1
|
Park H, Yu S, Kim W. Amelioration of aging-induced muscular decline by black soybean ( Rhynchosia nulubilis) and black rice ( Oryza sativa L.) extracts. Front Immunol 2025; 16:1554941. [PMID: 40176811 PMCID: PMC11961972 DOI: 10.3389/fimmu.2025.1554941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Accepted: 03/03/2025] [Indexed: 04/04/2025] Open
Abstract
Aging leads to a decline in the mass and function of skeletal muscles, a condition known as sarcopenia. It was previously reported that aging-related alterations in protein degradation, chronic inflammation, and deterioration of mitochondrial metabolism affect the acceleration of muscle atrophy in the elderly. However, the detailed mechanism or substantial causes for age-related muscle loss are still lacking, yet exercise or an increment in dietary protein intake are suggested as effective approaches to mitigate muscle atrophy. This study aims to investigate the regulatory effect of black soybean (Rhynchosia nulubilis) and black rice (Oryza sativa L.) mixture extract (BBME), which are rich in protein and bioactive compounds, in 12-month-old aged mice and L6 myotubes. BBME was orally administered at 300 and 600 mg/kg/day (low and high doses) for 12 weeks, and its effects on systemic glucose homeostasis and skeletal muscle metabolism were evaluated. Consequently, BBME at a high dose marginally ameliorated muscle loss and significantly improved glucose metabolism. BBME also reduced cellular senescence markers and enhanced mitochondrial biogenesis in aged skeletal muscles. Additionally, BBME exerted insulin-like activity by promoting glucose metabolism in L6 myotubes. These findings suggest the potential of BBME as a functional food ingredient in alleviating aging-induced muscle loss by modulating mitochondrial activity and glucose metabolism.
Collapse
Affiliation(s)
- Hyejeong Park
- Department of Food and Nutrition, Yonsei University, Seoul, Republic of Korea
| | - Seungmin Yu
- Precision Nutrition Research Group, Korea Food Research Institute (KFRI), Wanju, Republic of Korea
| | - Wooki Kim
- Department of Food and Nutrition, Yonsei University, Seoul, Republic of Korea
| |
Collapse
|
2
|
Xiong S, Yan X, Yan X, Wu Q, Wu J, Liu C, Xiong B, Chen T, Luo S. Impact of flour particle size on digestibility and gut microbiota modulation in brown rice noodles: Balancing cell wall disruption and starch damage. Int J Biol Macromol 2025; 307:141967. [PMID: 40081682 DOI: 10.1016/j.ijbiomac.2025.141967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 02/17/2025] [Accepted: 03/10/2025] [Indexed: 03/16/2025]
Abstract
Brown rice noodles are recognized for their health benefits. While previous research has focused on improving noodle properties through various processing conditions, the effects on digestibility and fermentability remain unclear. This study comprehensively investigated how brown rice flour particle size influences noodle digestibility and gut microbiota fermentation in vitro. Particle size first affects flour properties. The average particle size of BR15 flour (62 μm) falls between the length and width of the endosperm cells, effectively disrupting the cell walls while minimizing excessive starch damage, thus achieving an optimal balance and resulting in the highest peak viscosity. As a result, brown rice noodles made from BR15 flour exhibited the lowest starch digestibility in vitro. X-ray diffraction analysis revealed that starch crystals in digestive residues were predominantly V-type, with BR15 showing the highest relative crystallinity. In vitro fecal fermentation indicated elevated Bifidobacterium abundance and butyrate production for BR15 noodles compared to others. The moderate particle size of BR15 brown rice flour imparts unique digestibility and gut microbiota modulation to the noodles produced. This study provides insights into particle size optimization for improving nutritional quality of brown rice noodles.
Collapse
Affiliation(s)
- Shaobai Xiong
- State Key Laboratory of Food Science and Resources, School of Food Science & Technology, Nanchang University, 235 East Nanjing Road, Nanchang, Jiangxi 330047, China; International Institute of Food Innovation Co., Ltd., Nanchang University, Nanchang, Jiangxi 330200, China
| | - Xiaoyan Yan
- State Key Laboratory of Food Science and Resources, School of Food Science & Technology, Nanchang University, 235 East Nanjing Road, Nanchang, Jiangxi 330047, China; International Institute of Food Innovation Co., Ltd., Nanchang University, Nanchang, Jiangxi 330200, China
| | - Xudong Yan
- State Key Laboratory of Food Science and Resources, School of Food Science & Technology, Nanchang University, 235 East Nanjing Road, Nanchang, Jiangxi 330047, China; International Institute of Food Innovation Co., Ltd., Nanchang University, Nanchang, Jiangxi 330200, China
| | - Qirui Wu
- State Key Laboratory of Food Science and Resources, School of Food Science & Technology, Nanchang University, 235 East Nanjing Road, Nanchang, Jiangxi 330047, China; International Institute of Food Innovation Co., Ltd., Nanchang University, Nanchang, Jiangxi 330200, China
| | - Jianyong Wu
- State Key Laboratory of Food Science and Resources, School of Food Science & Technology, Nanchang University, 235 East Nanjing Road, Nanchang, Jiangxi 330047, China; International Institute of Food Innovation Co., Ltd., Nanchang University, Nanchang, Jiangxi 330200, China
| | - Chengmei Liu
- State Key Laboratory of Food Science and Resources, School of Food Science & Technology, Nanchang University, 235 East Nanjing Road, Nanchang, Jiangxi 330047, China; International Institute of Food Innovation Co., Ltd., Nanchang University, Nanchang, Jiangxi 330200, China
| | - Bingsheng Xiong
- Jiangxi Magu Industry Group Co., Ltd., Jinshankou Industrial Estate, Nancheng, Jiangxi 344700, China
| | - Tingting Chen
- State Key Laboratory of Food Science and Resources, School of Food Science & Technology, Nanchang University, 235 East Nanjing Road, Nanchang, Jiangxi 330047, China; International Institute of Food Innovation Co., Ltd., Nanchang University, Nanchang, Jiangxi 330200, China.
| | - Shunjing Luo
- State Key Laboratory of Food Science and Resources, School of Food Science & Technology, Nanchang University, 235 East Nanjing Road, Nanchang, Jiangxi 330047, China; International Institute of Food Innovation Co., Ltd., Nanchang University, Nanchang, Jiangxi 330200, China.
| |
Collapse
|
3
|
Ngoc Dinh CV, Prabsangob N. Black Gram ( Vigna mungo L.) Husk as a Source of Bioactive Compounds: An Evaluation of Starch Digestive Enzyme Inhibition Effects. Foods 2025; 14:846. [PMID: 40077549 PMCID: PMC11899647 DOI: 10.3390/foods14050846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 02/17/2025] [Accepted: 02/20/2025] [Indexed: 03/14/2025] Open
Abstract
This research recovered bioactive compounds from black gram husk (BGH, a by-product of sprout processing) using different ethanol concentrations and maceration times. Based on the results, the highest phenolic and saponin contents were recovered using an 80% ethanolic solution for 3 h, with the extract having both antioxidant and starch digestive enzyme inhibition effects. The major bioactive compounds present in the extract were gallic acid, gentisic acid, ferulic acid, and vitexin. The extract from BGH had an effective binding affinity to α-glucosidase, resulting in a potent ability of the extract to delay enzyme activity. Based on in vitro starch digestion using cooked rice as a model, adding the extract (10 mg/mL) increased the resistant starch content (from 53.9% to 55.9%) and lowered the estimated glucose index (from 83.1% to 81.0%) as compared to the control without the extract. Based on the overall results, the BGH extract could be promising as a functional ingredient with antioxidant activity and the ability to control postprandial blood glucose levels in the development of healthy food products.
