1
|
Chen X, Li D, He R, Wang J, Yang R, Qian M, Cao L, Zhang Y, Wang Z, Xiao W. A strategy for the quality control in Polyrhachis dives: Identification and quantification of specific peptides using untargeted and targeted mass spectrometry approaches. Food Res Int 2025; 201:115551. [PMID: 39849704 DOI: 10.1016/j.foodres.2024.115551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 11/12/2024] [Accepted: 12/28/2024] [Indexed: 01/25/2025]
Abstract
Polyrhachis dives (P. dives) is a traditional edible insect with high nutritional value and is the only ant species that is administered as medicine and food. Therefore, it is of great significance to identify the authenticity of the species. In the current study, peptidomics analysis combining untargeted MS with targeted MS was developed and applied for the identification of specific peptides in P. dives and the establishment of quality control. A total of 16 specific peptides were screened, and 7 specific peptides with satisfactory signal response were obtained by targeted mass spectrometry, which could be used to distinguish P. dives from other ant species and ensure the quality of edible ants. Subsequently, the 7 specific peptides were quantitatively analyzed, followed by clustering analysis and biological activity experiments to categorize them into distinct qualities, providing valuable references for further development of quality control methods for P. dives.
Collapse
Affiliation(s)
- Xialin Chen
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture (Jiangsu Kanion Pharmaceutical Co.,Ltd. & Nanjing University of Chinese Medicine), Jiangsu, Nanjing, 211112, China.; Jiangsu Kanion Pharmaceutical Co., Ltd., Nanjing 211100, China
| | - Dandan Li
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture (Jiangsu Kanion Pharmaceutical Co.,Ltd. & Nanjing University of Chinese Medicine), Jiangsu, Nanjing, 211112, China.; Jiangsu Kanion Pharmaceutical Co., Ltd., Nanjing 211100, China
| | - Rongrong He
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture (Jiangsu Kanion Pharmaceutical Co.,Ltd. & Nanjing University of Chinese Medicine), Jiangsu, Nanjing, 211112, China.; Jiangsu Kanion Pharmaceutical Co., Ltd., Nanjing 211100, China
| | - Jiajia Wang
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture (Jiangsu Kanion Pharmaceutical Co.,Ltd. & Nanjing University of Chinese Medicine), Jiangsu, Nanjing, 211112, China.; Jiangsu Kanion Pharmaceutical Co., Ltd., Nanjing 211100, China
| | - Ru Yang
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture (Jiangsu Kanion Pharmaceutical Co.,Ltd. & Nanjing University of Chinese Medicine), Jiangsu, Nanjing, 211112, China.; Jiangsu Kanion Pharmaceutical Co., Ltd., Nanjing 211100, China
| | - Mengyu Qian
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture (Jiangsu Kanion Pharmaceutical Co.,Ltd. & Nanjing University of Chinese Medicine), Jiangsu, Nanjing, 211112, China.; Jiangsu Kanion Pharmaceutical Co., Ltd., Nanjing 211100, China
| | - Liang Cao
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture (Jiangsu Kanion Pharmaceutical Co.,Ltd. & Nanjing University of Chinese Medicine), Jiangsu, Nanjing, 211112, China.; Jiangsu Kanion Pharmaceutical Co., Ltd., Nanjing 211100, China
| | - Yongwen Zhang
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture (Jiangsu Kanion Pharmaceutical Co.,Ltd. & Nanjing University of Chinese Medicine), Jiangsu, Nanjing, 211112, China.; School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zhenzhong Wang
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture (Jiangsu Kanion Pharmaceutical Co.,Ltd. & Nanjing University of Chinese Medicine), Jiangsu, Nanjing, 211112, China.; Jiangsu Kanion Pharmaceutical Co., Ltd., Nanjing 211100, China
| | - Wei Xiao
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture (Jiangsu Kanion Pharmaceutical Co.,Ltd. & Nanjing University of Chinese Medicine), Jiangsu, Nanjing, 211112, China.; Jiangsu Kanion Pharmaceutical Co., Ltd., Nanjing 211100, China.
| |
Collapse
|
2
|
Zhang S, Chen J, Gao F, Su W, Li T, Wang Y. Foodomics as a Tool for Evaluating Food Authenticity and Safety from Field to Table: A Review. Foods 2024; 14:15. [PMID: 39796305 PMCID: PMC11719641 DOI: 10.3390/foods14010015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/06/2024] [Accepted: 12/18/2024] [Indexed: 01/13/2025] Open
Abstract
The globalization of the food industry chain and the increasing complexity of the food supply chain present significant challenges for food authenticity and raw material processing. Food authenticity identification now extends beyond mere adulteration recognition to include quality evaluation, label compliance, traceability determination, and other quality-related aspects. Consequently, the development of high-throughput, accurate, and rapid analytical techniques is essential to meet these diversified needs. Foodomics, an innovative technology emerging from advancements in food science, enables both a qualitative judgment and a quantitative analysis of food authenticity and safety. This review also addresses crucial aspects of fully processing food, such as verifying the origin, processing techniques, label authenticity, and detecting adulterants, by summarizing the omics technologies of proteomics, lipidomics, flavoromics, metabolomics, genomics, and their analytical methodologies, recent developments, and limitations. Additionally, we analyze the advantages and application prospects of multi-omics strategies. This review offers a comprehensive perspective on the food chain, food safety, and food processing from field to table through omics approaches, thereby promoting the stable and sustained development of the food industry.
