1
|
Xie A, Shen X, Hong R, Xie Y, Zhang Y, Chen J, Li Z, Li M, Yue X, Quek SY. Unlocking the potential of donkey Milk: Nutritional composition, bioactive properties and future prospects. Food Res Int 2025; 209:116307. [PMID: 40253152 DOI: 10.1016/j.foodres.2025.116307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 02/27/2025] [Accepted: 03/15/2025] [Indexed: 04/21/2025]
Abstract
Donkey milk has garnered increasing attention due to its remarkable similarity to human milk and its diverse bioactive properties. Analysis of its composition shows that donkey milk is characterized by high lactose content, low protein, low fat, a balanced calcium-to‑phosphorus ratio, and abundant in vitamins C and D, making it a promising human milk alternative. Additionally, donkey milk contains a unique composition of whey proteins and polyunsaturated fatty acids, contributing to its beneficial health effects such as antimicrobial, anti-inflammatory, antioxidant, and hypoallergenic properties. This review provides a comprehensive analysis of the nutritional profile of donkey milk in comparison to other mammalian milk sources. Furthermore, it highlights its bioactive potential and discusses the current challenges and future opportunities for expanding its applications in the dairy and health industries. Despite its valuable properties, the development of donkey milk products remains limited due to low milk yield and high production costs. Further research and technological advancements are necessary to optimize its utilization and commercial potential.
Collapse
Affiliation(s)
- Aijun Xie
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 119077, Singapore
| | - Xinyu Shen
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Ruiyao Hong
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Yuanfang Xie
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Yumeng Zhang
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Jiali Chen
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Zhiwei Li
- Jiangsu Key Laboratory of Oil & Gas Storage and Transportation Technology, Changzhou University, Jiangsu 213164, China
| | - Mohan Li
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China.
| | - Xiqing Yue
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China.
| | - Siew Young Quek
- Food Science, School of Chemical Sciences, The University of Auckland, Auckland, 1010, New Zealand; Riddet Institute, Centre for Research Excellence in Food Research, Palmerston North 4474, New Zealand.
| |
Collapse
|
2
|
Khan MZ, Li Y, Zhu M, Li M, Wang T, Zhang Z, Liu W, Ma Q, Wang C. Advances in Donkey Disease Surveillance and Microbiome Characterization in China. Microorganisms 2025; 13:749. [PMID: 40284586 PMCID: PMC12029628 DOI: 10.3390/microorganisms13040749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 03/23/2025] [Accepted: 03/25/2025] [Indexed: 04/29/2025] Open
Abstract
This review article highlights the surveillance of bacterial, viral, and parasitic diseases in donkey populations in China. Key findings highlight significant threats from Equine herpesviruses (EHV-8 and EHV-1), which cause encephalitis, abortion, and respiratory distress. Several parasitic infections including Giardia duodenalis, Cryptosporidium spp., Enterocytozoon bieneusi, and Toxoplasma gondii present important zoonotic concerns across multiple regions of China. Additionally, this review synthesizes current knowledge on donkey microbiota across various body sites and examines their functional significance in health and disease. The complex relationship between the microbiota and host health represents a critical area of research in donkeys. Recent molecular advancements have enhanced our understanding of the diverse microbial ecosystems inhabiting different body sites in donkeys and their profound impact on health outcomes. As single-stomach herbivores, donkeys possess complex microbial communities throughout their digestive tracts that are essential for intestinal homeostasis and nutritional processing. Significant variations in microbiota composition exist across different intestinal segments, with the hindgut displaying greater richness and diversity compared to the foregut. Beyond the digestive system, distinct microbial profiles have been characterized across various body sites including the skin, oral cavity, reproductive tract, and body secretions such as milk. The health implications of donkey microbiota extend to critical areas including nutrition, immune function, and disease susceptibility. Research demonstrates how dietary interventions, environmental stressors, and physiological states significantly alter microbial communities, correlating with changes in inflammatory markers, antioxidant responses, and metabolic functions. Additionally, specific microbial signatures associated with conditions like endometritis and respiratory disease suggest the potential for microbiota-based diagnostics and therapeutics. The identification of antibiotic-resistant strains of Proteus mirabilis and Klebsiella pneumoniae in donkey meat highlights food safety concerns requiring enhanced monitoring systems and standardized safety protocols. These findings provide a foundation for improved donkey healthcare management, including targeted disease surveillance, microbiota-based interventions, and protective measures for those working with donkeys or consuming donkey-derived products.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Qingshan Ma
- College of Agriculture and Biology, Liaocheng University, Liaocheng 252000, China; (M.Z.K.)