Collapse
Affiliation(s)
| | - Nopparat Prabsangob
- Department of Product Development, Faculty of Agro-Industry, Kasetsart University, Bangkok 10900, Thailand
| |
Collapse
|
4
|
Zhao L, Wang J, Dai W, Du M, Dai X, Zhou Z, He H, Yuan B, Zhao D, Cao Q. Comprehensive characterization of nutritional components in sweetpotato (Ipomoea batatas [L]. Lam.) during long-term post-harvest storage. JOURNAL OF PLANT PHYSIOLOGY 2025; 304:154404. [PMID: 39675226 DOI: 10.1016/j.jplph.2024.154404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/27/2024] [Accepted: 12/08/2024] [Indexed: 12/17/2024]
Abstract
To uncover the variation patterns of the nutritional components in sweetpotato storage roots during long-term storage comprehensively, the general nutrients, phytochemicals, and starch properties of nine sweetpotato varieties with different flesh colors were quantified and analyzed by chemical and physical techniques. During the storage, the starch content decreased firstly and then increased, with sugar content the opposite. The crude protein content and the total dietary fiber content both increased continuously. The β-carotene content decreased or kept constant, while the anthocyanin content showed different variation patterns in the three purple-fleshed varieties. The four types of polyphenols and two types of flavonoids showed no obvious content changes during the storage. The amylose contents of all varieties showed various patterns, while the crystallinity was C-type. The proportion of small-sized starch granules reduced, and the combined proportion of medium-sized and large-sized granules increased. New correlations among the nutritional parameters for each variety were revealed for the first time. Principal component analysis indicated that the orange-fleshed varieties were distinguished from other varieties. Finally, the most storage-resistant variety ZZ3 and the suitable variety for each quality trait was selected. This study provides not only theoretical basis for comprehensive understanding of the nutrient's variations in sweetpotato storage roots during long-term storage, but also guidelines for evaluation of nutritional quality of sweetpotato roots during storage and improvement of storage methods.
Collapse
Affiliation(s)
- Lingxiao Zhao
- Key Laboratory of Sweetpotato Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou, 221131, Jiangsu Province, China
| | - Jie Wang
- Key Laboratory of Sweetpotato Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou, 221131, Jiangsu Province, China
| | - Weiwei Dai
- School of Life Sciences, Jiangsu Normal University, Xuzhou, 22111, Jiangsu Province, China
| | - Mingjuan Du
- Key Laboratory of Sweetpotato Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou, 221131, Jiangsu Province, China
| | - Xibin Dai
- Key Laboratory of Sweetpotato Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou, 221131, Jiangsu Province, China; School of Life Sciences, Jiangsu Normal University, Xuzhou, 22111, Jiangsu Province, China
| | - Zhilin Zhou
- Key Laboratory of Sweetpotato Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou, 221131, Jiangsu Province, China
| | - Huan He
- School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou, 221116, Jiangsu Province, China
| | - Bo Yuan
- School of Life Sciences, Jiangsu Normal University, Xuzhou, 22111, Jiangsu Province, China
| | - Donglan Zhao
- Key Laboratory of Sweetpotato Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou, 221131, Jiangsu Province, China.
| | - Qinghe Cao
- Key Laboratory of Sweetpotato Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou, 221131, Jiangsu Province, China; School of Life Sciences, Jiangsu Normal University, Xuzhou, 22111, Jiangsu Province, China.
| |
Collapse
|
5
|
López-Silva M, García-Valle DE. Ice cream cone fortified with spent coffee ground: Chemical composition, quality and sensory characteristics, and in vitro starch digestibility. Food Chem 2024; 459:140288. [PMID: 39002335 DOI: 10.1016/j.foodchem.2024.140288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 06/24/2024] [Accepted: 06/29/2024] [Indexed: 07/15/2024]
Abstract
The objective of the study was to evaluate the effect of the incorporation of spent coffee grounds in ice cream cones on the quality, sensory characteristics, and in vitro starch digestibility. The incorporation of spent coffee grounds in ice cream cones increased the content of dietary fiber and phenolic compounds. However, the quality and texture characteristics decreased with the addition of spent coffee grounds. The in vitro starch digestibility decreased significantly, resulting in a significant increase in resistant starch content. Fitting starch digestibility using the LOS-plot model revealed the presence of two sequential first-order digestion rates. Sensory analysis revealed that the panelists well accepted ice cream cones fortified with spent coffee grounds. The results suggest that spent coffee grounds are a potential ingredient for the formulation of food matrices with reduced starch digestibility, which contributes to the prevention of chronic degenerative diseases such as type II diabetes.
Collapse
Affiliation(s)
- Madai López-Silva
- Tecnológico Nacional de México/Instituto Tecnólogico Superior de Atlixco-Departamento de Ingeniería Bioquímica, Atlixco, Puebla, México
| | | |
Collapse
|
6
|
Palanisamy R, Subramanian SK, Asiedu SK, Perumal V. Boosting resistant starch in rice: Bacterial inulin as a metabolic and glucose uptake modulator. Food Chem 2024; 457:140107. [PMID: 39032479 DOI: 10.1016/j.foodchem.2024.140107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 05/04/2024] [Accepted: 06/12/2024] [Indexed: 07/23/2024]
Abstract
Bacillus stercoris PSSR12 (B. stercoris PE), an isolate from rice field soils, was identified via 16s rRNA sequencing. The synthesis of the inulin and inulin producing enzyme (IPE) in B. stercoris PE was verified using SDS-PAGE and FTIR. This study aimed to assess the impact of B. stercoris PE treatment on in vitro inhibition of α-amylase and α-glucosidase from traditional and commercial rice varieties of South India. Additionally, the study investigated enzymatic inhibition and mRNA expression of starch synthesis genes (RAmy1a, GBSSIa, SBEIIa, and SBEIIb). Glucose transporter gene expression (GLUT1 and GLUT4) patterns were analyzed in 3T3-L1 adipocytes to evaluate glucose uptake in B. stercoris PE treated rice varieties. The application of B. stercoris PE enhanced grain quality by imparting starch ultra-structural rigidity, inhibiting starch metabolizing enzymes, and inducing molecular changes in starch synthesis genes. This approach holds promise for managing type II diabetes mellitus and potentially reducing insulin dependence.
