1
|
Yang X, Liang Y, Li K, Hu Q, He J, Xie J. Advances in Microencapsulation of Flavor Substances: Preparation Techniques, Wall Material Selection, Characterization Methods, and Applications. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:9459-9477. [PMID: 40198106 DOI: 10.1021/acs.jafc.4c11399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
This review systematically examines advances in flavor microencapsulation technology from 2014 to 2024, focusing on innovations in preparation techniques, trends in wall material selection, and characterization methods. Literature metrological analysis shows that spray drying is the predominant technology (25% of reports); its shortcomings in volatile flavor retention have driven improved strategies such as vacuum low-temperature drying, ultrasound assistance, and monodisperse atomization. Emerging technologies such as electrohydrodynamic methods (electrospinning/electrospraying) and supercritical fluid processing are favored due to their nonthermal advantages. Overall, traditional polysaccharides have been widely used due to their good emulsifying and stabilizing properties. In the meanwhile, plant-based polysaccharides (e.g., inulin, hemicellulose) and proteins (e.g., pea protein) are increasingly preferred as the wall materials driven by sustainability and clean-labeling requirements. Morphological analysis and particle size and distribution studies have highlighted the key role of microstructure in stability and release kinetics, with multicore and multishell structures optimizing controlled release performance. Despite progress, gaps remain in the standardized assessment of encapsulation efficacy, the cost-effectiveness of novel materials, and practical food applications. In the future, a combination of interdisciplinary approaches is needed to investigate low-energy preparation technologies, functionalized wall materials, and intelligent release mechanisms to achieve the better application of flavor microencapsulates in food.
Collapse
Affiliation(s)
- Xiaodong Yang
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 102488, China
| | - Yu Liang
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 102488, China
| | - Kexin Li
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 102488, China
| | - Qingqing Hu
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 102488, China
| | - Jinxin He
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 102488, China
| | - Jianchun Xie
- School of Food Science and Health, Beijing Technology and Business University, Beijing 102488, China
| |
Collapse
|
2
|
Belardi I, De Francesco G, Alfeo V, Bravi E, Sileoni V, Marconi O, Marrocchi A. Advances in the valorization of brewing by-products. Food Chem 2025; 465:141882. [PMID: 39541688 DOI: 10.1016/j.foodchem.2024.141882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 10/24/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
Beer is the most consumed alcoholic beverage worldwide, and its production involves the generation of a huge volume of by-products (i.e., spent grain, spent hop, and spent yeast). This review aims to highlight the main properties of these by-products as a valuable source of biomolecules (i.e., proteins, cellulose, hemicellulose, lignin, phenolic compounds, and lipids) and the biorefining methods used in the last decade for their valorization. The pros and cons of the technologies employed will be shown, highlighting which of them could be more ready for the transition to an industrial scale, and which applications (e.g., food and feed, bioenergy, biochemicals, and biomaterials) are the most feasible.
Collapse
Affiliation(s)
- Ilary Belardi
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06121 Perugia, Italy
| | - Giovanni De Francesco
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06121 Perugia, Italy
| | - Vincenzo Alfeo
- Italian Brewing Research Centre (CERB), University of Perugia, 06126 Perugia, Italy
| | - Elisabetta Bravi
- Italian Brewing Research Centre (CERB), University of Perugia, 06126 Perugia, Italy
| | - Valeria Sileoni
- Universitas Mercatorum, Piazza Mattei, 10, 00186 Rome, Italy
| | - Ombretta Marconi
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06121 Perugia, Italy; Italian Brewing Research Centre (CERB), University of Perugia, 06126 Perugia, Italy.
