1
|
Yang W, Jia Y, Yang Y, Chen H, Zhou L, Wang L, Lv X, Zhao Q, Qin Y, Zhang J, Tang C. Sacha inchi oil addition to hen diets and the effects on egg yolk flavor based on multiomics and flavoromics analysis. Food Chem 2025; 475:143251. [PMID: 39956056 DOI: 10.1016/j.foodchem.2025.143251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 01/21/2025] [Accepted: 02/05/2025] [Indexed: 02/18/2025]
Abstract
Multiomics and flavoromics were used to evaluate the effects of Sacha inchi oil (SIO) levels (0, 0.5, and 1 %) in hen feed on the sensory properties, volatile flavor, fatty acid composition, and flavor precursors in the resulting egg yolks. The addition of 0.5 % SIO improved consumer preference without causing off-flavors in the eggs. Thirty-eight volatile compounds were identified, of which thirty-five were significantly more abundant (P < 0.05) in the 0.5 % and 1 % SIO groups than in the control group. SIO additions enriched the egg ω-3 polyunsaturated fatty acid (PUFA) content and achieved the ideal healthy ratio of ω-6/ω-3. Lipidomics combined with partial least-squares regression model analysis suggested that oxidative degradation of the fatty acids aided the variations in the aroma characteristic between the 0.5 % SIO and control groups. Our results established that SIO additions effectively increased the ω-3 PUFA content in yolks and improved acceptability.
Collapse
Affiliation(s)
- Weifang Yang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Beijing General Station of Animal Husbandry, Beijing 100107, China
| | - Yaxiong Jia
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Youyou Yang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Han Chen
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Longzhu Zhou
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Liang Wang
- Beijing General Station of Animal Husbandry, Beijing 100107, China
| | - Xueze Lv
- Beijing General Station of Animal Husbandry, Beijing 100107, China
| | - Qingyu Zhao
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yuchang Qin
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Junmin Zhang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Chaohua Tang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
2
|
Valdez-Arana JDC, Cabrera-de-la-Cruz L, Vidaurre-Ruiz J. Harnessing Sacha Inchi By-Products: Innovations in Functional Food Development. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2025; 80:54. [PMID: 39899176 DOI: 10.1007/s11130-024-01287-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/24/2024] [Indexed: 02/04/2025]
Abstract
Sacha inchi (Plukenetia volubilis L.), native to the Amazon rainforest, is widely known for its oil-rich seeds. Its by-products, particularly the press cake, husks, and shells left after oil extraction, have significant nutritional and functional potential. These by-products contain high levels of proteins, dietary fiber, and bioactive compounds that can be repurposed to develop functional foods, nutraceuticals, and dietary supplements. This review article provides a detailed overview of the composition of sacha inchi by-products, recent findings on optimizing extraction processes for proteins, bioactive peptides, and antioxidant compounds, and product innovations using sacha inchi residues. It highlights the health benefits of consuming these products, such as functional bakery items and plant-based beverages with high sensory acceptance, protein hydrolysates with antioxidant and anti-inflammatory properties, beneficial effects on gut microbiota, and oligosaccharides with prebiotic properties, positioning sacha inchi by-products as key ingredients for developing plant-based nutraceutical and functional products. Additionally, the article emphasizes the potential of these by-products to contribute to a circular economy, reduce waste, and align with global efforts to achieve Sustainable Development Goals (SDGs) related to health, sustainable production, and environmental impact.
Collapse
Affiliation(s)
- Jenny-Del-Carmen Valdez-Arana
- Departamento de Ingeniería de Alimentos y Productos Agropecuarios - Facultad de Industrias Alimentarias, Universidad Nacional Agraria La Molina, Lima, Peru.
