1
|
Taşkoparan Ş, Altınay C, Barbaros Özer H. Recent updates of probiotic dairy-based beverages. Food Funct 2025; 16:1656-1669. [PMID: 39962909 DOI: 10.1039/d4fo06322h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2025]
Abstract
There is a rapid paradigm shift in the food consumption habits of consumers globally. The interest in healthier, safer, minimally processed and nature-identical foods is the driving force of this paradigm shift. Although the roots of this consumer trend go back further, especially the Covid-19 pandemic has contributed to the acceleration of this process. The effects of probiotics on human health have been known for many years. The commercial success of some probiotic microorganism strains, supported by clinical studies, is also evident. Probiotic microorganisms can be found in commercial products in a wide range of forms including powder, tablets or incorporated into liquid or solid food matrices. Milk and dairy products are suitable vehicles for the delivery of probiotics into the human body. Apart from well-established dairy-based probiotic foods including yogurt and yogurt-type beverages, in recent years some dairy products supplemented or enhanced with postbiotics and paraprobiotics are gaining popularity. The incorporation of next-generation probiotics in probiotic beverage formulations has also attracted the attention of researchers. The current state-of-the art for the utilization of next-generation probiotics, postbiotics and paraprobiotics in dairy-based probiotic beverages is the main focus of this review. Conventional milk-, whey- and buttermilk-based probiotic beverages are also covered.
Collapse
Affiliation(s)
- Şevval Taşkoparan
- Ankara University Faculty of Agriculture Department of Dairy Technology, Diskapi, Ankara, Turkey.
| | - Canan Altınay
- Ankara University Faculty of Agriculture Department of Dairy Technology, Diskapi, Ankara, Turkey.
| | - H Barbaros Özer
- Ankara University Faculty of Agriculture Department of Dairy Technology, Diskapi, Ankara, Turkey.
| |
Collapse
|
2
|
Rout S, Panda PK, Dash P, Srivastav PP, Hsieh CT. Cold Plasma-Induced Modulation of Protein and Lipid Macromolecules: A Review. Int J Mol Sci 2025; 26:1564. [PMID: 40004030 PMCID: PMC11855354 DOI: 10.3390/ijms26041564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/09/2025] [Accepted: 02/11/2025] [Indexed: 02/27/2025] Open
Abstract
Nowadays, the food industry is prioritizing many innovative processing technologies that can produce minimally processed foods with superior and higher quality, lower costs, and faster operations. Among these advancements, cold plasma (CP) processing stands out for its remarkable capabilities in food preservation and extending the shelf life. Beyond its established role in microbial inactivation, CP has emerged as a transformative tool for modifying food biomolecules through reactive plasma species, addressing the versatile requirements of food industries for various applications. This review focuses on the interactions between reactive plasma species and essential food macromolecules, including proteins, lipids, and polysaccharides. The novelty lies in its detailed examination of how CP technology triggers structural, functional, and biochemical changes in proteins and lipids and explains the mechanisms involved. It connects fundamental molecular transformations to practical applications, such as enhanced protein functionality, lipid stabilization, and improved oxidative resistance. CP induces alterations in protein structure, especially in amino acid configurations, that can be applicable to the formulation of advanced gel, 3D printing, thermostable emulsions, enhanced solubility, and sensory materials. This review explores the ability of CP to modify protein allergenicity, its different effects on the mechanical and interfacial properties of proteins, and its role in the production of trans-fat-free oils. Despite its potential, a detailed understanding of the mechanism of CP's interactions with food macromolecules is also discussed. Furthermore, this review addresses key challenges and outlines future research opportunities, positioning CP as a sustainable and adaptable approach for innovating next-generation food systems. Further research is crucial to fully understand the potential of CP for food processing, followed by product development.