Collapse
Affiliation(s)
- Ravishankar Palanisamy
- Department of Neurosurgery, McGill University, Montreal, Quebec H3A 0G4, Canada; Department of Biotechnology, Periyar University, Salem, Tamil Nadu 636011, India; Rayakis, Energy and Environmental Consultancy, Periyar Street, Salem, Tamil Nadu 636 001, India.
| | - Satheesh Kumar Subramanian
- Department of Agronomy, Throckmorton Plant Sciences Center, Kansas State University, Manhattan, KS 66506, USA
| | - Samuel Kuwaku Asiedu
- Department of Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | | |
Collapse
|
7
|
Fan C, Cheng L, Hong Y, Li Z, Li C, Ban X, Gu Z. Study on the gelatinization and digestive characteristics of wheat starch and potato starch under low moisture conditions. Int J Biol Macromol 2024; 269:132192. [PMID: 38723829 DOI: 10.1016/j.ijbiomac.2024.132192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 05/03/2024] [Accepted: 05/06/2024] [Indexed: 05/30/2024]
Abstract
This study explored the gelatinization and digestive characteristics of wheat and potato starches under low moisture conditions using identical processing parameters. The results revealed that potato starch exhibited greater resistance to digestion than wheat starch, with an enzyme hydrolysis rate 18 % to 30 % lower than wheat starch under the same conditions. The analysis of particle size, swelling power, and low-field NMR demonstrated that potato starch required almost 40 % more moisture for full gelatinization than wheat starch, indicating that low-moisture conditions could not meet the significant water demand of potato starch. Additionally, the DSC analysis showed that potato starch had superior thermal stability, with To of 62.13 °C and ΔH of 16.30 (J/g). Subsequently, the microscopy results showed that the partially gelatinized wheat starch had a rough, porous surface, allowing enzymes for direct access to hydrolysis. In contrast, the potato starch had smoother and less damaged particles without visible pores, enzymes had to degrade it progressively, layer by layer. Furthermore, potato starch still exhibited a lower enzyme hydrolysis rate than wheat starch under the same gelatinization levels. Overall, potato starch is more resistant to hydrolysis and gelatinization in low-moisture environments, making potato starch suitable for low-digestibility products like potato biscuits or chips.
Collapse
Affiliation(s)
- Chenyu Fan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
| | - Li Cheng
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China.
| | - Yan Hong
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
| | - Zhaofeng Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
| | - Caiming Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
| | - Xiaofeng Ban
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
| | - Zhengbiao Gu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
8
|
Cañizares L, Meza S, Peres B, Rodrigues L, Jappe SN, Coradi PC, de Oliveira M. Functional Foods from Black Rice ( Oryza sativa L.): An Overview of the Influence of Drying, Storage, and Processing on Bioactive Molecules and Health-Promoting Effects. Foods 2024; 13:1088. [PMID: 38611392 PMCID: PMC11011668 DOI: 10.3390/foods13071088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/23/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
Black rice (Oryza sativa) stands out for its high content of bioactive compounds with functional properties that play an important role in health benefits. The phytochemical level is affected by industrial processing due to its instability to the hydrothermal process. Studies about the influence of industrial processing on the phytochemical profile of black-rice-based foods are still scarce. This study carried out a comprehensive review of the influence of industrial applications on the bioactive compounds in food products based on black rice and their health-promoting effects. Most industrial processes such as drying, storage, cooking, and extrusion affect phytochemical content and antioxidant capacity. Alternatively, technologies such as fermentation, UV-C irradiation, and sprouting can maintain or improve the phytochemical content in black rice products.
Collapse
Affiliation(s)
- Lázaro Cañizares
- Department of Agroindustry Science and Technology, Federal University of Pelotas, Pelotas 96010-900, Brazil; (L.C.); (S.M.); (B.P.); (L.R.); (S.N.J.); (M.d.O.)
| | - Silvia Meza
- Department of Agroindustry Science and Technology, Federal University of Pelotas, Pelotas 96010-900, Brazil; (L.C.); (S.M.); (B.P.); (L.R.); (S.N.J.); (M.d.O.)
| | - Betina Peres
- Department of Agroindustry Science and Technology, Federal University of Pelotas, Pelotas 96010-900, Brazil; (L.C.); (S.M.); (B.P.); (L.R.); (S.N.J.); (M.d.O.)
| | - Larissa Rodrigues
- Department of Agroindustry Science and Technology, Federal University of Pelotas, Pelotas 96010-900, Brazil; (L.C.); (S.M.); (B.P.); (L.R.); (S.N.J.); (M.d.O.)
| | - Silvia Naiane Jappe
- Department of Agroindustry Science and Technology, Federal University of Pelotas, Pelotas 96010-900, Brazil; (L.C.); (S.M.); (B.P.); (L.R.); (S.N.J.); (M.d.O.)
| | - Paulo Carteri Coradi
- Laboratory of Postharvest (LAPOS), Campus Cachoeira do Sul, Federal University of Santa Maria, Avenue Taufik Germano, 3013, Universitário II, Cachoeira do Sul 96503-205, Brazil
| | - Maurício de Oliveira
- Department of Agroindustry Science and Technology, Federal University of Pelotas, Pelotas 96010-900, Brazil; (L.C.); (S.M.); (B.P.); (L.R.); (S.N.J.); (M.d.O.)
| |
Collapse
|
9
|
Leonarski E, Kuasnei M, Santos EH, Moraes PAD, Cesca K, de Oliveira D, Zielinski AAF. The Potential of Crude and Partially Purified Black Rice Bran Extracts Obtained by Ultrasound-Assisted Extraction: Anti-Glycemic, Cytotoxicity, Cytoprotective, and Antitumoral Effects. Foods 2024; 13:597. [PMID: 38397574 PMCID: PMC10887987 DOI: 10.3390/foods13040597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/09/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024] Open
Abstract
Recovering anthocyanins from black rice bran is a way of valuing this byproduct, by obtaining an extract with biological potential. The objective of this study was to recover anthocyanins using ultrasound-assisted extraction. Some of the extract was partially purified, and both (crude and partially purified) extracts were evaluated for their anthocyanin content, antioxidant activity, antidiabetic and antitumoral activities, cytotoxicity, and oxidative stress. An increase in the laboratory scale was also achieved, making possible to increase the extraction volume up to 20 times without significantly changing the content of anthocyanins (1.85 mg C3G/g DW). It was found that the purified sample presented a 4.2 times higher value of total anthocyanins compared to the crude sample. The best IC50 values for the purified sample were verified by DPPH and ABTS (0.76 and 0.33 mg/mL). The best results for antidiabetic activity were obtained for the partially purified sample: 0.82 µM C3G for α-glucosidase and 12.5 µM C3G for α-amylase. The extracts demonstrated protection (~70%) when subjected to the oxidative stress of L929 cells. An antitumoral effect of 25-30% for both extracts was found in A459 cells. The crude and partially purified extracts of black rice have antidiabetic and anticancer effects and more studies are needed to explore their potential.
Collapse
Affiliation(s)
- Eduardo Leonarski
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina (UFSC), Florianópolis 88010-970, SC, Brazil; (E.L.); (M.K.); (E.H.S.); (K.C.); (D.d.O.)
| | - Mayara Kuasnei
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina (UFSC), Florianópolis 88010-970, SC, Brazil; (E.L.); (M.K.); (E.H.S.); (K.C.); (D.d.O.)
| | - Eloisa H. Santos
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina (UFSC), Florianópolis 88010-970, SC, Brazil; (E.L.); (M.K.); (E.H.S.); (K.C.); (D.d.O.)
| | - Paulo A. D. Moraes
- Department of Chemistry, Federal University of Santa Catarina (UFSC), Florianópolis 88010-970, SC, Brazil;
| | - Karina Cesca
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina (UFSC), Florianópolis 88010-970, SC, Brazil; (E.L.); (M.K.); (E.H.S.); (K.C.); (D.d.O.)
| | - Débora de Oliveira
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina (UFSC), Florianópolis 88010-970, SC, Brazil; (E.L.); (M.K.); (E.H.S.); (K.C.); (D.d.O.)