- Laboratorio de Inocuidad, Seguridad y Sostenibilidad Alimentaria - Facultad de Industrias Alimentarias, Universidad Nacional Agraria La Molina, Lima, Peru.
| | | | - Julio Vidaurre-Ruiz
- Departamento de Ingeniería de Alimentos y Productos Agropecuarios - Facultad de Industrias Alimentarias, Universidad Nacional Agraria La Molina, Lima, Peru
| |
Collapse
|
3
|
Redjeki SG, Hulwana AF, Aulia RN, Maya I, Chaerunisaa AY, Sriwidodo S. Sacha Inchi ( Plukenetia volubilis): Potential Bioactivity, Extraction Methods, and Microencapsulation Techniques. Molecules 2025; 30:160. [PMID: 39795216 PMCID: PMC11722189 DOI: 10.3390/molecules30010160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/13/2024] [Accepted: 01/01/2025] [Indexed: 01/13/2025] Open
Abstract
Sacha inchi (Plukenetia volubilis L.), an oilseed native to the Peruvian rainforest, has garnered attention for its valuable components and its potential applications in the food, pharmaceutical, and nutraceutical industries. Sacha inchi oil is rich in fatty acids, particularly omega-3, omega-6, and omega-9, along with antioxidants such as tocopherols, which collectively contribute to cardiovascular health, antioxidant, anti-inflammatory, antiproliferative, and neuroprotective effects. The susceptibility of the oil to oxidation poses significant challenges for both storage and processing, making it essential to employ microencapsulation technologies to preserve its integrity and extend shelf life. This paper aims to provide a review of the therapeutic potential, extraction methods, and microencapsulation strategies for enhancing the oil's stability and bioavailability. Optimizing both extraction processes and encapsulation strategies would enhance the oil's stability and bioavailability, enabling it to be more effectively utilized in functional foods and therapeutic applications across the nutraceutical and pharmaceutical fields.
Collapse
Affiliation(s)
- Sarah Gustia Redjeki
- Undergraduate Program in Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia; (S.G.R.); (A.F.H.)
| | - Alfa Fildzah Hulwana
- Undergraduate Program in Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia; (S.G.R.); (A.F.H.)
| | - Rizqa Nurul Aulia
- Master Program in Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia; (R.N.A.); (I.M.)
| | - Ira Maya
- Master Program in Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia; (R.N.A.); (I.M.)
| | - Anis Yohana Chaerunisaa
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia;
| | - Sriwidodo Sriwidodo
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia;
| |
Collapse
|
4
|
Tan A, Scortecci KC, Cabral De Medeiros NM, Kukula-Koch W, Butler TJ, Smith SM, Boylan F. Plukenetia volubilis leaves as source of anti- Helicobacter pylori agents. Front Pharmacol 2024; 15:1461447. [PMID: 39508036 PMCID: PMC11537943 DOI: 10.3389/fphar.2024.1461447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 10/09/2024] [Indexed: 11/08/2024] Open
Abstract
INTRODUCTION Helicobacter pylori infection is a major issue worldwide, with widespread prevalence, combined with its link to gastritis, peptic ulcers, gastric cancer, and mucosa-associated lymphoid tissue (MALT) lymphoma. Meanwhile, effectiveness of current treatment protocols is limited by increasing antibiotic resistance and patient compliance issues due to long regimens and side effects. Plukenetia volubilis, or sacha inchi, is a valuable source of bioactive molecules. However, studies on its antimicrobial activity, especially against H. pylori, are lacking. METHODS In this study, the anti-H. pylori activity of P. volubilis leaves water extract was explored using in vitro and in silico approaches. High-Performance Liquid Chromatography coupled to Electrospray Ionisation and Quadrupole Time-of-Flight Mass Spectrometry (HPLC-ESI- QTOF-MS-MS) analysis of the water extract from the leaves was used to characterise the chemical composition of the plant and allowed identification of some flavonoids, such as astragalin, and some phenolic compounds. Then, high-speed counter current chromatography (HSCCC) was used to fractionate the ethyl acetate partition obtained from the water extract from the leaves. RESULTS AND DISCUSSION The presence of flavonoids derived from kaempferol was confirmed and astragalin was isolated for the first time in P. volubilis. The P. volubilis water infusion, ethyl acetate extract and the isolated astragalin exhibited anti-bacterial activity against H. pylori J99 and two clinical isolates (e.g., minimum inhibitory concentrations of 0.53, 0.51 and 0.49 μg/mL, respectively, for clarithromycin-resistant clinical isolate SSR366). Then, using molecular docking for potential protein targets for H. pylori, it was verified that astragalin could interact with these proteins by in silico analysis. CONCLUSION These findings highlight that P. volubilis and astragalin produce a bacteriostatic activity against H. pylori and may have potential to be used in treatment against H. pylori, after further research.