| | - Assunta Marrocchi
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123 Perugia, Italy
| |
Collapse
|
3
|
Ciobanu LT, Constantinescu-Aruxandei D, Farcasanu IC, Oancea F. Spent Brewer's Yeast Lysis Enables a Best Out of Waste Approach in the Beer Industry. Int J Mol Sci 2024; 25:12655. [PMID: 39684367 DOI: 10.3390/ijms252312655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 11/15/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
Yeasts have emerged as an important resource of bioactive compounds, proteins and peptides, polysaccharides and oligosaccharides, vitamin B, and polyphenols. Hundreds of thousands of tons of spent brewer's yeast with great biological value are produced globally by breweries every year. Hence, streamlining the practical application processes of the bioactive compounds recovered could close a loop in an important bioeconomy value-chain. Cell lysis is a crucial step in the recovery of bioactive compounds such as (glyco)proteins, vitamins, and polysaccharides from yeasts. Besides the soluble intracellular content rich in bioactive molecules, which is released by cell lysis, the yeast cell walls β-glucan, chitin, and mannoproteins present properties that make them good candidates for various applications such as functional food ingredients, dietary supplements, or plant biostimulants. This literature study provides an overview of the lysis methods used to valorize spent brewer's yeast. The content of yeast extracts and yeast cell walls resulting from cellular disruption of spent brewer's yeast are discussed in correlation with the biological activities of these fractions and resulting applications. This review highlights the need for a deeper investigation of molecular mechanisms to unleash the potential of spent brewer's yeast extracts and cell walls to become an important source for a variety of bioactive compounds.
Collapse
Affiliation(s)
- Livia Teodora Ciobanu
- Bioproducts Group, Bioresources Department, National Institute for Research & Development in Chemistry and Petrochemistry-ICECHIM, Spl. Independentei No. 202, Sector 6, 060021 Bucharest, Romania
- Interdisciplinary School of Doctoral Studies ISDS-UB, University of Bucharest, Bd. Mihail Kogalniceanu No. 36-46, 050107 Bucharest, Romania
| | - Diana Constantinescu-Aruxandei
- Bioproducts Group, Bioresources Department, National Institute for Research & Development in Chemistry and Petrochemistry-ICECHIM, Spl. Independentei No. 202, Sector 6, 060021 Bucharest, Romania
| | - Ileana Cornelia Farcasanu
- Interdisciplinary School of Doctoral Studies ISDS-UB, University of Bucharest, Bd. Mihail Kogalniceanu No. 36-46, 050107 Bucharest, Romania
| | - Florin Oancea
- Bioproducts Group, Bioresources Department, National Institute for Research & Development in Chemistry and Petrochemistry-ICECHIM, Spl. Independentei No. 202, Sector 6, 060021 Bucharest, Romania
- Faculty of Biotechnologies, University of Agronomic Sciences and Veterinary Medicine of Bucharest, Bd. Mărăști No. 59, Sector 1, 011464 Bucharest, Romania
| |
Collapse
|
4
|
Cen S, Li S, Meng Z. Advances of protein-based emulsion gels as fat analogues: Systematic classification, formation mechanism, and food application. Food Res Int 2024; 191:114703. [PMID: 39059910 DOI: 10.1016/j.foodres.2024.114703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/31/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024]
Abstract
Fat plays a pivotal role in the appearance, flavor, texture, and palatability of food. However, excessive fat consumption poses a significant risk for chronic ailments such as obesity, hypercholesterolemia, and cardiovascular disease. Therefore, the development of green, healthy, and stable protein-based emulsion gel as an alternative to traditional fats represents a novel approach to designing low-fat food. This paper reviews the emulsification behavior of proteins from different sources to gain a comprehensive understanding of their potential in the development of emulsion gels with fat-analog properties. It further investigates the emulsifying potential of protein combined with diverse substances. Then, the mechanisms of protein-stabilized emulsion gels with fat-analog properties are discussed, mainly involving single proteins, proteins-polysaccharides, as well as proteins-polyphenols. Moreover, the potential applications of protein emulsion gels as fat analogues in the food industry are also encompassed. By combining natural proteins with other components such as polysaccharides, polyphenols, or biopolymers, it is possible to enhance the stability of the emulsion gels and improve its fat-analog texture properties. In addition to their advantages in protecting oil oxidation, limiting hydrogenated oil intake, and delivering bioactive substances, protein-based emulsion gels have potential in food 3D printing and the development of specialty fats for plant-based meat.
