1
|
Saporittis K, Morales R, Martinez MJ. High pressure homogenization: A promising approach to expand food applications of chia mucilage. Int J Biol Macromol 2024; 263:129787. [PMID: 38296145 DOI: 10.1016/j.ijbiomac.2024.129787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/18/2023] [Accepted: 01/25/2024] [Indexed: 02/10/2024]
Abstract
Two chia mucilages with different viscosities, obtained by extraction conditions optimized in a previous work, were homogenized by high pressure homogenization (HPH). Particle size, molecular weight, zeta potential, FTIR spectrum, rheological properties, water absorption capacity, water holding capacity and iron binding capacity were determined on both mucilages treated and without treatment. Homogenization led to a significant reduction in viscosity respect to chia mucilage controls, which can be related to the decrease in particle size and molecular weight. A high iron binding capacity was obtained for both mucilages. FTIR spectra of both mucilages with iron showed displacements in bands related with stretching of carboxylic uronic acids, suggesting the interaction site with this mineral. This interaction was also verified by particle size determination with a displacement to higher sizes in the presence of iron. Potential zeta showed a significant reduction in the presence of iron. A model to explain the binding between chia mucilage and iron is proposed. HPH appears as an alternative to expand chia mucilage functionality reducing the viscosity of chia mucilage solutions for the offer of a new ingredient also with optimal levels of hydration and iron binding capacity.
Collapse
Affiliation(s)
- Karen Saporittis
- CONICET - Universidad de Buenos Aires, Instituto de Tecnología de Alimentos y Procesos Químicos (ITAPROQ), Buenos Aires, Argentina
| | - Rocío Morales
- CONICET - Universidad de Buenos Aires, Instituto de Tecnología de Alimentos y Procesos Químicos (ITAPROQ), Buenos Aires, Argentina
| | - María Julia Martinez
- CONICET - Universidad de Buenos Aires, Instituto de Tecnología de Alimentos y Procesos Químicos (ITAPROQ), Buenos Aires, Argentina.
| |
Collapse
|
2
|
Liu X, Yu X, Dou S, Yin F, Li D, Zhou D. Characterization of Oyster Protein Hydrolysate-Iron Complexes and their In Vivo Protective Effects against Iron Deficiency-Induced Symptoms in Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:16618-16629. [PMID: 37874351 DOI: 10.1021/acs.jafc.3c05182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Iron is one of the trace mineral elements, and iron deficiency is a common phenomenon that negatively influences human health. Food-derived iron supplements were considered excellent candidates for improving this syndrome. In this work, oyster-protein hydrolysates (OPH) and ferrous chloride successfully formed the OPH-Fe complex (6 mg/mL, 40 °C, 30 min), where the main binding sites involved were the carboxyl and amino groups. The OPH-Fe complex showed no obvious changes in the secondary structure, while the iron changed the morphological appearance and also showed fluorescence quenching, an ultraviolet shift, and an increase in size distribution. The OPH-Fe complex showed better dynamic absorption of iron (64.11 μmol/L) than ferrous sulfate (46.90 μmol/L), and the medium dose had better protective effects against iron-deficiency anemia in vivo. Three representative peptides (DGKGKIPEE, FAGDDAPRA, and VLDSGDGVTH) that were absorbed intact were identified. This experiment provided a theoretical foundation for further study of the digestion and absorption of the OPH-Fe complex.