Collapse
Affiliation(s)
- Srutee Rout
- Department of Agricultural and Food Engineering, Indian Institute of Technology, Kharagpur, West Bengal 721302, India; (S.R.); (P.P.S.)
| | - Pradeep Kumar Panda
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan 32003, Taiwan
| | - Pranjyan Dash
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei 10608, Taiwan;
| | - Prem Prakash Srivastav
- Department of Agricultural and Food Engineering, Indian Institute of Technology, Kharagpur, West Bengal 721302, India; (S.R.); (P.P.S.)
| | - Chien-Te Hsieh
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan 32003, Taiwan
| |
Collapse
|
3
|
Sharma D, Dhiman A, Thakur A, Kumar S, Saini R. Functional oligosaccharides as a promising food ingredient: a gleam into health apprehensions and techno-functional advantages. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2024. [DOI: 10.1007/s11694-024-02986-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 11/05/2024] [Indexed: 01/04/2025]
|
4
|
Gruening de Mattos PB, Porto de Souza Vandenberghe L, Valladares-Diestra KK, Ramos Neyra LC, Vieira S, Júnior Letti LA, Soccol CR. Recent developments in xylooligosaccharides: Sustainable production, characterization, beneficial properties and applications. Food Res Int 2024; 197:115206. [PMID: 39593291 DOI: 10.1016/j.foodres.2024.115206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 09/22/2024] [Accepted: 10/17/2024] [Indexed: 11/28/2024]
Abstract
Xylooligosaccharides (XOS) are functional oligosaccharides with prebiotic activity, offering exceptional nutritional and health benefits and a wide range of applications. The increasing market demand for healthy products has driven interest in XOS, as they are low-dose prebiotics with high added value, fostering developments in their production. In a sustainable production context, XOS can be obtained from low-cost lignocellulosic raw materials, which require adapted pretreatment techniques to produce high-quality XOS with high process efficiency. One- and two-step methodologies are discussed in terms of increasing XOS production while aiming to limit the co-production of toxic compounds. Autohydrolysis and enzymatic hydrolysis with xylanases stand out as a promising technology for XOS production with high yields. Purification and characterization methodologies are also two important steps to achieve mixtures of XOS with high purity, specific degree of polymerization and substitution to improve their beneficial properties and, consequently, their applications. This review presents the potential of XOS as prebiotics, describing the recent technological production routes, along with advancements in the development of new production processes using alternative substrates, as well as the beneficial effects of their consumption, addressing their latest applications that justify the pursuit of their consolidation in the industrial prebiotic market.
Collapse
Affiliation(s)
- Patrícia Beatriz Gruening de Mattos
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná, Centro Politécnico, 81531-980, Curitiba, Paraná, Brazil
| | - Luciana Porto de Souza Vandenberghe
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná, Centro Politécnico, 81531-980, Curitiba, Paraná, Brazil.
| | - Kim Kley Valladares-Diestra
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná, Centro Politécnico, 81531-980, Curitiba, Paraná, Brazil
| | - Lucia Carolina Ramos Neyra
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná, Centro Politécnico, 81531-980, Curitiba, Paraná, Brazil
| | - Sabrina Vieira
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná, Centro Politécnico, 81531-980, Curitiba, Paraná, Brazil
| | - Luiz Alberto Júnior Letti
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná, Centro Politécnico, 81531-980, Curitiba, Paraná, Brazil
| | - Carlos Ricardo Soccol
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná, Centro Politécnico, 81531-980, Curitiba, Paraná, Brazil
| |
Collapse
|
5
|
Lin Y, Dong Y, Li X, Cai J, Cai L, Zhang G. Enzymatic production of xylooligosaccharide from lignocellulosic and marine biomass: A review of current progress, challenges, and its applications in food sectors. Int J Biol Macromol 2024; 277:134014. [PMID: 39047995 DOI: 10.1016/j.ijbiomac.2024.134014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 04/03/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024]
Abstract
Over the last decade, xylooligosaccharides (XOS) have attracted great attentions because of their unique chemical properties and excellent prebiotic effects. Among the current strategies for XOS production, enzymatic hydrolysis is preferred due to its green and safe process, simplicity in equipment, and high control of the degrees of polymerization. This paper comprehensively summarizes various lignocellulosic biomass and marine biomass employed in enzymatic production of XOS. The importance and advantages of enzyme immobilization in XOS production are also discussed. Many novel immobilization techniques for xylanase are presented. In addition, bioinformatics techniques for the mining and designing of new xylanase are also described. Moreover, XOS has exhibited great potential applications in the food industry as diverse roles, such as a sugar replacer, a fat replacer, and cryoprotectant. This review systematically summarizes the current research progress on the applications of XOS in food sectors, including beverages, bakery products, dairy products, meat products, aquatic products, food packaging film, wall materials, and others. It is anticipated that this paper will act as a reference for the further development and application of XOS in food sectors and other fields.