| | - Changfa Wang
- College of Agriculture and Biology, Liaocheng University, Liaocheng 252000, China; (M.Z.K.)
| |
Collapse
|
3
|
Zhao J, Gong J, Liang W, Zhang S. Microbial diversity analysis and isolation of thermoresistant lactic acid bacteria in pasteurized milk. Sci Rep 2024; 14:29705. [PMID: 39613842 DOI: 10.1038/s41598-024-80947-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 11/22/2024] [Indexed: 12/01/2024] Open
Abstract
Pasteurization is a common method for dairy products, typically heating at 72 °C for 15 s or 63 °C for 30 min. The 17 samples of commercial pasteurized milk were divided into three groups according to the shelf life: group A (1-5 days), group B (6-10 days) and group C (11-15 days), and the diversity composition of microbial communities in the samples was analyzed. Among all groups, Proteobacteria, Firmicutes, and Bacteroidetes were the dominant bacterial phyla. The lactic acid bacteria (LAB) were mostly Streptococcus, Weissella and Lactobacillus, and there were high proportions of Streptococcus thermophilus in group A, Weissella paramesenteroides in group B, and Lactobacillus plantarum in group C. Furthermore, a strain of Enterococcus faecium SFM2 was isolated from the A2 sample, which showed better temperature tolerance compared to the E. faecium SFM1 of oral origin. After treatment at 50 °C for 2 h, the survival rates of E. faecium SFM1 and SFM2 were 28.20 ± 0.04% and 82.58 ± 0.01%, respectively. This study investigated the diversity of microorganisms in pasteurized milk, providing effective information for analyzing the potential microbiota of commercial pasteurized milk. Meanwhile, it provided new ideas for expanding the resource pool of thermoresistant LAB.
Collapse
Affiliation(s)
- Jiancun Zhao
- Pharmaceutical and Biological Engineering Department, Zibo Vocational Institute, Zibo, 255300, People's Republic of China
- Shandong Aspergillus Application Engineering Technology Research Center, Zibo Vocational Institute, Zibo, 255300, People's Republic of China
| | - Jian Gong
- Pharmaceutical and Biological Engineering Department, Zibo Vocational Institute, Zibo, 255300, People's Republic of China
- Shandong Aspergillus Application Engineering Technology Research Center, Zibo Vocational Institute, Zibo, 255300, People's Republic of China
| | - Wanjie Liang
- Shandong Ande Healthcare Apparatus Co., Ltd., Zibo, 255086, People's Republic of China
| | - Susu Zhang
- College of Life Science, Shandong Normal University, No.1, Daxue Road, Jinan, 250358, People's Republic of China.
| |
Collapse
|
4
|
Sun Y, Liu Y, Zhou W, Shao L, Wang H, Zhao Y, Zou B, Li X, Dai R. Effects of ohmic heating with different voltages on the quality and microbial diversity of cow milk during thermal treatment and subsequent cold storage. Int J Food Microbiol 2024; 410:110483. [PMID: 37995495 DOI: 10.1016/j.ijfoodmicro.2023.110483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/21/2023] [Accepted: 11/08/2023] [Indexed: 11/25/2023]
Abstract
Ohmic heating (OH), an innovative heating technology, presents potential applications in the pasteurization of liquid foods. Therefore, the study was conducted to evaluate the effect of OH at various voltage gradients (10 V/cm, 12.5 V/cm, and 15 V/cm) and water bath (WB) on microbial inactivation, physicochemical and sensory properties and microbial flora of pasteurized milk. Results indicated that OH with higher voltage could effectively inactivate microorganisms in milk, requiring less heating time and energy. Moreover, OH treatment at higher voltages could decelerate lipid oxidation and better maintain the sensory quality and essential amino acids content of milk. Additionally, all treatments significantly altered the microbial community, and during storage, the microbial community in milk treated with 10 V/cm and 12.5 V/cm OH remained relatively stable. OH treatments with voltage gradients exceeding 12.5 V/cm could effectively inactive microorganisms and maintain the quality attributes of milk.