| | - Acácio A. F. Zielinski
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina (UFSC), Florianópolis 88010-970, SC, Brazil; (E.L.); (M.K.); (E.H.S.); (K.C.); (D.d.O.)
| |
Collapse
|
10
|
Zhu J, Wang R, Zhang Y, Lu Y, Cai S, Xiong Q. Metabolomics Reveals Antioxidant Metabolites in Colored Rice Grains. Metabolites 2024; 14:120. [PMID: 38393012 PMCID: PMC10891847 DOI: 10.3390/metabo14020120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/05/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
Colored rice is richer in nutrients and contains more nutrients and bioactive substances than ordinary white rice. Moderate consumption of black (purple) rice has a variety of physiological effects, such as antioxidant effects, blood lipid regulation, and blood sugar control. Therefore, we utilized nontargeted metabolomics, quantitative assays for flavonoid and phenolic compounds, and physiological and biochemical data to explore the correlations between metabolites and the development of antioxidant characteristics in pigmented rice seeds. The findings indicated that, among Yangjinnuo 818 (YJN818), Hongnuo (HN), Yangchannuo 1 hao (YCN1H), and Yangzi 6 hao (YZ6H), YZ6H exhibited the highest PAL activity, which was 2.13, 3.08, and 3.25 times greater than those of YJN818, HN, and YCN1H, respectively. YZ6H likewise exhibited the highest flavonoid content, which was 3.8, 7.06, and 35.54 times greater than those of YJN818, HN, and YCN1H, respectively. YZ6H also had the highest total antioxidant capacity, which was 2.42, 3.76, and 3.77 times greater than those of YJN818, HN, and YCN1H, respectively. Thus, purple rice grains have stronger antioxidant properties than other colored rice grains. Receiver operating characteristic (ROC) curve analysis revealed that trans-3,3',4',5,5',7-hexahydroxyflavanone, phorizin, and trilobatin in the YZ6H, HN, and YCN1H comparison groups all had area under the curve (AUC) values of 1. Phlorizin, trans-3,3',4',5,5',7-hexahydroxyflavanone, and trilobatin were recognized as indices of antioxidant capability in colored rice in this research. This research adds to the understanding of antioxidant compounds in pigmented rice, which can increase the nutritional value of rice and promote the overall well-being of individuals. This type of information is of immense importance in maintaining a balanced and healthy diet.
Collapse
Affiliation(s)
- Jinyan Zhu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China; (J.Z.)
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Ruizhi Wang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China; (J.Z.)
| | - Yu Zhang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China; (J.Z.)
| | - Yanyao Lu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China; (J.Z.)
| | - Shuo Cai
- Jiangxi Irrigation Experiment Central Station, Nanchang 330201, China
| | - Qiangqiang Xiong
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China; (J.Z.)
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
- Jiangxi Irrigation Experiment Central Station, Nanchang 330201, China
| |
Collapse
|
11
|
Monsierra L, Mansilla PS, Pérez GT. Whole Flour of Purple Maize as a Functional Ingredient of Gluten-Free Bread: Effect of In Vitro Digestion on Starch and Bioaccessibility of Bioactive Compounds. Foods 2024; 13:194. [PMID: 38254495 PMCID: PMC10813994 DOI: 10.3390/foods13020194] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 12/29/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
The growing demand for gluten-free products requires the study of alternatives to produce nutritionally and technologically favorable foods. The aim was to evaluate the content and antioxidant capacity of gluten-free bread enriched with whole flour of purple maize (PM) and how starch and bioaccessibility of antioxidant compounds were modified during in vitro digestion. Gluten-free bread was prepared with the addition of 34%, 50%, and 70% PM, and white maize bread served as control. The content of total polyphenols, anthocyanins, and antioxidant capacity through FRAP and TEAC was measured. Specific volume, crumb texture, and starch digestibility were determined in the breads. Simultaneously, in vitro digestion and dialysis by membrane were performed to evaluate the bioaccessible and potentially bioavailable fraction. Bread with 34% PM had a similar specific volume and crumb texture to the control, but higher content of polyphenols (52.91 mg AG/100 g), anthocyanins (23.13 mg c3-GE/100 g), and antioxidant capacity (3.55 and 5.12 µmol tr/g for FRAP and TEAC, respectively). The PM breads had a higher antioxidant content and capacity and higher slowly digestible and resistant starch than the control. These parameters increased as the PM proportion rose. After digestion, anthocyanins were degraded, polyphenols and antioxidant capacity decreased, but they remained potentially bioavailable, although to a lesser extent. Bread with 34% shows acceptable technological parameters, lower starch digestibility, and contribution of bioactive compounds with antioxidant capacity. This indicates that purple maize flour represents a potential ingredient to produce gluten-free bread with an improved nutritional profile.
Collapse
Affiliation(s)
- Luisina Monsierra
- Facultad de Ciencias Agropecuarias (FCA), Departamento de Agroalimentos, Universidad Nacional de Cordoba (UNC), Ing. Agr. Felix Aldo Marrone 746, Cordoba 5000, Argentina; (L.M.); (P.S.M.)
- Instituto de Ciencia y Tecnología de los Alimentos Córdoba (ICYTAC), CONICET-UNC, Avenida Filloy s/n, Cordoba 5000, Argentina
| | - Pablo Sebastián Mansilla
- Facultad de Ciencias Agropecuarias (FCA), Departamento de Agroalimentos, Universidad Nacional de Cordoba (UNC), Ing. Agr. Felix Aldo Marrone 746, Cordoba 5000, Argentina; (L.M.); (P.S.M.)
- Instituto de Ciencia y Tecnología de los Alimentos Córdoba (ICYTAC), CONICET-UNC, Avenida Filloy s/n, Cordoba 5000, Argentina
| | - Gabriela Teresa Pérez
- Instituto de Ciencia y Tecnología de los Alimentos Córdoba (ICYTAC), CONICET-UNC, Avenida Filloy s/n, Cordoba 5000, Argentina
- Facultad de Ciencias Agropecuarias (FCA), Cátedra de Química Biológica, Departamento de Fundamentación Biológica, Universidad Nacional de Cordoba (UNC), Ing. Agr. Felix Aldo Marrone 746, Cordoba 5000, Argentina
| |
Collapse
|
12
|
Yılmaz B, Sırbu A, Altıntaş Başar HB, Goksen G, Chabı IB, Kumagaı H, Ozogul F. Potential roles of cereal bioactive compounds in the prevention and treatment of type 2 diabetes: A review of the current knowledge. Crit Rev Food Sci Nutr 2023; 65:1326-1343. [PMID: 38148641 DOI: 10.1080/10408398.2023.2292790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Diabetes is one of the most common non-communicable diseases in both developed and underdeveloped countries with a 9.3% prevalence. Unhealthy diets and sedentary lifestyles are among the most common reasons for type 2 diabetes mellitus (T2DM). Diet plays a crucial role in both the etiology and treatment of T2DM. There are several recommendations regarding the carbohydrate intake of patients with T2DM. One of them is about reducing the total carbohydrate intake and/or changing the type of carbohydrate to reduce the glycaemic index. Cereals are good sources of carbohydrates in the diet with a significant amount of soluble and non-soluble fiber content. Apart from fiber, it has been shown that the bioactive compounds present in cereals such as proteins, phenolic compounds, carotenoids, and tocols have beneficial impacts in the prevention and treatment of T2DM. Moreover, cereal by-products especially the by-products of milling processes, which are bran and germ, have been reported to have anti-diabetic activities mainly because of their fiber and polyphenols content. Considering the potential functions of cereals in patients with T2DM, this review focuses on the roles of cereal bioactive compounds in the prevention and treatment of type 2 diabetes.