Collapse
Affiliation(s)
- Aditya Tan
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Trinity Biomedical Sciences Institute, Dublin, Ireland
| | - Katia Castanho Scortecci
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Trinity Biomedical Sciences Institute, Dublin, Ireland
- Laboratório de Transformação de Plantas e Análise em Microscopia (LTPAM), Departamento de Biologia Celular e Genética, Federal University of Rio Grande do Norte (UFRN), Natal, Brazil
- Programa de Pós-Graduação em Bioquímica e Biologia Molecular, Centro de Biociências, UFRN, Natal, Brazil
| | - Nathalia Maira Cabral De Medeiros
- Laboratório de Biotecnologia Vegetal (LBV), Departamento de Biologia, Centro de Ciências Biológicas e da Saúde, Universidade Estadual da Paraiba (UEPB) Campina Grande, Paraiba, Brazil
| | - Wirginia Kukula-Koch
- Department of Pharmacognosy With Medicinal Plants Garden, Medical University of Lublin, Lublin, Poland
| | - Thomas J. Butler
- Department of Clinical Medicine, School of Medicine, Trinity College Dublin, Trinity Centre, Tallaght University Hospital, Dublin, Ireland
| | - Sinéad Marian Smith
- Department of Clinical Medicine, School of Medicine, Trinity College Dublin, Trinity Centre, Tallaght University Hospital, Dublin, Ireland
| | - Fabio Boylan
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Trinity Biomedical Sciences Institute, Dublin, Ireland
- Trinity Natural Products Research Centre, NatPro Centre, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
5
|
Wang M, Xiang YH, Liu M, Jiang S, Guo JY, Jin XY, Sun HF, Zhang N, Wang ZG, Liu JX. The application prospects of sacha inchi ( Plukenetia volubilis linneo) in rheumatoid arthritis. Front Pharmacol 2024; 15:1481272. [PMID: 39484157 PMCID: PMC11524839 DOI: 10.3389/fphar.2024.1481272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 10/04/2024] [Indexed: 11/03/2024] Open
Abstract
Sacha Inchi (Plukenetia volubilis L) (SI) is a traditional natural medicine from tropical rainforests of Amazon region in South America. As a raw material for edible oil, it has various pharmacological effects such as antioxidant, anti-inflammatory, hypolipidemia, and blood pressure lowering, which have attracted increasing attentions of pharmacists. This has prompted researchers to explore its pharmacological effects for potential applications in certain diseases. Among these, the study of its anti-inflammatory effects has become a particularly interesting topic, especially in rheumatoid arthritis (RA). RA is a systemic autoimmune disease, and often accompanied by chronic inflammatory reactions. Despite significant progress in its treatment, there is still an urgent need to find effective anti-RA drugs in regard to safety. This review summarizes the potential therapeutic effects of SI on RA by modulating gut microbiota, targeting inflammatory cells and pathways, and mimicking biologic antibody drugs, predicting the application prospects of SI in RA, and providing references for research aimed at using SI to treat RA.