Collapse
Affiliation(s)
- Yingying Sun
- College of Food Science and Nutritional Engineering, China Agricultural University, No.17 Qinghua East Road, Haidian District, Beijing 100083, PR China
| | - Yana Liu
- College of Food Science and Nutritional Engineering, China Agricultural University, No.17 Qinghua East Road, Haidian District, Beijing 100083, PR China
| | - Weiwei Zhou
- Hua Shang International Engineering Co., Ltd., Youanmenwai street, Fengtai District, Beijing 100069, PR China
| | - Lele Shao
- College of Food Science and Nutritional Engineering, China Agricultural University, No.17 Qinghua East Road, Haidian District, Beijing 100083, PR China
| | - Han Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, No.17 Qinghua East Road, Haidian District, Beijing 100083, PR China
| | - Yijie Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, No.17 Qinghua East Road, Haidian District, Beijing 100083, PR China
| | - Bo Zou
- College of Food Science and Nutritional Engineering, China Agricultural University, No.17 Qinghua East Road, Haidian District, Beijing 100083, PR China
| | - Xingmin Li
- College of Food Science and Nutritional Engineering, China Agricultural University, No.17 Qinghua East Road, Haidian District, Beijing 100083, PR China
| | - Ruitong Dai
- College of Food Science and Nutritional Engineering, China Agricultural University, No.17 Qinghua East Road, Haidian District, Beijing 100083, PR China.
| |
Collapse
|
5
|
He HY, Liu LL, Chen B, Xiao HX, Liu WJ. Study on lactation performance and development of KASP marker for milk traits in Xinjiang donkey ( Equus asinus). Anim Biotechnol 2023; 34:2724-2735. [PMID: 36007548 DOI: 10.1080/10495398.2022.2114002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Donkey milk has high nutritional and medicinal value, but there are few researches in donkey milk traits, especially on genome. The whole lactation of 89 donkeys was recorded and it was found that Xinjiang donkey had good lactation performance while great differences among individuals. In our previous study, four genes including LGALS2, NUMB, ADCY8 and CA8 were identified as milk-associated with Chinese Kazakh house, based on Equine 670k Chip genomic analysis. And then 15 SNPs of the four key genes were conducted for genotyping in Xinjiang donkey in this study, one of Chinese indigenous breed, 14 SNPs were successful classified. And those SNPs were correlation analysis with milk yield of Xinjiang donkeys. The results showed that NUMB g.46709914T > G was significantly correlated with daily milk yield of Xinjiang donkey in the early, middle, and late periods, while ADCY8 g.48366302T > C, CA8 g.89567442T > G and CA8 g.89598328T > A were significantly correlated with lactation in the late periods. These results indicate that NUMB g.46709914T > G can be as markers of candidate genes for lactating traits in donkeys, SNPs of ADCY8 and CA8 as potential. Our findings will not only help confirm key genes for donkey milk traits, but also provide future for genomic selection in donkeys.
Collapse
Affiliation(s)
- Hai-Ying He
- Faculty of Animal Science, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| | - Ling-Ling Liu
- Faculty of Animal Science, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| | - Bin Chen
- Faculty of Animal Science, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| | - Hai-Xia Xiao
- Institute of Animal Husbandry, Xinjiang Academy of Animal Sciences, Urumqi, Xinjiang, China
| | - Wu-Jun Liu
- Faculty of Animal Science, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| |
Collapse
|
6
|
Zhou M, Huang F, Du X, Wang C, Liu G. Microbial Quality of Donkey Milk during Lactation Stages. Foods 2023; 12:4272. [PMID: 38231735 DOI: 10.3390/foods12234272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/22/2023] [Accepted: 11/24/2023] [Indexed: 01/19/2024] Open
Abstract
The microbial community in donkey milk and its impact on the nutritional value of donkey milk are still unclear. We evaluated the effects of different lactation stages on the composition and function of donkey milk microbiota. The milk samples were collected at 1, 30, 60, 90, 120, 150, and 180 days post-delivery. The result showed that the microbial composition and functions in donkey milk were significantly affected by different lactation stages. The dominant bacterial phyla in donkey milk are Proteobacteria (60%) and Firmicutes (22%). Ralstonia (39%), Pseudomonas (4%), and Acinetobacter (2%) were the predominant bacterial genera detected in all milk samples. In the mature milk, the abundance of lactic acid bacteria Streptococcus (7%) was higher. Chloroplast (5%) and Rothia (3%) were more plentiful in milk samples from middle and later lactation stages (90-180 d). Furthermore, the pathogens Escherichia-Shigella and Staphylococcus and thermoduric bacteria Corynebacterium, Arthrobacter, and Microbacterium were also detected. Donkey milk is rich in beneficial bacteria and also poses a potential health risk. The above findings have improved our understanding of the composition and function changes of donkey milk microbiota, which is beneficial for the rational utilization of donkey milk.