Collapse
Affiliation(s)
- Xiaoyang Liu
- State Key Laboratory of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Key Laboratory for Marine Food Science and Technology, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Xuening Yu
- State Key Laboratory of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Key Laboratory for Marine Food Science and Technology, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Shijie Dou
- State Key Laboratory of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Key Laboratory for Marine Food Science and Technology, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Fawen Yin
- State Key Laboratory of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Key Laboratory for Marine Food Science and Technology, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Deyang Li
- State Key Laboratory of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Key Laboratory for Marine Food Science and Technology, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Dayong Zhou
- State Key Laboratory of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Key Laboratory for Marine Food Science and Technology, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
3
|
Increase of milk heat stability by addition of casein glycomacropeptide. Int Dairy J 2022. [DOI: 10.1016/j.idairyj.2022.105559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
4
|
Liu T, Zou L, Ji X, Xiao G. Chicken skin-derived collagen peptides chelated zinc promotes zinc absorption and represses tumor growth and invasion in vivo by suppressing autophagy. Front Nutr 2022; 9:960926. [PMID: 35990359 PMCID: PMC9381994 DOI: 10.3389/fnut.2022.960926] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 07/13/2022] [Indexed: 11/24/2022] Open
Abstract
To improve the utilization value of chicken by-products, we utilized the method of step-by-step hydrolysis with bromelain and flavourzyme to prepare low molecular weight chicken skin collagen peptides (CCP) (<5 kDa) and characterized the amino acids composition of the CCP. Then, we prepared novel CCP-chelated zinc (CCP–Zn) by chelating the CCP with ZnSO4. We found that the bioavailability of CCP–Zn is higher than ZnSO4. Besides, CCP, ZnSO4, or CCP–Zn effectively repressed the tumor growth, invasion, and migration in a Drosophila malignant tumor model. Moreover, the anti-tumor activity of CCP–Zn is higher than CCP or ZnSO4. Furthermore, the functional mechanism studies indicated that CCP, ZnSO4, or CCP–Zn inhibits tumor progression by reducing the autonomous and non-autonomous autophagy in tumor cells and the microenvironment. Therefore, this research provides in vivo evidence for utilizing chicken skin in the development of zinc supplements and cancer treatment in the future.
Collapse
Affiliation(s)
- Tengfei Liu
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, Hefei University of Technology, Hefei, China.,School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Lifang Zou
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, Hefei University of Technology, Hefei, China.,School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Xiaowen Ji
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, Hefei University of Technology, Hefei, China.,School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Guiran Xiao
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, Hefei University of Technology, Hefei, China.,School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| |
Collapse
|
5
|
Song Y, Wang X, Bu X, Huang Q, Qiao F, Chen X, Shi Q, Qin J, Chen L. A Comparation Between Different Iron Sources on Growth Performance, Iron Utilization, Antioxidant Capacity and Non-specific Immunity in Eriocheir sinensis. Anim Feed Sci Technol 2022. [DOI: 10.1016/j.anifeedsci.2022.115300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
6
|
Tian Q, Fan Y, Hao L, Wang J, Xia C, Wang J, Hou H. A comprehensive review of calcium and ferrous ions chelating peptides: Preparation, structure and transport pathways. Crit Rev Food Sci Nutr 2021:1-13. [PMID: 34761991 DOI: 10.1080/10408398.2021.2001786] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Calcium and iron play crucial roles in human health, deficiencies of which have globally generated public health risks. The poor solubility, low bioavailability and gastrointestinal irritation of existing commercial mineral supplements limit their further application. As an emerging type of mineral supplement, mineral chelating peptides have drawn plenty of attention due to their advantages in stability, absorptivity and safety. A majority of calcium and ferrous ions chelating peptides have been isolated from food processing by-products. Enzymatic hydrolysis combined with affinity chromatography, gel filtration and other efficient separation techniques is the predominant method to obtain peptides with high calcium and ferrous affinity. Peptides with small molecular weight are more likely to chelate metals, and carboxyl, amino groups and nitrogen, oxygen, sulfur atoms in the side chain, which can provide lone-pair electrons to combine with metallic ions. Unidentate, bidentate, tridentate, bridging and α mode are regarded as common chelating modes. Moreover, the stability of peptide-mineral complexes in the gastrointestinal tract and possible transport pathways were summarized. This review is to present an overview of the latest research progress, existing problems and research prospects in the field of peptide-mineral complexes and to provide a more comprehensive theoretical basis for their exploitation in food industry.
Collapse
Affiliation(s)
- Qiaoji Tian
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Yan Fan
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Li Hao
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Jie Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Chensi Xia
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Jingfeng Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Hu Hou
- College of Food Science and Engineering, Ocean University of China, Qingdao, China.,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|