Collapse
Affiliation(s)
- Birsen Yılmaz
- Department of Biological Sciences, Tata Institute of Fundamental Research, Hyderabad, India
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Çukurova University, Adana, Türkiye
| | - Alexandrina Sırbu
- FMMAE Ramnicu Valcea, Constantin Brancoveanu University of Pitesti, Valcea, Romania
| | | | - Gülden Goksen
- Department of Food Technology, Vocational School of Technical Sciences at Mersin Tarsus Organized Industrial Zone, Tarsus University, Mersin, Türkiye
| | - Ifagbémi Bienvenue Chabı
- Laboratory of Human Nutrition and Valorization of Food Bio-Ingredients, Faculty of Agricultural Sciences, University of Abomey-Calavi, Jericho Cotonou, Benin
| | - Hitomi Kumagaı
- Nihon University College of Bioresource Sciences Graduate School of Bioresource Sciences, Fujisawa, Japan
| | - Fatih Ozogul
- Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, Adana, Türkiye
- Biotechnology Research and Application Center, Cukurova University, Adana, Turkiye
| |
Collapse
|
13
|
Ke S, Jiang Y, Zhou M, Li Y. Genome-Wide Identification, Evolution, and Expression Analysis of the WD40 Subfamily in Oryza Genus. Int J Mol Sci 2023; 24:15776. [PMID: 37958759 PMCID: PMC10648978 DOI: 10.3390/ijms242115776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/23/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
The WD40 superfamily is widely found in eukaryotes and has essential subunits that serve as scaffolds for protein complexes. WD40 proteins play important regulatory roles in plant development and physiological processes, such as transcription regulation and signal transduction; it is also involved in anthocyanin biosynthesis. In rice, only OsTTG1 was found to be associated with anthocyanin biosynthesis, and evolutionary analysis of the WD40 gene family in multiple species is less studied. Here, a genome-wide analysis of the subfamily belonging to WD40-TTG1 was performed in nine AA genome species: Oryza sativa ssp. japonica, Oryza sativa ssp. indica, Oryza rufipogon, Oryza glaberrima, Oryza meridionalis, Oryza barthii, Oryza glumaepatula, Oryza nivara, and Oryza longistaminata. In this study, 383 WD40 genes in the Oryza genus were identified, and they were classified into four groups by phylogenetic analysis, with most members in group C and group D. They were found to be unevenly distributed across 12 chromosomes. A total of 39 collinear gene pairs were identified in the Oryza genus, and all were segmental duplications. WD40s had similar expansion patterns in the Oryza genus. Ka/Ks analyses indicated that they had undergone mainly purifying selection during evolution. Furthermore, WD40s in the Oryza genus have similar evolutionary patterns, so Oryza sativa ssp. indica was used as a model species for further analysis. The cis-acting elements analysis showed that many genes were related to jasmonic acid and light response. Among them, OsiWD40-26/37/42 contained elements of flavonoid synthesis, and OsiWD40-15 had MYB binding sites, indicating that they might be related to anthocyanin synthesis. The expression profile analysis at different stages revealed that most OsiWD40s were expressed in leaves, roots, and panicles. The expression of OsiWD40s was further analyzed by qRT-PCR in 9311 (indica) under various hormone treatments and abiotic stresses. OsiWD40-24 was found to be responsive to both phytohormones and abiotic stresses, suggesting that it might play an important role in plant stress resistance. And many OsiWD40s might be more involved in cold stress tolerance. These findings contribute to a better understanding of the evolution of the WD40 subfamily. The analyzed candidate genes can be used for the exploration of practical applications in rice, such as cultivar culture for colored rice, stress tolerance varieties, and morphological marker development.
Collapse
Affiliation(s)
| | | | | | - Yangsheng Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China; (S.K.); (Y.J.); (M.Z.)
| |
Collapse
|
14
|
Obadi M, Xu B. Effect of processing methods and storage on the bioactive compounds of black rice ( Oryza sativa L.): a review. Food Funct 2023; 14:9100-9122. [PMID: 37766517 DOI: 10.1039/d3fo02977h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
Compared to brown and white rice, black rice contains more nutrients and numerous unique bioactive substances, such as essential amino acids, dietary fiber, γ-oryzanols, γ-aminobutyric acid, phenolic compounds, and anthocyanins, which makes it highly valuable for development and use. Whole-grain black rice typically requires a certain amount of processing prior to consumption, with the primary goal of enhancing the taste and texture of whole grains and their products. However, various new processing technologies have been effectively applied to the processing of black rice and the enhancement of its qualitative characteristics, but they also have both positive and negative effects on its nutritional quality. Therefore, evaluation of changes in concentrations of the bioactive substances as natural antioxidants due to processing and storage conditions is critical for establishing dietary guidelines for rice. This review highlights the primary bioactive components of black rice and provides a discussion of the impact of processing methods and storage on the bioactive components of black rice. Furthermore, we summarized the issues that currently exist in the processing and storage of black rice.
Collapse
Affiliation(s)
- Mohammed Obadi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China.
| | - Bin Xu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China.
| |
Collapse
|
15
|
Ngo TV, Kunyanee K, Luangsakul N. Insights into Recent Updates on Factors and Technologies That Modulate the Glycemic Index of Rice and Its Products. Foods 2023; 12:3659. [PMID: 37835312 PMCID: PMC10572933 DOI: 10.3390/foods12193659] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/19/2023] [Accepted: 09/19/2023] [Indexed: 10/15/2023] Open
Abstract
Rice is a staple food and energy source for half the world's population. Due to its quick digestion and absorption in the gastrointestinal tract, rice is typically regarded as having a high or medium-high glycemic index (GI); however, this can vary depending on the variety, nutrient compositions, processing, and accompanying factors. This report included a table of the glycemic index for rice and rice products in different countries, which could give an overview and fundamental information on the recent GI of different rice varieties. In addition, latest updates about the mechanism effects of rice nutritional profiles and processing techniques on GI were also provided and discussed. The influence of state-of-the-art GI regulation methods was also evaluated. Furthermore, the effectiveness and efficiency of applied technologies were also given. Furthermore, this review offered some aspects about the potential nutraceutical application of rice that food scientists, producers, or consumers might consider. Diverse types of rice are grown under various conditions that could affect the GI of the product. The instinct nutrients in rice could show different effects on the digestion rate of its product. It also revealed that the rice product's digestibility is process-dependent. The postprandial glucose response of the rice products could be changed by modifying processing techniques, which might produce the new less-digestive compound or the inhibition factor in the starch hydrolysis process. Because of the significant importance of rice, this paper also concluded the challenges, as well as some important aspects for future research.