Collapse
Affiliation(s)
- Miaomiao Zhou
- School of Agricultural Science and Engineering, Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 252000, China
| | - Fei Huang
- School of Agricultural Science and Engineering, Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 252000, China
| | - Xinyi Du
- School of Agricultural Science and Engineering, Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 252000, China
| | - Changfa Wang
- School of Agricultural Science and Engineering, Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 252000, China
| | - Guiqin Liu
- School of Agricultural Science and Engineering, Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 252000, China
| |
Collapse
|
7
|
Jiang Y, Fu H, Li M, Wang C. Characterization of Functional Microorganisms in Representative Traditional Fermented Dongcai from Different Regions of China. Foods 2023; 12:1753. [PMID: 37174293 PMCID: PMC10178708 DOI: 10.3390/foods12091753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/10/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
Dongcai is loved for its delicious flavor and nutritional value. The microorganisms in Dongcai play a vital role in their flavor, quality, and safety, and the microbial communities of Dongcai vary greatly from region to region. However, it remains unknown what the predominant microorganisms are in different traditional Dongcai and how they affect its flavor. The objective of this study is to explore the microbial diversity of traditional fermented Dongcai in three representative Chinese regions (Tianjin, Sichuan, and Guangzhou) and further assess their microbial functions. The microbial diversity of fermented Dongcai in Guangdong has the lowest diversity compared to fermented Dongcai in Sichuan, which has the highest. The distribution of the main genera of fermented Dongcai varies from region to region, but Carnimonas, Staphylococcus, Pseudomonas, Sphingomonas, Burkholderia-Caballeronia-Paraburkholderia, and Rhodococcus are the dominant genera in common. In addition, halophilic bacteria (HAB, i.e., Halomonas Bacillus, Virgibacillus, etc.) and lactic acid bacteria (LAB, i.e., Weissella and Lactobacillus) are also highly abundant. Of these, Burkholderia-Caballeronia-Paraburkholderia, Rhodococcus, Sphingomonas, Ralstonia, and Chromohalobacter are dominant in the Sichuan samples. In the Tianjin samples, Lactobacillus, Weissella, Virgibacillus, Enterobacter, Klebsiella, and Pseudomonas are the most abundant. Predictions of microbial metabolic function reveal that carbohydrates, amino acids, polyketides, lipids, and other secondary metabolites are abundantly available for biosynthesis. In addition, the different flavors of the three types of Dongcai may be due to the fact that the abundance of HAB and LAB shows a significant positive correlation with the amounts of important metabolites (e.g., salt, acid, amino nitrogen, and sugar). These results contribute to our understanding of the link between the distinctive flavors of different types of Dongcai and the microorganisms they contain and will also provide a reference for the relationship between microbial communities and flavor substances in semi-fermented pickles.
Collapse
Affiliation(s)
- Yanbing Jiang
- Beijing Key Laboratory of Plant Resource Research and Development, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100040, China; (Y.J.); (H.F.); (C.W.)
- Institute of Cosmetic Regulatory Science, Beijing Technology and Business University, Beijing 100040, China
| | - Hao Fu
- Beijing Key Laboratory of Plant Resource Research and Development, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100040, China; (Y.J.); (H.F.); (C.W.)
- Institute of Cosmetic Regulatory Science, Beijing Technology and Business University, Beijing 100040, China
| | - Meng Li
- Beijing Key Laboratory of Plant Resource Research and Development, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100040, China; (Y.J.); (H.F.); (C.W.)
- Institute of Cosmetic Regulatory Science, Beijing Technology and Business University, Beijing 100040, China
| | - Changtao Wang
- Beijing Key Laboratory of Plant Resource Research and Development, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100040, China; (Y.J.); (H.F.); (C.W.)