Collapse
Affiliation(s)
- Shaoyi Cen
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China
| | - Shaoyang Li
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China
| | - Zong Meng
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China.
| |
Collapse
|
5
|
Dumitrașcu L, Brumă (Călin) M, Turturică M, Enachi E, Cantaragiu Ceoromila AM, Aprodu I. Ultrasound-Assisted Maillard Conjugation of Yeast Protein Hydrolysate with Polysaccharides for Encapsulating the Anthocyanins from Aronia. Antioxidants (Basel) 2024; 13:570. [PMID: 38790675 PMCID: PMC11117535 DOI: 10.3390/antiox13050570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/29/2024] [Accepted: 05/02/2024] [Indexed: 05/26/2024] Open
Abstract
Valorisation of food by-products, like spent brewer's yeast and fruit pomaces, represents an important strategy for contributing to sustainable food production. The aims of this study were to obtain Maillard conjugates based on spent yeast protein hydrolysate (SYH) with dextran (D) or maltodextrin (MD) by means of ultrasound treatment and to use them for developing encapsulation systems for the anthocyanins from aronia pomace. The ultrasound-assisted Maillard conjugation promoted the increase of antioxidant activity by about 50% compared to conventional heating and SYH, and was not dependent on the polysaccharide type. The ability of the conjugates to act as wall material for encapsulating various biologically active compounds was tested via a freeze-drying method. The retention efficiency ranged between 58.25 ± 0.38%-65.25 ± 2.21%, while encapsulation efficiency varied from 67.09 ± 2.26% to 88.72 ± 0.33%, indicating the strong effect of the carrier material used for encapsulation. The addition of the hydrolysed yeast cell wall played a positive effect on the encapsulation efficiency of anthocyanins when used in combination with the SYH:MD conjugates. On the other hand, the stability of anthocyanins during storage, as well as their bioavailability during gastrointestinal digestion, were higher when using the SYH:D conjugate. The study showed that hydrolysis combined with the ultrasound-assisted Maillard reaction has a great potential for the valorisation of spent brewer's yeast as delivery material for the encapsulation of bioactive compounds.
Collapse
Affiliation(s)
- Loredana Dumitrașcu
- Faculty of Food Science and Engineering, Dunarea de Jos University of Galati, Domnească Street 111, 800201 Galați, Romania; (L.D.); (M.B.); (M.T.); (E.E.)
| | - Mihaela Brumă (Călin)
- Faculty of Food Science and Engineering, Dunarea de Jos University of Galati, Domnească Street 111, 800201 Galați, Romania; (L.D.); (M.B.); (M.T.); (E.E.)
| | - Mihaela Turturică
- Faculty of Food Science and Engineering, Dunarea de Jos University of Galati, Domnească Street 111, 800201 Galați, Romania; (L.D.); (M.B.); (M.T.); (E.E.)
| | - Elena Enachi
- Faculty of Food Science and Engineering, Dunarea de Jos University of Galati, Domnească Street 111, 800201 Galați, Romania; (L.D.); (M.B.); (M.T.); (E.E.)
- Faculty of Medicine and Pharmacy, Dunarea de Jos University of Galati, 35 A.I. Cuza Str., 800010 Galaţi, Romania
| | | | - Iuliana Aprodu
- Faculty of Food Science and Engineering, Dunarea de Jos University of Galati, Domnească Street 111, 800201 Galați, Romania; (L.D.); (M.B.); (M.T.); (E.E.)
| |
Collapse
|
6
|
Fu DW, Fu JJ, Xu H, Shao ZW, Zhou DY, Zhu BW, Song L. Glycation-induced enhancement of yeast cell protein for improved stability and curcumin delivery in Pickering high internal phase emulsions. Int J Biol Macromol 2024; 257:128652. [PMID: 38065454 DOI: 10.1016/j.ijbiomac.2023.128652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 12/01/2023] [Accepted: 12/05/2023] [Indexed: 01/26/2024]
Abstract
Pickering high internal phase emulsions (HIPEs) have gained significant attention for various applications within the food industry. Yeast cell protein (YCP), derived from spent brewer's yeast, stands out as a preferred stabilizing agent due to its cost-effectiveness, abundance, and safety profile. However, challenges persist in utilizing YCP, notably its instability under high salt concentration, thermal processing, and proximity to its isoelectric point. This study aimed to enhance YCP's emulsifying properties through glycation with glucose and evaluate its efficacy as a stabilizer for curcumin (CUR)-loaded HIPEs. The results revealed that glycation increased YCP's surface hydrophobicity, exposing hydrophobic groups. This augmentation, along with steric hindrance from grafted glucose molecules, improved emulsifying properties, resulting in a thicker interfacial layer around oil droplets. This fortified interfacial layer, in synergy with steric hindrance, bolstered resistance to pH changes, salt ions, and thermal degradation. Moreover, HIPEs stabilized with glycated YCP exhibited reduced oxidation rates and improved CUR protection. In vitro digestion studies demonstrated enhanced CUR bioaccessibility, attributed to a faster release of fatty acids. This study underscores the efficacy of glycation as a strategic approach to augment the applicability of biomass proteins, exemplified by glycated YCP, in formulating stable and functional HIPEs for diverse food applications.