Collapse
Affiliation(s)
| | | | - Naphatrapi Luangsakul
- School of Food Industry, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand; (T.V.N.)
| |
Collapse
|
16
|
Al-Harthi MA, Attia YA, Elgandy MF, Bovera F. The effects of Moringa peregrina seed meal, autoclaving, and/or exogenous enzyme cocktail on performance, carcass traits, meat quality, and blood lipids of broilers. Front Vet Sci 2023; 10:1158468. [PMID: 37476825 PMCID: PMC10354260 DOI: 10.3389/fvets.2023.1158468] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/11/2023] [Indexed: 07/22/2023] Open
Abstract
The effects of Moringa peregrina seed meal (MPSM), autoclaving, and/or enzyme cocktail addition on performance, profitability, carcass traits, meat quality, and blood lipids of broilers between 1 and 35 d of age were investigated. Seven experimental diets were employed: the control 0% MPSM, 10% raw MPSM, 10% autoclaved MPSM (at a temperature of 120°C and 1 kg/cm2 pressure for 30 min), 10% raw MPSM supplemented with enzymes at 0.1 or 0.2 g/kg feed, and 10% autoclaved MPSM supplemented with the same previous enzymes and doses. Each diet was fed to 8 replicates with 5 broilers in each. At the end of the experiment, 3 broilers from each replicate were randomLy chosen to determine carcass traits, meat quality, and blood lipids. Findings at 35 d of age indicated that all 10% raw MPSM treatments with or without enzymes addition impaired growth, feed conversion (FCR), and profitability (p < 0.05), but increased feed intake (p < 0.05) and did not affect mortality when compared with the control group. The 10% autoclaved MPSM treatments with or without enzymes addition increased feed intake (p < 0.05) when compared with the control group, inducing growth equal to the control group (p > 0.05), and improving FCR and profitability. Enzymes addition to raw MPSM did not produce positive effects (p < 0.05), and no additive effect was observed when autoclaving and enzymes addition were combined (p > 0.05) as compared to the autoclaving group. Carcass traits, meat quality, and blood lipids were not significantly affected by MPSM, autoclaving, and enzymes addition. However, intestine, cecum, and gizzard percentages increased (p < 0.05) with all 10% raw MPSM treatments, while all 10% autoclaved MPSM treatments could return these values (p > 0.05) to the control group, except with gizzard, which exhibited less improvement. Additionally, all autoclaved groups had lower meat pH measured 24 h postmortem (p <0.05) compared to the control group. In conclusion, autoclaved MPSM can be included in broilers' diets at a 10% level without negative effects on performance, carcass traits, meat quality, and blood lipids. This indicates that autoclaving alone is adequate.
Collapse
Affiliation(s)
- Mohammed A. Al-Harthi
- Department of Agriculture, Faculty of Environmental Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Youssef A. Attia
- Department of Agriculture, Faculty of Environmental Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohamed F. Elgandy
- Department of Agriculture, Faculty of Environmental Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Fulvia Bovera
- Department of Veterinary Medicine and Animal Production, University of Napoli Federico II, Napoli, Italy
| |
Collapse
|
17
|
Rondanelli M, Ferrario RA, Barrile GC, Guido D, Gasparri C, Ferraris C, Cavioni A, Mansueto F, Mazzola G, Patelli Z, Peroni G, Pirola M, Razza C, Tartara A, Perna S. The Glycemic Index of Indica and Japonica Subspecies Parboiled Rice Grown in Italy and the Effect on Glycemic Index of Different Parboiling Processes. J Med Food 2023. [PMID: 37262189 DOI: 10.1089/jmf.2022.0120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023] Open
Abstract
Rice is generally considered a high-glycemic index (GI) food, but numerous studies show that parboiling reduces the GI. There are no studies on GI of Indica and Japonica subspecies parboiled rice grown in Italy. The aim of this study was (1) to evaluate GI in different varieties of parboiled rice (ribe, white and brown long B, basmati, black, red, roma, and arborio); (2) to evaluate GI of same variety of rice subjected to different rice parboiling processes (parboiled ribe and parboiled long B with two different methods: flora and conventional method); (3) to evaluate GI of two by-products of parboiled rice: white and brown rice cake. Participants were 10 healthy individuals (20-30 years old, body mass index 18.5-25 kg/m2). Proximate composition and GI were determined by using standard methods. All parboiled rice assessed is low-GI (brown long B 48.1 ± 6.4 by flora method, ribe 52.0 ± 1.8 GI by flora method, black rice 52.3 ± 7.6 by flora method, long B 52.4 ± 3.9 by flora method, long B 53.4 ± 5.1 by conventional method, ribe 54.4 ± 4.3 GI by conventional method, Roma 54.4 ± 7.9 GI by flora method, and arborio 54.4 ± 7.9 GI by flora method), except red rice that is of medium-GI (56.1 ± 7.0 GI), and both classic and brown cakes that are high-GI (respectively, 83.3 ± 8.9 GI and 102.2 ± 5.5 GI). Parboiled rice is low-GI and so is favorable for the dietary management of metabolic disorders and celiac disease. Clinicaltrials.gov (NCT05333081).
Collapse
Affiliation(s)
- Mariangela Rondanelli
- IRCCS Mondino Foundation, Pavia, Italy
- Unit of Human and Clinical Nutrition, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy
| | | | - Gaetan Claude Barrile
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona "Istituto Santa Margherita," University of Pavia, Pavia, Italy
| | - Davide Guido
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Clara Gasparri
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona "Istituto Santa Margherita," University of Pavia, Pavia, Italy
| | - Cinzia Ferraris
- Food Education and Sport Nutrition Laboratory, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy
| | - Alessandro Cavioni
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona "Istituto Santa Margherita," University of Pavia, Pavia, Italy
| | - Francesca Mansueto
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona "Istituto Santa Margherita," University of Pavia, Pavia, Italy
| | - Giuseppe Mazzola
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona "Istituto Santa Margherita," University of Pavia, Pavia, Italy
| | - Zaira Patelli
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona "Istituto Santa Margherita," University of Pavia, Pavia, Italy
| | - Gabriella Peroni
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona "Istituto Santa Margherita," University of Pavia, Pavia, Italy
| | - Martina Pirola
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona "Istituto Santa Margherita," University of Pavia, Pavia, Italy
| | - Claudia Razza
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona "Istituto Santa Margherita," University of Pavia, Pavia, Italy
| | - Alice Tartara
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona "Istituto Santa Margherita," University of Pavia, Pavia, Italy
| | - Simone Perna
- Department of Biology, College of Science, University of Bahrain, Zallaq, Bahrain
| |
Collapse
|
18
|
Yao T, Sui Z, Janaswamy S. Complexing curcumin and resveratrol in the starch crystalline network alters in vitro starch digestion: Towards developing healthy food materials. Food Chem 2023; 425:136471. [PMID: 37269637 DOI: 10.1016/j.foodchem.2023.136471] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 05/15/2023] [Accepted: 05/25/2023] [Indexed: 06/05/2023]
Abstract
Starch is an abundant and common food ingredient capable of complexing with various bioactive compounds (BCs), including polyphenols. However, little information is available about using native starch network arrangement for the starch-BCs inclusion. Herein, two BCs, curcumin, and resveratrol, were undertaken to delineate the role of different starch crystalline types on their encapsulation efficiency. Four starches with different crystalline types, botanical sources, and amylose content were examined. The results suggest that B-type hexagonal packing is necessary to encapsulate curcumin and resveratrol successfully. The increase in XRD crystallinity while maintaining the FTIR band at 1048/1016 cm-1 suggests that BCs are likely entrapped inside the starch granule than attaching to the granule surface. A significant change in starch digestion is seen only for the B-starch complexes. Embedding BCs in the starch network and controlling starch digestion could be a cost-effective and valuable approach to designing and developing novel starch-based functional food ingredients.