- Institute of Cosmetic Regulatory Science, Beijing Technology and Business University, Beijing 100040, China
| |
Collapse
|
8
|
Bao W, He Y, Yu J, Yang X, Liu M, Ji R. Diversity analysis and gene function prediction of bacteria and fungi of Bactrian camel milk and naturally fermented camel milk from Alxa in Inner Mongolia. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
9
|
Changes of bacterial microbiota and volatile flavor compounds in ewe milk during dielectric barrier discharge cold plasma processing. Food Res Int 2022; 159:111607. [DOI: 10.1016/j.foodres.2022.111607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 06/26/2022] [Accepted: 06/28/2022] [Indexed: 11/19/2022]
|
10
|
Papademas P, Mousikos P, Aspri M. Valorization of donkey milk: Technology, functionality, and future prospects. JDS COMMUNICATIONS 2022; 3:228-233. [PMID: 36338810 PMCID: PMC9623768 DOI: 10.3168/jdsc.2021-0175] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 01/22/2022] [Indexed: 05/05/2023]
Abstract
Donkey milk has been in the spotlight for the past 2 decades, mainly because of its potential as a functional food that has positive effects on human health. Nevertheless, challenges remain regarding farming practices, milk yield and milk processing, the introduction of minimal technology, and the use of donkey milk to produce dairy products. In this review, we highlight the fact that interdisciplinary research is needed to provide the scientific community with new knowledge on donkey milk, especially through human clinical trials.
Collapse
|
11
|
Bao W, He Y, Liu W. Diversity Analysis of Bacterial and Function Prediction in Hurunge From Mongolia. Front Nutr 2022; 9:835123. [PMID: 35399660 PMCID: PMC8990233 DOI: 10.3389/fnut.2022.835123] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/19/2022] [Indexed: 11/13/2022] Open
Abstract
With the continuous infiltration of industrialization and modern lifestyle into pastoral areas, the types and processing capacity of Hurunge are decreasing, and the beneficial microbial resources contained in it are gradually disappearing. The preservation and processing of Hurunge are very important for herdsmen to successfully produce high-quality koumiss in the second year. Therefore, in this study, 12 precious Hurunge samples collected from Bulgan Province, Ovorkhangay Province, Arkhangay Province, and Tov Province of Mongolia were sequenced based on the V3-V4 region of the 16S rRNA gene, and the bacterial diversity and function were predicted and analyzed. There were significant differences in the species and abundance of bacteria in Hurunge from different regions and different production methods (p < 0.05). Compared with the traditional fermentation methods, the OTU level of Hurunge fermented in the capsule was low, the Acetobacter content was high and the bacterial diversity was low. Firmicutes and Lactobacillus were the dominant phylum and genus of 12 samples, respectively. The sample QHA contained Komagataeibacter with the potential ability to produce bacterial nanocellulose, and the abundance of Lactococcus in the Tov Province (Z) was significantly higher than that in the other three regions. Functional prediction analysis showed that genes related to the metabolism of bacterial growth and reproduction, especially carbohydrate and amino acid metabolism, played a dominant role in microorganisms. In summary, it is of great significance to further explore the bacterial diversity of Hurunge for the future development and research of beneficial microbial resources, promotion, and protection of the traditional ethnic dairy products.
Collapse
Affiliation(s)
- Wuyundalai Bao
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, China
| | | | | |
Collapse
|
12
|
Chen L, Zhao ZJ, Meng QF. Detection of Specific IgG-Antibodies Against Toxoplasma gondii in the Serum and Milk of Domestic Donkeys During Lactation in China: A Potential Public Health Concern. Front Cell Infect Microbiol 2021; 11:760400. [PMID: 34746030 PMCID: PMC8566817 DOI: 10.3389/fcimb.2021.760400] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 09/27/2021] [Indexed: 11/20/2022] Open
Abstract
Toxoplasma gondii is a worldwide zoonotic protozoan. Donkeys are often susceptible to many pathological agents, acting as carriers of pathogens for other animal species and humans. However, data on the prevalence of T. gondii in donkeys during lactation and on the status of antibodies against T. gondii in donkey milk are lacking. A cross-sectional study evaluated the variation of the anti-T. gondii antibodies in the blood and milk of domestic donkeys during lactation. A total of 418 domestic donkeys were randomly selected from the Shandong province, eastern China from January 2019 to March 2020. The anti-T. gondii antibodies were found in 11.72% (49/418) serum and 9.81% (41/418) milk samples using a commercial ELISA kit, respectively. There was a very high consistency between the serum and milk (Spearman’s coefficient = 0.858, p-value < 0.0001 and Kendall’s tau = 0.688, p-value < 0.0001), particularly at the 45th to 60th day of lactation. The present results of the statistical analysis showed that the history of abortion (p = 0.026; adjusted OR = 2.20; 95% CI: 1.15–4.20) and cat in the house (p = 0.008; adjusted OR = 2.36; 95% CI: 1.26–4.44) were significantly associated with T. gondii infection in the domestic donkeys. This is the first report to detect antibodies against T. gondii in donkey milk in China. These results indicate a potential risk of humans contracting the infection through the consumption of raw milk from the naturally infected donkeys.
