactobacillus acidophilus TISTR 1338 tolerance to harsh drying temperatures. In addition, encapsulation using prebiotic extracts from rice bran, with pectin and resistant starch combined through crosslinking and treated by freeze-drying, provides the highest encapsulation efficiency. In summary, acid-adapted L. acidophilus TISTR 1388 at the sublethal level can be applied to high and low temperature processing techniques. Additionally, the amount of viable probiotic after in vitro digestion remains at 5 log CFU/g, which is suitable for application in the production of synbiotic cold brew coffee.
Collapse
|
8
|
The Effect of a Glutathione (GSH)-Containing Cryo-Protectant on the Viability of Probiotic Cells Using a Freeze-Drying Process. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9020187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Lactic acid bacteria (LAB) and probiotics promise specific health benefits to their host. However, good storage stability is a prerequisite for their functioning and industrial use. This study aimed to evaluate glutathione (GSH) as a potential protective agent for improving microbial stability deteriorated by freeze-drying, freeze-thawing, and cold treatments. In this study, the optimal concentration of glutathione (50% w/w) was 1%, showing effective protection on the viability and stability of various LAB strains (Lactiplantibacillus plantarum MG4229 and MG4296, Lactococcus lactis MG5125, Limosilactobacillus fermentum MG4295, Lacticaseibacillus paracasei MG5012, and Bifidobacterium animalis ssp. lactis MG741). Glutathione-containing protectants considerably improved the viability of all of these strains after freeze-drying compared with non-coated probiotics. Survivability in the gastrointestinal (GI) tract, accelerated stability tests, and adhesion assays on intestinal epithelial cells were performed to determine whether glutathione enhances bacterial stability. Based on morphological observations, protectants containing GSH were coated onto the cell surface, resulting in effective protection against multiple external stress stimuli. The applicability of GSH as a new and effective protective agent can improve the stability and viability of various probiotics with anti-freezing and anti-thawing effects.
Collapse
|
9
|
Kong L, Huang Y, Zeng X, Ye C, Wu Z, Guo Y, Pan D. Effects of galactosyltransferase on EPS biosynthesis and freeze-drying resistance of Lactobacillus acidophilus NCFM. FOOD CHEMISTRY. MOLECULAR SCIENCES 2022; 5:100145. [PMID: 36573108 PMCID: PMC9789326 DOI: 10.1016/j.fochms.2022.100145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 11/01/2022] [Accepted: 11/12/2022] [Indexed: 11/16/2022]
Abstract
Galactosyltransferase (GalT) is an important enzyme in synthesizing exopolysaccharide (EPS), the major polymer of biofilms protecting cells from severe conditions. However, the contribution to, and regulatory mechanism of GalT, in stressor resistance are still unclear. Herein, we successfully overexpressed GalT in Lactobacillus acidophilus NCFM by genetic engineering. The GalT activity and freeze-drying survival rate of the recombinant strain were significantly enhanced. The EPS yield also increased by 17.8%, indicating a positive relationship between freeze-drying resistance and EPS. RNA-Seq revealed that GalT could regulate the flux of the membrane transport system, pivotal sugar-related metabolic pathways, and promote quorum sensing to facilitate EPS biosynthesis, which enhanced freeze-drying resistance. The findings concretely prove that the mechanism of GalT regulating EPS biosynthesis plays an important role in protecting lactic acid bacteria from freeze-drying stress.
Collapse
Key Words
- BP, biological process
- CC, cellular component
- DEG, differentially expressed gene
- ELISA, enzyme linked immunosorbent assay
- EPS, exopolysaccharideS
- Exopolysaccharide
- FT-IR, Fourier transform infrared spectroscopy
- Freeze-drying
- GO, gene ontology
- GalT, galactosyltransferase
- Galactosyltransferase
- KEGG, Kyoto Encyclopedia of Genes and Genomes
- LAB, lactic acid bacteria
- LB, Luria-Bertani
- MF, molecular function
- MRS, de Man, Rogosa and Sharpe
- NCBI, National Center for Biotechnology Information GenBank
- Overexpression
- PCR, polymerase chain reaction
- PEP, phosphoenolpyruvate
- PTS, phosphotransferase system
- QS, quorum sensing
- RT-qPCR, real-time quantitative polymerase chain reaction
Collapse
Affiliation(s)
- Lingyu Kong
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo 315211, China,Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
| | - Yuze Huang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo 315211, China,Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
| | - Xiaoqun Zeng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo 315211, China,Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China,Corresponding author at: State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo 315211, China.