Collapse
Affiliation(s)
- Dong-Wen Fu
- School of Food Science and Technology, Dalian Polytechnic University, No. 1 Qinggongyuan, Ganjingzi District, Dalian 116034, PR China
| | - Jing-Jing Fu
- School of Food Science and Technology, Dalian Polytechnic University, No. 1 Qinggongyuan, Ganjingzi District, Dalian 116034, PR China; School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, PR China
| | - Hang Xu
- School of Food Science and Technology, Dalian Polytechnic University, No. 1 Qinggongyuan, Ganjingzi District, Dalian 116034, PR China
| | - Zhen-Wen Shao
- Qingdao Seawit Life Science Co. Ltd., Qingdao, PR China
| | - Da-Yong Zhou
- School of Food Science and Technology, Dalian Polytechnic University, No. 1 Qinggongyuan, Ganjingzi District, Dalian 116034, PR China; National Engineering Research Center of Seafood, No. 1 Qinggongyuan, Ganjingzi District, Dalian 116034, PR China; State Key Laboratory of Marine Food Processing and Safety Control, Dalian 116034, PR China
| | - Bei-Wei Zhu
- School of Food Science and Technology, Dalian Polytechnic University, No. 1 Qinggongyuan, Ganjingzi District, Dalian 116034, PR China; National Engineering Research Center of Seafood, No. 1 Qinggongyuan, Ganjingzi District, Dalian 116034, PR China; State Key Laboratory of Marine Food Processing and Safety Control, Dalian 116034, PR China
| | - Liang Song
- School of Food Science and Technology, Dalian Polytechnic University, No. 1 Qinggongyuan, Ganjingzi District, Dalian 116034, PR China; National Engineering Research Center of Seafood, No. 1 Qinggongyuan, Ganjingzi District, Dalian 116034, PR China; State Key Laboratory of Marine Food Processing and Safety Control, Dalian 116034, PR China.
| |
Collapse
|
7
|
Wang S, Huang F, Zhao Y, Ouyang K, Xie H, Xiong H, Zhang Y, Chen Z, Zhao Q. Slow-digestive yeast protein concentrate: An investigation of its in vitro digestibility and digestion behavior. Food Res Int 2023; 174:113572. [PMID: 37986444 DOI: 10.1016/j.foodres.2023.113572] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 10/07/2023] [Accepted: 10/09/2023] [Indexed: 11/22/2023]
Abstract
Yeast protein concentrate, a by-product of the fermentation industry waste, is a potential alternative protein source with high nutritional quality, environmental sustainability, and functional properties. However, its digestibility and digestion behavior are poorly understood. In this study, we compared the in vitro digestion behavior of yeast protein concentrate and whey protein concentrate using simulated gastrointestinal conditions. We found that yeast protein concentrate had lower digestibility than whey protein concentrate (31.25% vs. 86.23% at 120 min of pepsin digestion and 75.12% vs. 95.2% at 120 min of pancreatin digestion). Yeast protein concentrate differed from whey protein concentrate in microstructure, secondary structure, and amino acid composition, which may affect its digestion behavior. Compared to whey protein concentrate, a higher level of β-sheets and a lower zeta potential explain the slow-digesting property of yeast protein concentrate. Yeast protein concentrate also underwent depolymerization and Plastein reaction during digestion. These results provided valuable information for developing and applying yeast protein concentrate as an alternative to conventional animal protein.