Collapse
Affiliation(s)
- Yuanqing Lin
- College of Environment and Public Health, Xiamen Huaxia University, Xiamen 361024, Fujian, China
| | - Yuting Dong
- College of Environment and Public Health, Xiamen Huaxia University, Xiamen 361024, Fujian, China; Department of Bioengineering and Biotechnology, Huaqiao University, Xiamen 361021, Fujian, China
| | - Xiangling Li
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, United States
| | - Jinzhong Cai
- College of Environment and Public Health, Xiamen Huaxia University, Xiamen 361024, Fujian, China
| | - Lixi Cai
- Department of Bioengineering and Biotechnology, Huaqiao University, Xiamen 361021, Fujian, China; College of Basic Medicine, Putian University, Putian 351100, Fujian, China.
| | - Guangya Zhang
- Department of Bioengineering and Biotechnology, Huaqiao University, Xiamen 361021, Fujian, China.
| |
Collapse
|
6
|
Silva R, Rocha RS, Ferreira MVS, Ramos GLPA, Arruda HS, Borsoi FT, Maria Pastore G, Freitas MQ, Cruz AG. Evaluating the galactooligosaccharide stability in chocolate milk beverage submitted to ohmic heating. Food Res Int 2024; 188:114429. [PMID: 38823856 DOI: 10.1016/j.foodres.2024.114429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 06/03/2024]
Abstract
Among the emerging prebiotics, galactooligosaccharide (GOS) has a remarkable value with health-promoting properties confirmed by several studies. In addition, the application of ohmic heating has been gaining prominence in food processing, due to its various technological and nutritional benefits. This study focuses on the transformative potential of ohmic heating processing (OH, voltage values 30 and 60 V, frequencies 100, 300, and 500 Hz, respectively) in prebiotic chocolate milk beverage (3.0 %w/v galactooligosaccharide) processing. Chemical stability of GOS was assessed along all the ohmic conditions. In addition, microbiological analysis (predictive modeling), physical analysis (color and rheology), thermal load indicators assessment, bioactivity values, and volatile compound was performed. HPAEC-PAD analysis confirmed GOS stability and volatile compound evaluation supported OH's ability to preserve flavor-associated compounds. Besides, OH treatments demonstrated superior microbial reduction and decreased thermal load indicators as well as the assessment of the bioactivity. In conclusion, OH presented was able to preserve the GOS chemical stability on chocolate milk beverages processing with positive effects of the intrinsic quality parameters of the product.
Collapse
Affiliation(s)
- Ramon Silva
- Federal Institute of Science and Technology of Rio de Janeiro (IFRJ), Department of Food, Rio de Janeiro, Brazil; Federal Fluminense University (UFF), Faculty of Veterinary Medicine, Niteroi, RJ, Brazil
| | - Ramon S Rocha
- Federal Institute of Science and Technology of Rio de Janeiro (IFRJ), Department of Food, Rio de Janeiro, Brazil; University of São Paulo (USP), College of Animal Science and Food Engineering (FZEA), Food Engineering Department (ZEA), 13635-900 Pirassununga, Brazil
| | - Marcus Vinicius S Ferreira
- University of Illinois at Urbana-Champaign, Department of Agricultural and Biological Engineering, Urbana, USA
| | - Gustavo L P A Ramos
- Federal Fluminense University (UFF), Faculty of Veterinary Medicine, Niteroi, RJ, Brazil
| | - Henrique S Arruda
- University of Campinas (UNICAMP), Faculty of Food Engineering (FEA), Campinas, São Paulo, Brazil
| | - Felipe T Borsoi
- University of Campinas (UNICAMP), Faculty of Food Engineering (FEA), Campinas, São Paulo, Brazil
| | - Glaucia Maria Pastore
- University of Campinas (UNICAMP), Faculty of Food Engineering (FEA), Campinas, São Paulo, Brazil
| | - Monica Q Freitas
- Federal Fluminense University (UFF), Faculty of Veterinary Medicine, Niteroi, RJ, Brazil
| | - Adriano G Cruz
- Federal Institute of Science and Technology of Rio de Janeiro (IFRJ), Department of Food, Rio de Janeiro, Brazil.