| | - Congyan Ye
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo 315211, China,Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
| | - Zhen Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo 315211, China,Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
| | - Yuxing Guo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo 315211, China,School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210097, China
| | - Daodong Pan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo 315211, China,Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
| |
Collapse
|
10
|
Insights into the Metabolic Response of Lactiplantibacillus plantarum CCFM1287 upon Patulin Exposure. Int J Mol Sci 2022; 23:ijms231911652. [PMID: 36232948 PMCID: PMC9570479 DOI: 10.3390/ijms231911652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 11/17/2022] Open
Abstract
Patulin (PAT) is a common mycotoxin in the food industry, and is found in apple products in particular. Consumption of food or feed contaminated with PAT can cause acute or chronic toxicity in humans and animals. Lactiplantibacillus plantarum CCFM1287 is a probiotic strain that effectively degrades PAT in PBS and food systems. In this study, it was found that the concentration of PAT (50 mg/L) in MRS medium decreased by 85.09% during the first stages of CCFM1287 growth, and this change was consistent with the first-order degradation kinetic model. Meanwhile, the regulation of oxidative stress by L. plantarum CCFM1287 in response to PAT exposure and metabolic changes that occur during PAT degradation were investigated. The degree of intracellular damage was attenuated after 16 h of exposure compared to 8 h. Meanwhile, metabolomic data showed that 30 and 29 significantly different metabolites were screened intracellularly in the strain after 8 h and 16 h of PAT stress at 50 mg/L, respectively. The results of pathway enrichment analysis suggested that the purine metabolic pathway was significantly enriched at both 8 h and 16 h. However, as is consistent with the performance of the antioxidant system, the changes in Lactiplantibacillus diminished with increasing time of PAT exposure. Therefore, this study helps to further explain the mechanism of PAT degradation by L. plantarum CCFM1287.
Collapse
|
11
|
Heat, cold, acid, and bile salt induced differential proteomic responses of a novel potential probiotic Lactococcus garvieae C47 isolated from camel milk. Food Chem 2022; 397:133774. [PMID: 35905615 DOI: 10.1016/j.foodchem.2022.133774] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 11/21/2022]
Abstract
Probiotics encounter various stresses during food processing and digestion. This study evaluated the differential proteomic responses of a newly identified potential probiotic lactic acid bacteria, Lactococcus garvieae, isolated from camel milk. Lc. garvieae C47 was exposed to heat, cold, acid, and bile conditions, and stress-responsive proteins were identified. The proteomic analysis was done using 2D-IEF SDS PAGE and nano-LC-MS/MS. Out of 91 differentially expressed proteins, 20 upregulated and 27 downregulated proteins were shared among the stresses. The multivariate data analysis revealed abundance of elongation factor Ts (spot C42), uridine phosphorylase, fructose-bisphosphate aldolase, peptidase T, cobalt ECF transporter T component CbiQ, UDP-N-acetylmuramate-l-alanine ligase, uncharacterized protein, aspartokinase, chaperone protein DnaK, IGP synthase cyclase subunit, probable nicotinate-nucleotide adenylyltransferase, NADH-quinone oxidoreductase, holo-[acyl-carrier-protein] synthase, l-lactate dehydrogenase, and uncharacterized protein. The maximum number of differentially expressed proteins belonged to carbohydrate and protein metabolism, which indicates Lc. garvieae shifts towards growth and energy metabolism for resistance against stress conditions.
Collapse
|
12
|
Xia C, Zeng X, Peng L, Pan D, Wu Z, Guo Y, Cai Z. The function of uridine diphosphate glucose pyrophosphorylase in the lyophilization-stress response of Lactobacillus acidophilus. ANN MICROBIOL 2022. [DOI: 10.1186/s13213-022-01680-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Purpose
Uridine diphosphate glucose pyrophosphorylase (UGPase) plays an important role in glucose metabolism, catalyzing the reversible formation and decomposition of UDP-glucose (UDPG). In previous work, we found that UGPase is a key enzyme in lyophilization response for Lactobacillus acidophilus (L. acidophilus). However, its function and regulatory mechanism in the freeze-drying stress response are unknown. Herein, the effect of UGPase on freeze-drying survival rate of Staphylococcus carnosus (S. carnosus) was studied.