Collapse
Affiliation(s)
- Songyu Wang
- State Key Laboratory of Food Science and Resources, Nanchang University, Jiangxi 330047, China
| | - Fang Huang
- State Key Laboratory of Food Science and Resources, Nanchang University, Jiangxi 330047, China
| | - Yuping Zhao
- State Key Laboratory of Food Science and Resources, Nanchang University, Jiangxi 330047, China
| | - Kefan Ouyang
- State Key Laboratory of Food Science and Resources, Nanchang University, Jiangxi 330047, China
| | - Hexiang Xie
- State Key Laboratory of Food Science and Resources, Nanchang University, Jiangxi 330047, China
| | - Hua Xiong
- State Key Laboratory of Food Science and Resources, Nanchang University, Jiangxi 330047, China
| | - Yan Zhang
- The Hubei Provincial Key Laboratory of Yeast Function, Yichang 443003, China; National Key Laboratory of Agricultural Microbiology, Yichang 443003, China.
| | - Zhixian Chen
- The Hubei Provincial Key Laboratory of Yeast Function, Yichang 443003, China; National Key Laboratory of Agricultural Microbiology, Yichang 443003, China
| | - Qiang Zhao
- State Key Laboratory of Food Science and Resources, Nanchang University, Jiangxi 330047, China.
| |
Collapse
|
8
|
Utama GL, Oktaviani L, Balia RL, Rialita T. Potential Application of Yeast Cell Wall Biopolymers as Probiotic Encapsulants. Polymers (Basel) 2023; 15:3481. [PMID: 37631538 PMCID: PMC10459707 DOI: 10.3390/polym15163481] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/01/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
Biopolymers of yeast cell walls, such as β-glucan, mannoprotein, and chitin, may serve as viable encapsulants for probiotics. Due to its thermal stability, β-glucan is a suitable cryoprotectant for probiotic microorganisms during freeze-drying. Mannoprotein has been shown to increase the adhesion of probiotic microorganisms to intestinal epithelial cells. Typically, chitin is utilized in the form of its derivatives, particularly chitosan, which is derived via deacetylation. Brewery waste has shown potential as a source of β-glucan that can be optimally extracted through thermolysis and sonication to yield up to 14% β-glucan, which can then be processed with protease and spray drying to achieve utmost purity. While laminarinase and sodium deodecyle sulfate were used to isolate and extract mannoproteins and glucanase was used to purify them, hexadecyltrimethylammonium bromide precipitation was used to improve the amount of purified mannoproteins to 7.25 percent. The maximum chitin yield of 2.4% was attained by continuing the acid-alkali reaction procedure, which was then followed by dialysis and lyophilization. Separation and purification of yeast cell wall biopolymers via diethylaminoethyl (DEAE) anion exchange chromatography can be used to increase the purity of β-glucan, whose purity in turn can also be increased using concanavalin-A chromatography based on the glucan/mannan ratio. In the meantime, mannoproteins can be purified via affinity chromatography that can be combined with zymolase treatment. Then, dialysis can be continued to obtain chitin with high purity. β-glucans, mannoproteins, and chitosan-derived yeast cell walls have been shown to promote the survival of probiotic microorganisms in the digestive tract. In addition, the prebiotic activity of β-glucans and mannoproteins can combine with microorganisms to form synbiotics.
Collapse
Affiliation(s)
- Gemilang Lara Utama
- Faculty of Agro-Industrial Technology, Universitas Padjadjaran, Jalan Raya Bandung-Sumedang Km. 21, Jatinangor, Sumedang 45363, Indonesia; (L.O.); (T.R.)
- Center for Environment and Sustainability Science, Universitas Padjadjaran, Jalan Sekeloa Selatan 1 No 1, Bandung 40134, Indonesia
| | - Lidya Oktaviani
- Faculty of Agro-Industrial Technology, Universitas Padjadjaran, Jalan Raya Bandung-Sumedang Km. 21, Jatinangor, Sumedang 45363, Indonesia; (L.O.); (T.R.)
| | - Roostita Lobo Balia
- Veterinary Study Program, Faculty of Medicine, Universitas Padjadjaran, Jalan Raya Bandung-Sumedang Km. 21, Jatinangor, Sumedang 45363, Indonesia;
| | - Tita Rialita
- Faculty of Agro-Industrial Technology, Universitas Padjadjaran, Jalan Raya Bandung-Sumedang Km. 21, Jatinangor, Sumedang 45363, Indonesia; (L.O.); (T.R.)
| |
Collapse
|
9
|
Ma J, Sun Y, Meng D, Zhou Z, Zhang Y, Yang R. Yeast proteins: The novel and sustainable alternative protein in food applications. Trends Food Sci Technol 2023. [DOI: 10.1016/j.tifs.2023.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
10
|
Valorization of Spent Brewer’s Yeast for the Production of High-Value Products, Materials, and Biofuels and Environmental Application. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9030208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Spent brewer’s yeast (SBY) is a byproduct of the brewing industry traditionally used as a feed additive, although it could have much broader applications. In this paper, a comprehensive review of valorization of SBY for the production of high-value products, new materials, and biofuels, as well as environmental application, is presented. An economic perspective is given by mirroring marketing of conventional SBY with innovative high-value products. Cascading utilization of fine chemicals, biofuels, and nutrients such as proteins, carbohydrates, and lipids released by various SBY treatments has been proposed as a means to maximize the sustainable and circular economy.