Collapse
Affiliation(s)
- Min Wang
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
- Sino-Pakistan Center on Traditional Chinese Medicine, School of Pharmaceutical Sciences, School of Basic Medical Sciences, China-Pakistan International Science and Technology Innovation Cooperation Base for Ethnic Medicine Development in Hunan Province, Hunan University of Medicine, Huaihua, Hunan, China
| | - Yin-Hong Xiang
- Sino-Pakistan Center on Traditional Chinese Medicine, School of Pharmaceutical Sciences, School of Basic Medical Sciences, China-Pakistan International Science and Technology Innovation Cooperation Base for Ethnic Medicine Development in Hunan Province, Hunan University of Medicine, Huaihua, Hunan, China
| | - Mei Liu
- Sino-Pakistan Center on Traditional Chinese Medicine, School of Pharmaceutical Sciences, School of Basic Medical Sciences, China-Pakistan International Science and Technology Innovation Cooperation Base for Ethnic Medicine Development in Hunan Province, Hunan University of Medicine, Huaihua, Hunan, China
- School of Pharmaceutical Sciences, University of South China, Hengyang, Hunan, China
| | - Shan Jiang
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Jia-ying Guo
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Xiao-yan Jin
- School of Pharmaceutical Sciences, Xinjiang medical University, Wulumuqi, Xinjiang, China
| | - Hui-feng Sun
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Ning Zhang
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
- Sino-Pakistan Center on Traditional Chinese Medicine, School of Pharmaceutical Sciences, School of Basic Medical Sciences, China-Pakistan International Science and Technology Innovation Cooperation Base for Ethnic Medicine Development in Hunan Province, Hunan University of Medicine, Huaihua, Hunan, China
| | - Zhi-Gang Wang
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Jian-xin Liu
- Sino-Pakistan Center on Traditional Chinese Medicine, School of Pharmaceutical Sciences, School of Basic Medical Sciences, China-Pakistan International Science and Technology Innovation Cooperation Base for Ethnic Medicine Development in Hunan Province, Hunan University of Medicine, Huaihua, Hunan, China
- School of Pharmaceutical Sciences, University of South China, Hengyang, Hunan, China
| |
Collapse
|
6
|
Yang H, Huang X, Yang M, Zhang X, Tang F, Gao B, Gong M, Liang Y, Liu Y, Qian X, Li H. Advanced analytical techniques for authenticity identification and quality evaluation in Essential oils: A review. Food Chem 2024; 451:139340. [PMID: 38678649 DOI: 10.1016/j.foodchem.2024.139340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/25/2024] [Accepted: 04/09/2024] [Indexed: 05/01/2024]
Abstract
Essential oils (EO), secondary metabolites of plants are fragrant oily liquids with antibacterial, antiviral, anti-inflammatory, anti-allergic, and antioxidant effects. They are widely applied in food, medicine, cosmetics, and other fields. However, the quality of EOs remain uncertain owing to their high volatility and susceptibility to oxidation, influenced by factors such as the harvesting season, extraction, and separation techniques. Additionally, the huge economic value of EOs has led to a market marked by widespread and varied adulteration, making the assessment of their quality challenging. Therefore, developing simple, quick, and effective identification techniques for EOs is essential. This review comprehensively summarizes the techniques for assessing EO quality and identifying adulteration. It covers sensory evaluation, physical and chemical property evaluation, and chemical composition analysis, which are widely used and of great significance for the quality evaluation and adulteration detection of EOs.
Collapse
Affiliation(s)
- Huda Yang
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Xiaoying Huang
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China; Jiangxi Guxiangjinyun Great Health Industry Co. Ltd, Nanchang 330096, China.
| | - Ming Yang
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Xiaofei Zhang
- Jiangxi Guxiangjinyun Great Health Industry Co. Ltd, Nanchang 330096, China; College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Fangrui Tang
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China; Jiangxi Guxiangjinyun Great Health Industry Co. Ltd, Nanchang 330096, China
| | - Beibei Gao
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Mengya Gong
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Yong Liang
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Yang Liu
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Xingyi Qian
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Huiting Li
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China; Jiangxi Guxiangjinyun Great Health Industry Co. Ltd, Nanchang 330096, China.