Methods
In this work, the genes LBA1719 encoding UGPase of L. acidophilus ATCC4356 were inserted into plasmid pMG-36e to construct the recombinant plasmid pMG-LBA1719 and then overexpressed in S. carnosus; the control group was S. carnosus transformed by pMG-36e. The lyophilization-survival rate of overexpressed S. carnosus was determined, and the differentially expressed genes (DEGs) were analyzed by transcriptome to disclose the mechanism of LBA1719 in regulating the lyophilization-survival rate.
Results
Compared with the control group, the UGPase activities of the overexpressed S. carnosus increased by 35.49%, while the lyophilization-survival rates decreased by 11.17% (p < 0.05). Overexpression of LBA1719 decreased the expression of genes gapA, gapB, and pgiA in carbohydrate metabolism and dapA, dapB, and dapE in amino acid metabolism, significantly changing the physiological characteristics of S. carnosus and decreasing its lyophilization-survival rate.
Conclusion
In summary, overexpression of UGPase accelerated the growth rate of S. carnosus and reduced its lyophilization-survival rates. GapA, gapB, pgiA, dapA, dapB, and dapE are vital to lyophilization protection in lactic acid bacteria (LAB). These findings provide new theoretical basis for analyzing the regulatory and molecular mechanisms of lyophilization resistance in LABs.
Collapse
|
13
|
Zeng Z, Zeng X, Guo Y, Wu Z, Cai Z, Pan D. Determining the Role of UTP-Glucose-1-Phosphate Uridylyltransferase (GalU) in Improving the Resistance of Lactobacillus acidophilus NCFM to Freeze-Drying. Foods 2022; 11:foods11121719. [PMID: 35741917 PMCID: PMC9223153 DOI: 10.3390/foods11121719] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/05/2022] [Accepted: 06/06/2022] [Indexed: 11/23/2022] Open
Abstract
Lactobacillus acidophilus NCFM is widely used in the fermentation industry; using it as a freeze-dried powder can greatly reduce the costs associated with packaging and transportation, and even prolong the storage period. Previously published research has reported that the expression of galU (EC: 2.7.7.9) is significantly increased as a result of freezing and drying. Herein, we aimed to explore how galU plays an important role in improving the resistance of Lactobacillus acidophilus NCFM to freeze-drying. For this study, galU was first knocked out and then re-expressed in L. acidophilus NCFM to functionally characterize its role in the pertinent metabolic pathways. The knockout strain ΔgalU showed lactose/galactose deficiency and displayed irregular cell morphology, shortened cell length, thin and rough capsules, and abnormal cell division, and the progeny could not be separated. In the re-expression strain pgalU, these inhibited pathways were restored; moreover, the pgalU cells showed a strengthened cell wall and capsule, which enhanced their resistance to adverse environments. The pgalU cells showed GalU activity that was 229% higher than that shown by the wild-type strain, and the freeze-drying survival rate was 84%, this being 4.7 times higher than that of the wild-type strain. To summarize, expression of the galU gene can significantly enhance gene expression in galactose metabolic pathway and make the strain form a stronger cell wall and cell capsule and enhance the resistance of the bacteria to an adverse external environment, to improve the freeze-drying survival rate of L. acidophilus NCFM.
Collapse
Affiliation(s)
- Zhidan Zeng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo 315211, China; (Z.Z.); (Y.G.); (Z.W.); (Z.C.); (D.P.)
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
| | - Xiaoqun Zeng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo 315211, China; (Z.Z.); (Y.G.); (Z.W.); (Z.C.); (D.P.)
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
- Correspondence:
| | - Yuxing Guo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo 315211, China; (Z.Z.); (Y.G.); (Z.W.); (Z.C.); (D.P.)
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210097, China
| | - Zhen Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo 315211, China; (Z.Z.); (Y.G.); (Z.W.); (Z.C.); (D.P.)
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
| | - Zhendong Cai
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo 315211, China; (Z.Z.); (Y.G.); (Z.W.); (Z.C.); (D.P.)