Collapse
|
11
|
Costa Ferraz M, Ramalho Procopio F, de Figueiredo Furtado G, Dupas Hubinger M. Co-encapsulation of paprika and cinnamon oleoresin by spray drying using whey protein isolate and maltodextrin as wall material: Development, characterization and storage stability. Food Res Int 2022; 162:112164. [DOI: 10.1016/j.foodres.2022.112164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 11/04/2022] [Accepted: 11/15/2022] [Indexed: 11/21/2022]
|
12
|
Holt DA, Aldrich CG. Evaluation of Torula yeast as a protein source in extruded feline diets. J Anim Sci 2022; 100:6754364. [PMID: 36209420 PMCID: PMC9733508 DOI: 10.1093/jas/skac327] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 10/07/2022] [Indexed: 12/15/2022] Open
Abstract
The objective of this work was to evaluate the use of a Torula yeast (TY) on diet processing, palatability, and total tract nutrient digestibility in extruded feline diets. Four dietary treatments were compared, differing by protein source: TY, pea protein concentrate (PP), soybean meal (SM), and chicken meal (CM). Diets were produced using a single-screw extruder under similar processing conditions. Palatability assessment was conducted as a split plate design where both first choice and intake ratio (IR) were determined. Apparent total tract digestibility (ATTD) of nutrients was estimated using Titanium dioxide as an indigestible marker. During diet production, specific mechanical energy of TY and SM (average of 187 kJ/kg) was greater (P < 0.05) than for PP (138 kJ/kg); however, CM was similar to all treatments (167 kJ/kg). Kibble diameter, piece volume, and sectional expansion ratio were greatest for TY (P < 0.05). Additionally, both bulk and piece density were lowest (P < 0.05) for TY. Kibble hardness was lower for TY and SM (P < 0.05; average of 2.10 Newtons) compared to CM and PP (average of 2.90 Newtons). During the palatability trial, TY was chosen first a greater number of times than CM (P < 0.05; 36 vs. 4, respectively), but differences were not found between TY and PP (25 vs. 15, respectively) or TY and SM (24 vs. 16, respectively). Cats had a greater IR (P < 0.05) of TY compared to CM and PP (0.88 and 0.73, respectively). However, there was no difference in preference between TY and SM. ATTD of dry matter (DM) and organic matter (OM) was greater (P < 0.05) for CM (87.43% and 91.34%, respectively) than other treatments. Both DM and OM ATTD of TY were similar (P < 0.05) to PP and SM (average of 86.20% and average of 89.76%, respectively). Ash ATTD was greater (P < 0.05) for cats fed TY and SM (average of 37.42%), intermediate for PP (32.79%), and lowest for CM (23.97%). Crude protein (CP) ATTD of TY was similar to all other treatments (average of 89.97%), but fat ATTD was lower (P < 0.05; 92.52%) than other treatments (93.76% to 94.82%). Gross energy ATTD was greater (P < 0.05) for CM than TY (90.97% vs. 90.18%, respectively); however, TY was similar to PP and SM (average of 90.22%). Total dietary fiber ATTD was similar between TY and CM (average of 66.20%) and greater (P < 0.05) than PP and SM (average of 58.70%). The TY used in this study facilitated diet formation, increased diet preference, and was highly digestible when fed to cats.