Collapse
Affiliation(s)
- Tianming Yao
- Whistler Center for Carbohydrate Research, Department of Food Science, Purdue University, West Lafayette, IN 47907, USA.
| | - Zhongquan Sui
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Srinivas Janaswamy
- Dairy and Food Science Department, South Dakota State University, Brookings, SD 57007, USA.
| |
Collapse
|
19
|
Wu X, Zhou Y, Lu Q, Liu R. Ultrasonic-assisted immersion of parboiled treatment improves head rice yield and nutrition of black rice and provides a softer texture of cooked black rice. ULTRASONICS SONOCHEMISTRY 2023; 95:106378. [PMID: 36965314 PMCID: PMC10074192 DOI: 10.1016/j.ultsonch.2023.106378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/06/2023] [Accepted: 03/17/2023] [Indexed: 06/18/2023]
Abstract
Parboiling is gaining increasing attention as it can enhance the head rice yield (HRY) and nutritional quality of non-pigmented rice. The traditional parboiling process with high-temperature immersion requires a long immersion period and results in hard texture of cooked parboiled black rice (PBR), which may be addressed by ultrasound-assisted immersion. In this study, we evaluated the effect of power, time and temperature of ultrasonic immersion on the HRY, texture profile and nutritional quality of PBR. Proper ultrasound-assisted immersion could increase the HRY by about 20% and the GABA content by up to 133%, as well as reduce the arsenic and cadmium content by up to 61% and 79% relative to untreated black rice (UBR), respectively. Moreover, it could increase the content of essential minerals such as calcium, iron and zinc to some extent, and free and bound polyphenols, despite of a certain loss of anthocyanins. It could also improve the palatability of cooked rice. Furthermore, response surface experiments based on the Box-Behnken design were performed to obtain and validate the optimal conditions of ultrasound-assisted immersion (540 W, 45 min, 57 °C). On this basis, morphological changes might be one reason for the improved HRY, nutrition and texture of PBR compared with those of UBR, namely the disappearance of cracks near the aleurone layer and formation of new cracks in the interior of rice.
Collapse
Affiliation(s)
- Xin Wu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yi Zhou
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Qun Lu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China; Wuhan Engineering Research Center of Bee Products on Quality and Safety Control, Wuhan, China; Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan, China
| | - Rui Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China; Wuhan Engineering Research Center of Bee Products on Quality and Safety Control, Wuhan, China; Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan, China; National Engineering Research Center of Rice and Byproduct Deep Processing, Wuhan, China.
| |
Collapse
|
20
|
Yang Z, Zhang Y, Wu Y, Ouyang J. Factors influencing the starch digestibility of starchy foods: A review. Food Chem 2023; 406:135009. [PMID: 36450195 DOI: 10.1016/j.foodchem.2022.135009] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022]
Abstract
Starchy foods are a major energy source of the human diet, their digestion is closely related to human health. Most foods require lots of processing before eating, therefore, many factors can influence starch digestibility. The factors that affect the digestibility of starches have been widely discussed previously, but the extracted starches in those studies were different from those present within the actual food matrix. This review summarizes the factors influencing the starch digestibility in starchy foods. Endogenous non-starch components hinder the starch digestive process. Food ingredients and additives decrease starch digestibility by inhibiting the activity of digestive enzymes or hindering the contact between starch and enzymes. Storage induce the retrogradation of starch, decreasing the digestibility of foods. Therefore, preparing starchy foods with whole grains, processing them as little as possible, using food additives reasonably, and storage conditions may all be beneficial measures for the production of low GI foods.
Collapse
Affiliation(s)
- Zhenglei Yang
- Department of Food Science and Engineering, College of Biological Sciences and Technology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China
| | - Yuyang Zhang
- Department of Food Science, University of Guelph, ON N1G2W1, Canada
| | - Yanwen Wu
- Institute of Analysis and Testing, Beijing Academy of Science and Technology (Beijing Center for Physical and Chemical Analysis), Beijing 100089, China
| | - Jie Ouyang
- Department of Food Science and Engineering, College of Biological Sciences and Technology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
21
|
Evaluation of the technological properties of rice starch modified by high hydrostatic pressure (HHP). INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.103241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
22
|
Lu WC, Cheng YT, Chan YJ, Li PH. Food safety assessments of acrylamide formation and characterizations of flaky rolls enriched with black rice (Oryza sativa). Front Nutr 2022; 9:1027800. [PMID: 36337666 PMCID: PMC9633999 DOI: 10.3389/fnut.2022.1027800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/06/2022] [Indexed: 11/24/2022] Open
Abstract
This study aims to investigate the physicochemical composition, textural parameters, and chemical constituent of flaky rolls incorporated with different proportions of black rice flour. According to farinographic characteristics, the addition of black rice flour could reduce the stability and increase the dough development time and water absorption (%). While for the extensographic properties, addition of black rice flour resulted in significantly different maximum resistance to extension (BU) and extensibility (cm) vs. the control. With the addition of black rice flour in flaky rolls, the crude protein, total dietary fiber (TDF), soluble dietary fiber (SDF), and insoluble dietary fiber (IDF) were significantly improved. Glucose released was much lower with 10 and 20% black rice than the control and 5% black rice because of the higher black rice inclusion. With increasing black rice incorporation, total anthocyanin content, and antioxidant capacity was also improved. The content of asparagine, acrylamide, hydroxymethylfurfural (HMF), furfural, methylglyoxal, and glyoxal in flaky rolls was also increased. The proper content of black rice flour (5%) could significantly enhance the stability of the dough properties; control the final volume, texture, and appearance; and retain good protein and fiber composition, antioxidant capacity, and overall acceptance of the flaky roll.
Collapse
Affiliation(s)
- Wen-Chien Lu
- Department of Food and Beverage Management, Chung-Jen Junior College of Nursing, Health Sciences and Management, Chiayi City, Taiwan
| | - Yu-Tsung Cheng
- Cardiovascular Center, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Yung-Jia Chan
- College of Biotechnology and Bioresources, Da-Yeh University, Changhua, Taiwan
| | - Po-Hsien Li
- Department of Food and Nutrition, Providence University, Taichung, Taiwan
- *Correspondence: Po-Hsien Li
| |
Collapse
|
23
|
The Effect of Soybean Peptides on Improving Quality and the ACE Inhibitory Bioactivity of Extruded Rice. Processes (Basel) 2022. [DOI: 10.3390/pr10101921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
It is crucial to address the dietary problems of hypertensive patients. The effect and mechanism of different contents of soybean protein on cooking quality and angiotensin-converting enzyme (ACE) inhibitory action in the extruded rice were firstly investigated. The results showed that the extruded rice with soybean protein possessed the higher taste value (90.32 ± 2.31), hardness (2.65 ± 0.01 g), and good pasting quality (p ≤ 0.05). Meanwhile, the soybean protein notably retarded the starch digestibility; the sample with 6% soybean protein showed the fewest rapidly digestible starch (RDS) content (78.82 ± 0.01 mg g−1) and the most slowly digestible starch (SDS) content (8.97 ± 0.45 mg g−1). Importantly, the ACE inhibition rate improved from 17.09 ± 0.01% to 74.02 ± 0.65% in the 6% soybean protein sample because of the production of peptides. The peptide composition of samples were compared, which showed that the effective ACE-inhibitory peptides usually contain 2~20 amino acids, and Pro, Leu, Ile, Val, Phe, and Ala were the main components. Overall, moderate soybean protein would give a good quality and lower ACE activity in extruded food.