| |
Collapse
|
7
|
Medicinal Plants in Peru as a Source of Immunomodulatory Drugs Potentially Useful Against COVID-19. REVISTA BRASILEIRA DE FARMACOGNOSIA : ORGAO OFICIAL DA SOCIEDADE BRASILEIRA DE FARMACOGNOSIA 2023; 33:237-258. [PMID: 36855527 PMCID: PMC9948797 DOI: 10.1007/s43450-023-00367-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 01/23/2023] [Indexed: 02/25/2023]
Abstract
The current COVID-19 pandemic, characterized by a highly contagious severe acute respiratory syndrome, led us to look for medicinal plants as an alternative to obtain new drugs, especially those with immunomodulatory abilities, capable of acting against the pulmonary infection caused by coronavirus 2 (SARS-CoV-2). Despite medical advances with COVID-19 drugs and vaccines, plant-based compounds could provide an array of suitable candidates to test against this virus, or at the very least, to alleviate some symptoms. Therefore, this review explores some plants widely used in Peru that show immunomodulatory properties or, even more, contain phytoconstituents potentially useful to prevent or alleviate the COVID-19 infection. More interestingly, the present review highlights relevant information from those plants to support the development of new drugs to boost the immune system. We used three criteria to choose nine vegetal species, and a descriptive search was then conducted from 1978 to 2021 on different databases, using keywords focused on the immune system that included information such as pharmacological properties, phytochemical, botanical, ethnobotanical uses, and some clinical trials. From these literature data, our results displayed considerable immunomodulation activity along with anti-inflammatory, antiviral, antioxidant, and antitumoral activities. Noticeably, these pharmacological activities are related with a wide variety of bioactive phytoconstituents (mixtures or isolated compounds) which may be beneficial in modulating the overt inflammatory response in severe COVID-19. Further scientific research on the pharmacological activities and clinical utilization of these potential plants are warranted. Graphical Abstract Supplementary Information The online version contains supplementary material available at 10.1007/s43450-023-00367-w.
Collapse
|
8
|
Muñoz AM, Casimiro-Gonzales S, Gómez-Coca RB, Moreda W, Best I, Cajo-Pinche MI, Loja JF, Ibañez E, Cifuentes A, Ramos-Escudero F. Comparison of Four Oil Extraction Methods for Sinami Fruit ( Oenocarpus mapora H. Karst): Evaluating Quality, Polyphenol Content and Antioxidant Activity. Foods 2022; 11:1518. [PMID: 35627087 PMCID: PMC9141738 DOI: 10.3390/foods11101518] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/07/2022] [Accepted: 05/09/2022] [Indexed: 01/26/2023] Open
Abstract
The sinami palm (Oenocarpus mapora H. Karst) is a plant from the South American Amazonia that has great potential for industrial applications in the development of functional foods, nutraceuticals and cosmeceuticals. In this manuscript, the physicochemical properties, total polyphenol content and antioxidant activity of sinami oil that was obtained using four extraction systems, namely expeller press extraction (EPE), cold press extraction (CPE), ultrasound-assisted extraction (UAE) and supercritical fluid extraction (SFE), were studied and compared. The oxidative stability (OSI) was statistically non-significant in EPE and SFE. The chromatic properties (CIELab) were influenced by the extraction methods and SFE presented high values of L* and a lower content of plant pigments. Ultrasound-assisted extraction showed a higher content of polyphenols and higher antioxidant activity. Different analyses for the evaluation of the physicochemical properties, the content of total polyphenols and antioxidant activity were used to classify sinami oil according to chemometrics using principal component analysis (PCA). For example, the sinami oil that was obtained using each extraction method was in a different part of the plot. In summary, sinami oil is an excellent resource for plant pigments. Additionally, the information that was obtained on the quality parameters in this study provided a good foundation for further studies on the characterization of major and minor compounds.
Collapse
Affiliation(s)
- Ana María Muñoz
- Instituto de Ciencias de Los Alimentos y Nutrición, Universidad San Ignacio de Loyola (ICAN-USIL), Campus Pachacamac, Sección B, Parcela 1, Fundo La Carolina, Pachacamac, Lima 15823, Peru; (A.M.M.); (S.C.-G.); (I.B.)