Collapse
Affiliation(s)
- Dalton A Holt
- Present address: Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | |
Collapse
|
13
|
López-García A, Moraga G, Hernando I, Quiles A. Providing Stability to High Internal Phase Emulsion Gels Using Brewery Industry By-Products as Stabilizers. Gels 2021; 7:245. [PMID: 34940305 PMCID: PMC8701242 DOI: 10.3390/gels7040245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/29/2021] [Accepted: 11/29/2021] [Indexed: 11/17/2022] Open
Abstract
The modern brewing industry generates high amounts of solid wastes containing biopolymers-proteins and polysaccharides-with interesting technological and functional properties. The novelty of this study was to use raw by-product from the brewing industry in the development of high internal phase emulsion (HIPE) gels. Thus, the influence of the emulsion's aqueous phase pH and the by-product's concentration on structural and physical stability of the emulsions was studied. The microstructure was analyzed using cryo-field emission scanning electron microscopy. To evaluate the rheological behavior, oscillatory tests (amplitude and frequency) and flow curves were conducted. Moreover, the physical stability of the emulsions and the color were also studied. The increase in by-product concentration and the pH of the aqueous phase allowed development of HIPE gels with homogeneously distributed oil droplets of regular size and polyhedral structure. The data from the rheology tests showed a more stable structure at higher pH and higher by-product concentration. This study widens the possibilities of valorizing the brewing industry's by-products as stabilizers when designing emulsions.
Collapse
Affiliation(s)
| | | | - Isabel Hernando
- Departamento de Tecnología de Alimentos, Universitat Politècnica de València, 46022 Valencia, Spain; (A.L.-G.); (G.M.); (A.Q.)
| | | |
Collapse
|
14
|
İlter I, Koç M, Demirel Z, Conk Dalay M, Kaymak Ertekin F. Improving the stability of phycocyanin by spray dried microencapsulation. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15646] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Işıl İlter
- Faculty of Engineering, Food Engineering Department Ege University İzmir Turkey
| | - Mehmet Koç
- Faculty of Engineering, Food Engineering Department Aydın Adnan Menderes University Aydın Turkey
| | - Zeliha Demirel
- Faculty of Engineering, Bio Engineering Department Ege University İzmir Turkey
| | - Meltem Conk Dalay
- Faculty of Engineering, Bio Engineering Department Ege University İzmir Turkey
| | | |
Collapse
|
15
|
Dadkhodazade E, Khanniri E, Khorshidian N, Hosseini SM, Mortazavian AM, Moghaddas Kia E. Yeast cells for encapsulation of bioactive compounds in food products: A review. Biotechnol Prog 2021; 37:e3138. [PMID: 33634951 DOI: 10.1002/btpr.3138] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/21/2021] [Accepted: 02/22/2021] [Indexed: 12/21/2022]
Abstract
Nowadays bioactive compounds have gained great attention in food and drug industries owing to their health aspects as well as antimicrobial and antioxidant attributes. Nevertheless, their bioavailability, bioactivity, and stability can be affected in different conditions and during storage. In addition, some bioactive compounds have undesirable flavor that restrict their application especially at high dosage in food products. Therefore, food industry needs to find novel techniques to overcome these problems. Microencapsulation is a technique, which can fulfill the mentioned requirements. Also, there are many wall materials for use in encapsulation procedure such as proteins, carbohydrates, lipids, and various kinds of polymers. The utilization of food-grade and safe carriers have attracted great interest for encapsulation of food ingredients. Yeast cells are known as a novel carrier for microencapsulation of bioactive compounds with benefits such as controlled release, protection of core substances without a significant effect on sensory properties of food products. Saccharomyces cerevisiae was abundantly used as a suitable carrier for food ingredients. Whole cells as well as cell particles like cell wall and plasma membrane can act as a wall material in encapsulation process. Compared to other wall materials, yeast cells are biodegradable, have better protection for bioactive compounds and the process of microencapsulation by them is relatively simple. The encapsulation efficiency can be improved by applying some pretreatments of yeast cells. In this article, the potential application of yeast cells as an encapsulating material for encapsulation of bioactive compounds is reviewed.
Collapse
Affiliation(s)
- Elahe Dadkhodazade
- Student Research Committee, Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elham Khanniri
- Student Research Committee, Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nasim Khorshidian
- Food Safety Research Center (Salt), Semnan University of Medical Sciences, Semnan, Iran
| | - Seyede Marziyeh Hosseini
- Department of Food Science and Technology, Faculty of Nutrition Sciences and Food Technology/National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir M Mortazavian
- Food Safety Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ehsan Moghaddas Kia
- Department of Food Science and Technology, Maragheh University of Medical Science, Maragheh, Iran
| |
Collapse
|