Collapse
Affiliation(s)
- Shuchen Zhang
- Dalian Jinshiwan Laboratory, Dalian 116034, China;
- Department of Food Science, College of Light Industry, Liaoning University, Shenyang 110031, China; (J.C.); (T.L.)
| | - Jianan Chen
- Department of Food Science, College of Light Industry, Liaoning University, Shenyang 110031, China; (J.C.); (T.L.)
| | - Fanhui Gao
- College of Environmental and Safety Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China;
| | - Wentao Su
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, China;
| | - Tiejing Li
- Department of Food Science, College of Light Industry, Liaoning University, Shenyang 110031, China; (J.C.); (T.L.)
| | - Yuxiao Wang
- Dalian Jinshiwan Laboratory, Dalian 116034, China;
- Department of Food Science, College of Light Industry, Liaoning University, Shenyang 110031, China; (J.C.); (T.L.)
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, China;
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| |
Collapse
|
3
|
Quirantes-Piné R, Sanna G, Mara A, Borrás-Linares I, Mainente F, Picó Y, Zoccatelli G, Lozano-Sánchez J, Ciulu M. Mass Spectrometry Characterization of Honeydew Honey: A Critical Review. Foods 2024; 13:2229. [PMID: 39063313 PMCID: PMC11275487 DOI: 10.3390/foods13142229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/12/2024] [Accepted: 07/13/2024] [Indexed: 07/28/2024] Open
Abstract
Honeydew honey is produced by bees (Apis mellifera) foraging and collecting secretions produced by certain types of aphids on various parts of plants. In addition to exhibiting organoleptic characteristics that distinguish them from nectar honey, these honeys are known for their functional properties, such as strong antioxidant and anti-inflammatory activities. Despite their importance, they remain poorly characterized in comparison with flower honeys, as most studies on this subject are not only carried out on too few samples but also still focused on traditional chemical-physical parameters, such as specific rotation, major sugars, or melissopalynological information. Since mass spectrometry has consistently been a primary tool for the characterization and authentication of honeys, this review will focus on the application of these methods to the characterization of the minor fraction of honeydew honey. More specifically, this review will attempt to highlight what progress has been made so far in identifying markers of the authenticity of the botanical and/or geographical origin of honeydew honeys by mass spectrometry-based approaches. Furthermore, strategies devoted to the determination of contaminants and toxins in honeydew honeys will be addressed. Such analyses represent a valuable tool for establishing the level of food safety associated with these products. A critical analysis of the presented studies will identify their limitations and critical issues, thereby describing the current state of research on the topic.
Collapse
Affiliation(s)
- Rosa Quirantes-Piné
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Avda Fuentenueva s/n, 18071 Granada, Spain;
| | - Gavino Sanna
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, Via Vienna 2, 07100 Sassari, Italy; (G.S.); (A.M.)
| | - Andrea Mara
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, Via Vienna 2, 07100 Sassari, Italy; (G.S.); (A.M.)
| | - Isabel Borrás-Linares
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Avda Fuentenueva s/n, 18071 Granada, Spain;
| | - Federica Mainente
- Department of Biotechnology, University of Verona, Strada le Grazie 15, Cà Vignal 1, 37134 Verona, Italy; (F.M.); (G.Z.); (M.C.)
| | - Yolanda Picó
- Centro de Investigaciones Sobre Desertificaciòn, Ctra. Moncada-Naquera km 4.5, 46113 Moncada, Spain;
| | - Gianni Zoccatelli
- Department of Biotechnology, University of Verona, Strada le Grazie 15, Cà Vignal 1, 37134 Verona, Italy; (F.M.); (G.Z.); (M.C.)
| | - Jesús Lozano-Sánchez
- Department of Food Science and Nutrition, Faculty of Pharmacy, University of Granada, Campus Universitario s/n, 18071 Granada, Spain;
| | - Marco Ciulu
- Department of Biotechnology, University of Verona, Strada le Grazie 15, Cà Vignal 1, 37134 Verona, Italy; (F.M.); (G.Z.); (M.C.)