- Unidad de Investigación en Nutrición, Salud, Alimentos Funcionales y Nutraceúticos, Universidad San Ignacio de Loyola (UNUSAN-USIL), Av. La Fontana 750, Lima 15024, Peru
| | - Sandra Casimiro-Gonzales
- Instituto de Ciencias de Los Alimentos y Nutrición, Universidad San Ignacio de Loyola (ICAN-USIL), Campus Pachacamac, Sección B, Parcela 1, Fundo La Carolina, Pachacamac, Lima 15823, Peru; (A.M.M.); (S.C.-G.); (I.B.)
| | - Raquel B. Gómez-Coca
- Instituto de la Grasa, CSIC, Campus Universidad Pablo de Olavide, Building 46, Ctra. de Utrera km 1, 41013 Sevilla, Spain; (R.B.G.-C.); (W.M.)
| | - Wenceslao Moreda
- Instituto de la Grasa, CSIC, Campus Universidad Pablo de Olavide, Building 46, Ctra. de Utrera km 1, 41013 Sevilla, Spain; (R.B.G.-C.); (W.M.)
| | - Ivan Best
- Instituto de Ciencias de Los Alimentos y Nutrición, Universidad San Ignacio de Loyola (ICAN-USIL), Campus Pachacamac, Sección B, Parcela 1, Fundo La Carolina, Pachacamac, Lima 15823, Peru; (A.M.M.); (S.C.-G.); (I.B.)
- Unidad de Investigación en Nutrición, Salud, Alimentos Funcionales y Nutraceúticos, Universidad San Ignacio de Loyola (UNUSAN-USIL), Av. La Fontana 750, Lima 15024, Peru
| | - María Isabel Cajo-Pinche
- Carrera Profesional de Ingeniería Agroindustrial, Universidad Nacional Amazónica de Madre de Dios (UNAMAD), Jr. Jorge Chávez 1160, Puerto Maldonado 17001, Peru;
| | - Juan Francisco Loja
- Asociación para la Conservación de la Cuenca Amazónica (ACCA), Madre de Dios 17001, Peru;
| | - Elena Ibañez
- Foodomics Laboratory, Instituto de Investigación en Ciencias de la Alimentación (CIAL, CSIC-UAM), Nicolás Cabrera 9, Campus de Cantoblanco, 28049 Madrid, Spain; (E.I.); (A.C.)
| | - Alejandro Cifuentes
- Foodomics Laboratory, Instituto de Investigación en Ciencias de la Alimentación (CIAL, CSIC-UAM), Nicolás Cabrera 9, Campus de Cantoblanco, 28049 Madrid, Spain; (E.I.); (A.C.)
| | - Fernando Ramos-Escudero
- Unidad de Investigación en Nutrición, Salud, Alimentos Funcionales y Nutraceúticos, Universidad San Ignacio de Loyola (UNUSAN-USIL), Av. La Fontana 750, Lima 15024, Peru
- Facultad de Ciencias de la Salud, Universidad San Ignacio de Loyola, Av. La Fontana 750, Lima 15024, Peru
| |
Collapse
|
9
|
Ramos-Escudero F, Gómez-Coca RB, Muñoz AM, Fuente-Carmelino LDL, Pérez-Camino MDC. Oil From Three Aguaje Morphotypes (Mauritia flexuosa L.f.) Extracted by Supercritical Fluid With CO2: Chemical Composition and Chromatic Properties. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.843772] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The chemical composition and CIELAB color parameters of oil from three aguaje morphotypes (Mauritia flexuosa L.f.) extracted by supercritical carbon dioxide was investigated. By chromatography (HPLC and GC), spectrometry (UV/vis), and digital image colorimetry (digital camera), carotenoids, tocopherols, tocotrienols, fatty acids, total polyphenols, and CIELAB color space were analyzed. These findings showed that the oil obtained from morphotype 3 was superior in several analytes (carotenoids, polyphenols, oleic acid, β-sitosterol, campesterol, and stigmasterol), while morphotype 2 and morphotype 1 showed very close profiles. The most similar chemical components in the oils of the three morphotypes were stigmasterol (16.00 to 17.81%), β-sitosterol (66.39 to 68.94%), palmitic acid (15.56 to 20.69%), and oleic acid (73.29 to 79.54%). The chromatic parameters (L*, a*, b*, and Cab*) were quite different except for the hue angle (hab) (66.55 to 69.71 U), which showed some similarity. Aguaje oil is an interesting resource that stands out for its high content of carotenoids. All three morphotypes may be suitable for potential commercial applications.