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
| | - Daodong Pan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo 315211, China; (Z.Z.); (Y.G.); (Z.W.); (Z.C.); (D.P.)
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
| |
Collapse
|
14
|
Zhen N, Ye C, Shen Q, Zeng X, Wu Z, Guo Y, Cai Z, Pan D. Heterologous expression and biological characteristics of UGPases from Lactobacillus acidophilus. Appl Microbiol Biotechnol 2022; 106:2481-2491. [PMID: 35344091 DOI: 10.1007/s00253-022-11856-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 02/21/2022] [Accepted: 02/26/2022] [Indexed: 11/24/2022]
Abstract
Herein, two genes (LBA0625 and LBA1719) encoding UGPases (UDP-glucose pyrophosphorylase) in Lactobacillus acidophilus (L. acidophilus) were successfully transformed into Escherichia coli BL21 (DE3) to construct recombinant overexpressing strains (E-0625, E-1719) to investigate the biological characteristics of UGPase-0625 and UGPase-1719. The active sites, polysaccharide yield, and anti-freeze-drying stress of L. acidophilus ATCC4356 were also detected. UGPase-0625 and UGPase-1719 belong to the nucleotidyltransferase of stable hydrophilic proteins; contain 300 and 294 amino acids, respectively; and have 20 conserved active sites by prediction. Αlpha-helixes and random coils were the main secondary structures, which constituted the main skeleton of UGPases. The optimal mixture for the high catalytic activity of the two UGPases included 0.5 mM UDP-Glu (uridine diphosphate glucose) and Mg2+ at 37 °C, pH 10.0. By comparing the UGPase activities of the mutant strains with the original recombinant strains, A10, L130, and L263 were determined as the active sites of UGPase-0625 (P < 0.01) and A11, L130, and L263 were determined as the active sites of UGPase-1719 (P < 0.01). In addition, UGPase overexpression could increase the production of polysaccharides and the survival rates of recombinant bacteria after freeze-drying. This is the first study to determine the enzymatic properties, active sites, and structural simulation of UGPases from L. acidophilus, providing in-depth understanding of the biological characteristics of UGPases in lactic acid bacteria.Key points• We detected the biological characteristics of UGPases encoded by LBA0625 and LBA1719.• We identified UGPase-0625 and UGPase-1719 active sites.• UGPase overexpression elevates polysaccharide levels and post-freeze-drying survival.
Collapse
Affiliation(s)
- Ni Zhen
- State Key Laboratory for Managing Biotic and Chemical Threats To the Quality and Safety of Agro-Products, Ningbo, 315211, China.,Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Ningbo University, Ningbo, 315800, China.,College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315800, China
| | - Congyan Ye
- State Key Laboratory for Managing Biotic and Chemical Threats To the Quality and Safety of Agro-Products, Ningbo, 315211, China.,Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Ningbo University, Ningbo, 315800, China.,College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315800, China
| | - Qiyuan Shen
- State Key Laboratory for Managing Biotic and Chemical Threats To the Quality and Safety of Agro-Products, Ningbo, 315211, China.,Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Ningbo University, Ningbo, 315800, China.,College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315800, China
| | - Xiaoqun Zeng
- State Key Laboratory for Managing Biotic and Chemical Threats To the Quality and Safety of Agro-Products, Ningbo, 315211, China. .,Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Ningbo University, Ningbo, 315800, China. .,College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315800, China.