Collapse
Affiliation(s)
- Long Chen
- Institute of Animal Nutrition and Feed, Jilin Academy of Agricultural Sciences, Gongzhuling, China
| | - Zi-Jian Zhao
- Institute of Agro-food Technology, Jilin Academy of Agricultural Sciences, Changchun, China
| | | |
Collapse
|
13
|
Zhu H, Yang M, Loor JJ, Elolimy A, Li L, Xu C, Wang W, Yin S, Qu Y. Analysis of Cow-Calf Microbiome Transfer Routes and Microbiome Diversity in the Newborn Holstein Dairy Calf Hindgut. Front Nutr 2021; 8:736270. [PMID: 34760909 PMCID: PMC8573054 DOI: 10.3389/fnut.2021.736270] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 09/27/2021] [Indexed: 01/12/2023] Open
Abstract
Hindgut microorganisms in newborn calves play an important role in the development of immunity and metabolism, and optimization of performance. However, knowledge of the extent to which microbiome colonization of the calf intestine is dependent on maternal characteristics is limited. In this study, placenta, umbilical cord, amniotic fluid, colostrum, cow feces, and calf meconium samples were collected from 6 Holstein cow-calf pairs. Microbial composition was analyzed by 16S rRNA gene high-throughput sequencing, and maternal transfer characteristics assessed using SourceTracker based on Gibbs sampling to fit the joint distribution using the mean proportions of each sample with meconium as the "sink" and other sample types as different "sources." Alpha and beta diversity analyses revealed sample type-specific microbiome features: microbial composition of the placenta, umbilical cord, amniotic fluid, colostrum, and calf feces were similar, but differed from cow feces (p < 0.05). Compared with profiles of meconium vs. placenta, meconium vs. umbilical cord, and meconium vs. colostrum, differences between the meconium and amniotic fluid were most obvious. SourceTracker analysis revealed that 23.8 ± 2.21% of the meconium OTUs matched those of umbilical cord samples, followed by the meconium-placenta pair (15.57 ± 2.2%), meconium-colostrum pair (14.4 ± 1.9%), and meconium-amniotic fluid pair (11.2 ± 1.7%). The matching ratio between meconium and cow feces was the smallest (10.5 ± 1%). Overall, our data indicated that the composition of the meconium microflora was similar compared with multiple maternal sites including umbilical cord, placenta, colostrum, and amniotic fluid. The umbilical cord microflora seemed to contribute the most to colonization of the fecal microflora of calves. Bacteria with digestive functions such as cellulose decomposition and rumen fermentation were mainly transmitted during the maternal transfer process.
Collapse
Affiliation(s)
- Huan Zhu
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
- College of Science, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Minna Yang
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Juan J. Loor
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, IL, United States
| | - Ahmed Elolimy
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, IL, United States
| | - Lingyan Li
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Chuang Xu
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Weidong Wang
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Shuxin Yin
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Yongli Qu
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| |
Collapse
|
14
|
Donkey Industry in China: Current Aspects, Suggestions and Future Challenges. J Equine Vet Sci 2021; 102:103642. [PMID: 34119208 DOI: 10.1016/j.jevs.2021.103642] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/31/2021] [Accepted: 04/13/2021] [Indexed: 12/27/2022]
Abstract
Donkey domestication has been essential to human culture and development and has played an important role in economic and social life in human history. China is one of the largest donkey breeders worldwide; donkey farming for meat, milk and hide production is becoming an important industry in rural China as it provides income to the rural livelihoods of many people. Currently, the donkey industry in China is small and relatively young, but it is growing fast. The industry is not adequately exploited economically, which means that it requires the diminution of its role in the traditional activities of rural households and a reorientation towards a more profitable industry. Given the growing importance of the donkey industry in rural China, this paper aims to outline the current situations of the donkey industry in China in terms of animal stock, breeds and distribution, donkey products, suggestions and future challenges to the development of the donkey industry.
Collapse
|