Collapse
|
10
|
CHENG Q, ZHANG Y, LIN Q, TIAN Y, BAO Y. Study on the antioxidant activity of β-sitosterol and stigmasterol from Sacha Inchi oil and Prinsepia oil added to walnut oil. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.69522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Qin CHENG
- Yunnan Agricultural University, China
| | | | - Qi LIN
- Yunnan Agricultural University, China
| | - Yang TIAN
- Yunnan Agricultural University, China
| | | |
Collapse
|
11
|
Evaluation of the Miscibility of Novel Cocoa Butter Equivalents by Raman Mapping and Multivariate Curve Resolution-Alternating Least Squares. Foods 2021; 10:foods10123101. [PMID: 34945652 PMCID: PMC8700800 DOI: 10.3390/foods10123101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/08/2021] [Accepted: 12/10/2021] [Indexed: 12/19/2022] Open
Abstract
Cocoa butter (CB) is an ingredient traditionally used in the manufacturing of chocolates, but its availability is decreasing due to its scarcity and high cost. For this reason, other vegetable oils, known as cocoa butter equivalents (CBE), are used to replace CB partially or wholly. In the present work, two Peruvian vegetable oils, coconut oil (CNO) and sacha inchi oil (SIO), are proposed as novel CBEs. Confocal Raman microscopy (CRM) was used for the chemical differentiation and polymorphism of these oils with CB based on their Raman spectra. To analyze their miscibility, two types of blends were prepared: CB with CNO, and CB with SIO. Both were prepared at 5 different concentrations (5%, 15%, 25%, 35%, and 45%). Raman mapping was used to obtain the chemical maps of the blends and analyze their miscibility through distribution maps, histograms and relative standard deviation (RSD). These values were obtained with multivariate curve resolution-alternating least squares. The results show that both vegetable oils are miscible with CB at high concentrations: 45% for CNO and 35% for SIO. At low concentrations, their miscibility decreases. This shows that it is possible to consider these vegetable oils as novel CBEs in the manufacturing of chocolates.
Collapse
|
12
|
Goyal A, Tanwar B, Kumar Sihag M, Sharma V. Sacha inchi (Plukenetia volubilis L.): An emerging source of nutrients, omega-3 fatty acid and phytochemicals. Food Chem 2021; 373:131459. [PMID: 34731811 DOI: 10.1016/j.foodchem.2021.131459] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 10/20/2021] [Accepted: 10/20/2021] [Indexed: 12/30/2022]
Abstract
Sacha inchi (Plukenetia volubilis) (SI) is an oleaginous plant producing oil and protein-rich seeds. It has been cultivated for centuries and is native to the tropical rainforest of the Amazon region of South America including parts of Peru and northwestern Brazil. At present, SI seeds are emerging as a potential source of macro- and micronutrients, α-linolenic acid and phytochemicals. This review attempts to elucidate the nutrients, phytonutrients, safety, toxicity, health benefits and food applications of SI seed. Recent scientific studies have associated the consumption of SI seed/oil with reduced risk of chronic inflammatory diseases. However, lack of awareness and in-depth understanding has resulted in it being neglected both at the consumer and industrial level. In all, SI is an underutilized and undervalued oleaginous crop which not only has the potential to mitigate food and nutritional insecurity but also offers humongous opportunities for the development of novel value-added food products.