Collapse
|
24
|
α-glucosidase inhibitory, antioxidant activity, and GC/MS analysis of Descurainia sophia methanolic extract: in vitro, in vivo, and in silico studies. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
25
|
Junka N, Rattanamechaiskul C. Drying modelling of amylose fatty acid complex formation for reducing rapidly available glucose of geographical indication rice during high-temperature fluidisation. J FOOD ENG 2022. [DOI: 10.1016/j.jfoodeng.2021.110899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
26
|
Wang Y, Zheng Y, Zhou R, Ma M. Kinetic studies on soluble sugar profile in rice during storage: Derivation using the Laplace transform. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2021.102915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
27
|
Chen Y, Wang J, Zou L, Cao H, Ni X, Xiao J. Dietary proanthocyanidins on gastrointestinal health and the interactions with gut microbiota. Crit Rev Food Sci Nutr 2022; 63:6285-6308. [PMID: 35114875 DOI: 10.1080/10408398.2022.2030296] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Many epidemiological and experimental studies have consistently reported the beneficial effects of dietary proanthocyanidins (PAC) on improving gastrointestinal physiological functions. This review aims to present a comprehensive perspective by focusing on structural properties, interactions and gastrointestinal protection of PAC. In brief, the main findings of this review are summarized as follows: (1) Structural features are critical factors in determining the bioavailability and subsequent pharmacology of PAC; (2) PAC and/or their bacterial metabolites can play a direct role in the gastrointestinal tract through their antioxidant, antibacterial, anti-inflammatory, and anti-proliferative properties; (3) PAC can reduce the digestion, absorption, and bioavailability of carbohydrates, proteins, and lipids by interacting with them or their according enzymes and transporters in the gastrointestinal tract; (4). PAC showed a prebiotic-like effect by interacting with the microflora in the intestinal tract, and the enhancement of PAC on a variety of probiotics, such as Bifidobacterium spp. and Lactobacillus spp. could be associated with potential benefits to human health. In conclusion, the potential effects of PAC in prevention and alleviation of gastrointestinal diseases are remarkable but clinical evidence is urgently needed.
Collapse
Affiliation(s)
- Yong Chen
- Laboratory of Food Oral Processing, School of Food Science & Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, China
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jing Wang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, China
- Ningbo Research Institute, Zhejiang University, Ningbo, Zhejiang, China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Hui Cao
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Sciences, Universidade de Vigo, Ourense, Spain
| | - Xiaoling Ni
- Pancreatic Cancer Group, General Surgery Department, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jianbo Xiao
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou, China
| |
Collapse
|
28
|
Tiozon RJN, Sartagoda KJD, Fernie AR, Sreenivasulu N. The nutritional profile and human health benefit of pigmented rice and the impact of post-harvest processes and product development on the nutritional components: A review. Crit Rev Food Sci Nutr 2021:1-28. [PMID: 34709089 DOI: 10.1080/10408398.2021.1995697] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Pigmented rice has attracted considerable attention due to its nutritional value, which is in large conferred by its abundant content of phenolic compounds, considerable micronutrient concentrations, as well as its higher resistant starch and thereby slower digestibility properties. A wide range of phenolic compounds identified in pigmented rice exhibit biological activities such as antioxidant activity, anti-inflammatory, anticancer, and antidiabetic properties. Post-harvest processes significantly reduce the levels of these phytochemicals, but recent developments in processing methods have allowed greater retention of their contents. Pigmented rice has also been converted to different products for food preservation and to derive functional foods. Profiling a large set of pigmented rice cultivars will thus not only provide new insights into the phytochemical diversity of rice and the genes underlying the vast array of secondary metabolites present in this species but also provide information concerning their nutritional benefits, which will be instrumental in breeding healthier rice. The present review mainly focuses on the nutritional composition of pigmented rice and how it can impact human health alongside the effects of post-harvest processes and product development methods to retain the ambient level of phytochemicals in the final processed form in which it is consumed.
Collapse
Affiliation(s)
- Rhowell Jr N Tiozon
- Consumer-driven Grain Quality and Nutrition Center, Strategic Innovation Platform, International Rice Research Institute, Los Baños, Philippines.,Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Kristel June D Sartagoda
- Consumer-driven Grain Quality and Nutrition Center, Strategic Innovation Platform, International Rice Research Institute, Los Baños, Philippines
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Nese Sreenivasulu
- Consumer-driven Grain Quality and Nutrition Center, Strategic Innovation Platform, International Rice Research Institute, Los Baños, Philippines
| |
Collapse
|
29
|
Vici G, Perinelli DR, Camilletti D, Carotenuto F, Belli L, Polzonetti V. Nutritional Properties of Rice Varieties Commonly Consumed in Italy and Applicability in Gluten Free Diet. Foods 2021; 10:foods10061375. [PMID: 34198605 PMCID: PMC8232128 DOI: 10.3390/foods10061375] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/09/2021] [Accepted: 06/11/2021] [Indexed: 11/16/2022] Open
Abstract
Gluten-free diets are often characterized by an inadequate intake of nutrients and are generally monotonous for the limited number of products celiac patients can use. As rice is the most used cereal by celiac consumers, studying rice varieties nutritional characteristics is of interest to manage diet quality and variety. Proteins, total carbohydrates and amylose content of six rice varieties (Ribe, Vialone Nano, Carnaroli, Arborio, Basmati, and Fragrance) were analyzed. Analyses were performed in raw products and after boiling, stewing, and microwaving. A decrease of proteins and total carbohydrates amount was observed in cooked rice. The same was reported for amylose content with boiling showing the highest loss (average retained amylose 53%). Considering amylose percentage with respect to total carbohydrates, each variety showed either an increase or a decrease depending on cooking method. The highest values were obtained with stewing above all for Basmati rice and Arborio rice. However, exceptions can be underlined as Carnaroli rice, showing the highest percentage when boiled. In this context, nutritional characteristics of cooked rice varieties appear to be of great importance to increase specific nutritional knowledge to better manage gluten-free diets.
Collapse
Affiliation(s)
- Giorgia Vici
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III da Varano, 62032 Camerino, MC, Italy; (D.C.); (F.C.); (L.B.); (V.P.)
- Correspondence:
| | - Diego Romano Perinelli
- School of Pharmacy, University of Camerino, Via Gentile III da Varano, 62032 Camerino, MC, Italy;
| | - Dalia Camilletti
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III da Varano, 62032 Camerino, MC, Italy; (D.C.); (F.C.); (L.B.); (V.P.)
| | - Flora Carotenuto
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III da Varano, 62032 Camerino, MC, Italy; (D.C.); (F.C.); (L.B.); (V.P.)
| | - Luca Belli
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III da Varano, 62032 Camerino, MC, Italy; (D.C.); (F.C.); (L.B.); (V.P.)
| | - Valeria Polzonetti
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III da Varano, 62032 Camerino, MC, Italy; (D.C.); (F.C.); (L.B.); (V.P.)
| |
Collapse
|
30
|
Roasting of black rice (Oryza Sativa L.): change in physico-functional, thermo-pasting, antioxidant and anthocyanin content. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-00828-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|