| | - Zhen Wu
- State Key Laboratory for Managing Biotic and Chemical Threats To the Quality and Safety of Agro-Products, Ningbo, 315211, China.,Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Ningbo University, Ningbo, 315800, China.,College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315800, China
| | - Yuxing Guo
- State Key Laboratory for Managing Biotic and Chemical Threats To the Quality and Safety of Agro-Products, Ningbo, 315211, China.,School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210097, China
| | - Zhendong Cai
- State Key Laboratory for Managing Biotic and Chemical Threats To the Quality and Safety of Agro-Products, Ningbo, 315211, China.,Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Ningbo University, Ningbo, 315800, China.,College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315800, China
| | - Daodong Pan
- State Key Laboratory for Managing Biotic and Chemical Threats To the Quality and Safety of Agro-Products, Ningbo, 315211, China.,Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Ningbo University, Ningbo, 315800, China.,College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315800, China
| |
Collapse
|
15
|
Chen Z, E J, Ma R, Zhang J, Yao C, Wang R, Zhang Q, Yang Y, Li J, Wang J. The effect of aspartic acid on the freeze-drying survival rate of Lactobacillus plantarum LIP-1 and its inherent mechanism. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112929] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
16
|
Nguyen PT, Nguyen TT, Nguyen TTU, Hoang QK, Nguyen HT. Improve the viability and extracellular polymeric substances bioactivity of Lactiplantibacillus plantarum VAL6 using the environmental adaptation. FOOD AND BIOPRODUCTS PROCESSING 2022. [DOI: 10.1016/j.fbp.2021.11.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
17
|
Liu M, Zeng X, He Y, Xia C, Cheng L, Wu Z, Lan H, Pan D. iTRAQ‐based quantitative proteomic analysis of the effect of heat shock on freeze‐drying of
Lactobacillus
acidophilus
ATCC4356. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Mingxue Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐products Ningbo 315211 China
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province College of Food and Pharmaceutical Sciences Ningbo University Ningbo 315800 China
| | - Xiaoqun Zeng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐products Ningbo 315211 China
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province College of Food and Pharmaceutical Sciences Ningbo University Ningbo 315800 China
| | - Yating He
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐products Ningbo 315211 China
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province College of Food and Pharmaceutical Sciences Ningbo University Ningbo 315800 China
| | - Chaoran Xia
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐products Ningbo 315211 China
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province College of Food and Pharmaceutical Sciences Ningbo University Ningbo 315800 China
| | - Lu Cheng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐products Ningbo 315211 China
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province College of Food and Pharmaceutical Sciences Ningbo University Ningbo 315800 China
| | - Zhen Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐products Ningbo 315211 China
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province College of Food and Pharmaceutical Sciences Ningbo University Ningbo 315800 China
| | - Hangzhen Lan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐products Ningbo 315211 China
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province College of Food and Pharmaceutical Sciences Ningbo University Ningbo 315800 China
| | - Daodong Pan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐products Ningbo 315211 China
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province College of Food and Pharmaceutical Sciences Ningbo University Ningbo 315800 China
| |
Collapse
|
18
|
Gao X, Kong J, Zhu H, Mao B, Cui S, Zhao J. Lactobacillus, Bifidobacterium and Lactococcus response to environmental stress: Mechanisms and application of cross-protection to improve resistance against freeze-drying. J Appl Microbiol 2021; 132:802-821. [PMID: 34365708 DOI: 10.1111/jam.15251] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 06/12/2021] [Accepted: 07/07/2021] [Indexed: 01/30/2023]
Abstract
The review deals with lactic acid bacteria in characterizing the stress adaptation with cross-protection effects, mainly associated with Lactobacillus, Bifidobacterium and Lactococcus. It focuses on adaptation and cross-protection in Lactobacillus, Bifidobacterium and Lactococcus, including heat shocking, cold stress, acid stress, osmotic stress, starvation effect, etc. Web of Science, Google Scholar, Science Direct, and PubMed databases were used for the systematic search of literature up to the year 2020. The literature suggests that a lower survival rate during freeze-drying is linked to environmental stress. Protective pretreatment under various mild stresses can be applied to lactic acid bacteria which may enhance resistance in a strain-dependent manner. We investigate the mechanism of damage and adaptation under various stresses including heat, cold, acidic, osmotic, starvation, oxidative and bile stress. Adaptive mechanisms include synthesis of stress-induced proteins, adjusting the composition of cell membrane fatty acids, accumulating compatible substances, etc. Next, we reveal the cross-protective effect of specific stress on the other environmental stresses. Freeze-drying is discussed from three perspectives including the regulation of membrane, accumulation of compatible solutes and the production of chaperones and stress-responsive proteases. The resistance of lactic acid bacteria against technological stress can be enhanced via cross-protection, which improves industrial efficiency concerning the survival of probiotics. However, the adaptive responses and cross-protection are strain-dependent and should be optimized case by case.
Collapse
Affiliation(s)
- Xinwei Gao
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, P.R. China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Jie Kong
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Hongkang Zhu
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Bingyong Mao
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, P.R. China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Shumao Cui
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, P.R. China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, P.R. China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|