Collapse
Affiliation(s)
- Ankit Goyal
- Department of Dairy Chemistry, Mansinhbhai Institute of Dairy and Food Technology, Mehsana 384002, Gujarat, India.
| | - Beenu Tanwar
- Department of Dairy Technology, Mansinhbhai Institute of Dairy and Food Technology, Mehsana 384002, Gujarat, India.
| | - Manvesh Kumar Sihag
- Department of Dairy Chemistry, College of Dairy Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana 141001, Punjab, India.
| | - Vivek Sharma
- Dairy Chemistry Division, National Dairy Research Institute (ICAR-NDRI), Karnal, Haryana, India.
| |
Collapse
|
13
|
Zhang Y, Luo J, Zeng F. Volatile composition analysis of tree peony (Paeonia section Moutan DC.) seed oil and the effect of oxidation during storage. J Food Sci 2021; 86:3467-3479. [PMID: 34190350 DOI: 10.1111/1750-3841.15790] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/15/2021] [Accepted: 04/27/2021] [Indexed: 11/26/2022]
Abstract
Peony (Paeonia section Moutan DC.) seed oil is a novel vegetable oil with unique aromatic profile. The objectives of this study were to characterize the volatile compounds with optimized analysis conditions, and to study the effects of oxidation during storage. The Headspace Solid-phase Micro-extraction (HS-SPME) conditions were optimized with factors including extraction fiber, extraction time and temperature, as well as sample amount and desorption time. Then, the aromatic compounds extracted from peony seed oil were determined using the odor activity value (OAV) method coupled with the GC-olfactometry. Results found that the best HS-SPME conditions were DVB/CAR/PDMS fibers with magnetic stirring for 50 min of extraction at 60°C. The optimal sample amount was 4 g with 6 min of desorption. Forty-one volatile components were found, and 19 aromatic components were identified using GC-MS and GC-olfactometry. This is the first study to describe 4,7-dimethylbenzofuran in peony seed oil with a unique aroma of grass, light bitter, and fragrance. The stability of alcohol and terpenoids decreased as accelerated oxidation progresses. This study provides the theoretical basis for the sensory attributes, and shelf-life of peony seeds oil products for industry production and marketing.
Collapse
Affiliation(s)
- Yu Zhang
- School of Food Science, Southwest University, Beibei, Chongqing, P. R. China.,National Teaching Demonstration Center of Food Science and Engineering of Southwest University, Southwest University, Beibei, Chongqing, P. R. China
| | - Jingwen Luo
- School of Food Science, Southwest University, Beibei, Chongqing, P. R. China
| | - Fankun Zeng
- School of Food Science, Southwest University, Beibei, Chongqing, P. R. China
| |
Collapse
|
14
|
Louw S. Recent trends in the chromatographic analysis of volatile flavor and fragrance compounds: Annual review 2020. ANALYTICAL SCIENCE ADVANCES 2021; 2:157-170. [PMID: 38716458 PMCID: PMC10989567 DOI: 10.1002/ansa.202000158] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/18/2021] [Accepted: 01/20/2021] [Indexed: 12/17/2022]
Abstract
The chromatographic analysis of volatile flavor and fragrance compounds is performed routinely in several industries and in many fields of scientific research. Typical applications include food-, environmental-, essential oil- and cosmetics analysis. Even though the analysis of flavors and fragrances have become increasingly standardized during the past decade, there are still a large variety of techniques that can be used for their extraction, chemical analysis, and sensory analysis. Moreover, there are certain less commonly used techniques that are now being used with increased frequency and that are showing the potential of being used as alternatives to the existing standard techniques. In this annual review, the techniques that were most commonly used in 2020 for the investigation of these volatile compounds are discussed. In addition, a number of emerging trends are discussed, notably the use of solvent assisted flavor evaporation (SAFE) for extraction, GC ion mobility spectrometry (IMS) for volatile compound analysis and electronic senses, that is, E-noses and E-tongues, for sensory analysis. Miscellaneous hyphenated techniques, advances in stationary phase chemistry and a number of interesting applications are also highlighted.
Collapse
Affiliation(s)
- Stefan Louw
- Department of Chemistry and BiochemistryUniversity of NamibiaWindhoekNamibia
| |
Collapse
|