| |
Collapse
|
4
|
Brugnerotto P, Fuente-Ballesteros A, Martín-Gómez B, María Ares A, Valdemiro Gonzaga L, Fett R, Carolina Oliveira Costa A, Bernal J. Free amino acid profile in Mimosa scabrella honeydew honey from Brazil and chemometric analysis for geographical discrimination. Food Res Int 2024; 177:113856. [PMID: 38225122 DOI: 10.1016/j.foodres.2023.113856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/05/2023] [Accepted: 12/14/2023] [Indexed: 01/17/2024]
Abstract
In this study, twenty free amino acids (FAA) were investigated in samples of bracatinga (Mimosa scabrella) honeydew honey (BHH) from Santa Catarina (n = 15) and Paraná (n = 13) states (Brazil), followed by chemometric analysis for geographic discrimination. The FAA determination was performed by gas chromatography-mass spectrometry (GC-MS) after using a commercial EZ:faast™ kits for GC. Eight FAA were determined, being proline, asparagine, aspartic and glutamic acids found in all BHH, with significant differences (p < 0.05). In addition, with the exception of proline, the others FAA (asparagine, aspartic and glutamic) normally showed higher concentrations in samples from Santa Catarina state, being that in these samples it was also observed higher FAA sums (963.41 to 2034.73 mg kg-1) when compared to samples from Paraná state. The variability in the results did not show a clear profile of similarity when the heatmap and hierarchical grouping were correlated with the geographic origin and the concentration of eight determined FAA. However, principal component analysis (PCA) demonstrated that serine, asparagine, glutamic acid, and tryptophan were responsible for the geographic discrimination among samples from Santa Catarina and Paraná states, since they were the dominant variables (r > 0.72) in the PCA. Therefore, these results could be useful for the characterization and authentication of BHH based on their FAA composition and geographic origin.
Collapse
Affiliation(s)
- Patricia Brugnerotto
- Department of Food Science and Technology, Federal University of Santa Catarina, Florianopolis, SC, 88034-001, Brazil.
| | - Adrián Fuente-Ballesteros
- Analytical Chemistry Group (TESEA), I. U. CINQUIMA, Faculty of Sciences, University of Valladolid, 47011 Valladolid, Spain
| | - Beatriz Martín-Gómez
- Analytical Chemistry Group (TESEA), I. U. CINQUIMA, Faculty of Sciences, University of Valladolid, 47011 Valladolid, Spain
| | - Ana María Ares
- Analytical Chemistry Group (TESEA), I. U. CINQUIMA, Faculty of Sciences, University of Valladolid, 47011 Valladolid, Spain
| | - Luciano Valdemiro Gonzaga
- Department of Food Science and Technology, Federal University of Santa Catarina, Florianopolis, SC, 88034-001, Brazil
| | - Roseane Fett
- Department of Food Science and Technology, Federal University of Santa Catarina, Florianopolis, SC, 88034-001, Brazil
| | - Ana Carolina Oliveira Costa
- Department of Food Science and Technology, Federal University of Santa Catarina, Florianopolis, SC, 88034-001, Brazil.
| | - José Bernal
- Analytical Chemistry Group (TESEA), I. U. CINQUIMA, Faculty of Sciences, University of Valladolid, 47011 Valladolid, Spain
| |
Collapse
|
5
|
Chien HJ, Zheng YF, Wang WC, Kuo CY, Hsu YM, Lai CC. Determination of adulteration, geographical origins, and species of food by mass spectrometry. MASS SPECTROMETRY REVIEWS 2023; 42:2273-2323. [PMID: 35652168 DOI: 10.1002/mas.21780] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 04/07/2022] [Accepted: 04/12/2022] [Indexed: 06/15/2023]
Abstract
Food adulteration, mislabeling, and fraud, are rising global issues. Therefore, a number of precise and reliable analytical instruments and approaches have been proposed to ensure the authenticity and accurate labeling of food and food products by confirming that the constituents of foodstuffs are of the kind and quality claimed by the seller and manufacturer. Traditional techniques (e.g., genomics-based methods) are still in use; however, emerging approaches like mass spectrometry (MS)-based technologies are being actively developed to supplement or supersede current methods for authentication of a variety of food commodities and products. This review provides a critical assessment of recent advances in food authentication, including MS-based metabolomics, proteomics and other approaches.
Collapse
Affiliation(s)
- Han-Ju Chien
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan
| | - Yi-Feng Zheng
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan
| | - Wei-Chen Wang
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan
| | - Cheng-Yu Kuo
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan
| | - Yu-Ming Hsu
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan
| | - Chien-Chen Lai
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan
- Graduate Institute of Chinese Medical Science, China Medical University, Taichung, Taiwan
- Advanced Plant Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
- Ph.D. Program in Translational Medicine, National Chung Hsing University, Taichung, Taiwan
- Rong Hsing Research Center For Translational Medicine, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
6
|
Silva B, Brugnerotto P, Seraglio SKT, Bergamo G, Biluca FC, Santos ACD, Braghini F, Schulz M, Colombo CH, Samochvalov KB, Maltez HF, Gonzaga LV, Fett R, Costa ACO. Physicochemical, phenolic, and mineral characterization of Mimosa scabrella Bentham honeydew honey: a trial for obtaining the geographical identification. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
7
|
Mialon N, Roig B, Capodanno E, Cadiere A. Untargeted metabolomic approaches in food authenticity: a review that showcases biomarkers. Food Chem 2022; 398:133856. [DOI: 10.1016/j.foodchem.2022.133856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 08/01/2022] [Accepted: 08/02/2022] [Indexed: 11/26/2022]
|