| |
Collapse
|
7
|
Elcik BE, Kirkin C. Quality and antioxidant activity of dandelion root infusions as affected by cold plasma pretreatment. Food Sci Nutr 2024; 12:526-533. [PMID: 38268864 PMCID: PMC10804085 DOI: 10.1002/fsn3.3791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/06/2023] [Accepted: 10/13/2023] [Indexed: 01/26/2024] Open
Abstract
Ground and unground dandelion roots were subjected to dielectric barrier discharge cold plasma (DBDCP) at 40 kV for 0 (control), 10, or 20 min. Then, infusions of the pretreated dandelion roots in water were prepared, and the changes in color, total phenolic content (TPC), antioxidant activity, and sensory properties were investigated. The 20-min pretreatment increased the b* value, TPC, antioxidant activity, and sage odor of the ground dandelion root infusions compared with the control, whereas decreases in the TPC, antioxidant activity, and sage odor were noted in the 10-min pretreated infusions of the unground roots. DBDCP pretreatment did not affect the overall likeliness of infusions of ground and unground roots. In addition, the TPC, antioxidant activity, and overall likeliness of infusions of the ground dandelion roots were higher than those of the unground samples. In conclusion, it can be said that the DBDCP pretreatment can be utilized to improve the TPC and antioxidant activity of ground dandelion roots.
Collapse
Affiliation(s)
- Berfin Eda Elcik
- Department of Food Engineering, Faculty of Chemical and Metallurgical EngineeringIstanbul Technical UniversityIstanbulTürkiye
| | - Celale Kirkin
- Department of Food Engineering, Faculty of Chemical and Metallurgical EngineeringIstanbul Technical UniversityIstanbulTürkiye
| |
Collapse
|
8
|
Chen Y, Chen Y, Fang Y, Pei Z, Zhang W. Coconut milk treated by atmospheric cold plasma: Effect on quality and stability. Food Chem 2024; 430:137045. [PMID: 37541035 DOI: 10.1016/j.foodchem.2023.137045] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 07/04/2023] [Accepted: 07/26/2023] [Indexed: 08/06/2023]
Abstract
Commercial sterilization plays an important role in extending the shelf-life of coconut milk. However, thermal sterilization affects the quality of coconut milk. This study was initiated to evaluate the effects of atmospheric cold plasma (ACP) treatment on some important quality parameters of coconut milk. ACP treatment had a slight effect on physicochemical characteristics and nutritional ingredients while it obviously reduced the colony count. Furthermore, ACP treatment obviously promoted the formation of lactone, an indispensable volatile substance in coconut milk. Insufficient or moderate ACP treatment had subtle effect on the sensory quality. Notably, moderate ACP treatment reduced the droplet size from 28.0 μm to 18.6 μm, and improved the stability during storage and centrifugation, especially at 60 kV 60 s. Overall, sterilization of coconut milk by ACP at 60 kV 60 s was the most ideal. This study can provide theoretical guidance for the application of ACP in liquid food.
Collapse
Affiliation(s)
- Yang Chen
- School of Food Science and Engineering, Hainan University, Hainan 570228, China
| | - Yile Chen
- School of Food Science and Engineering, Hainan University, Hainan 570228, China
| | - Yajing Fang
- School of Food Science and Engineering, Hainan University, Hainan 570228, China
| | - Zhisheng Pei
- School of Food Science and Engineering, Hainan University, Hainan 570228, China; School of Food Science and Engineering, Hainan Tropical Ocean University, Sanya 572022, China
| | - Weimin Zhang
- School of Food Science and Engineering, Hainan University, Hainan 570228, China.
| |
Collapse
|
9
|
Roshanak S, Maleki M, Sani MA, Tavassoli M, Pirkhezranian Z, Shahidi F. The impact of cold plasma innovative technology on quality and safety of refrigerated hamburger: Analysis of microbial safety and physicochemical properties. Int J Food Microbiol 2023; 388:110066. [PMID: 36610235 DOI: 10.1016/j.ijfoodmicro.2022.110066] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 12/15/2022] [Accepted: 12/25/2022] [Indexed: 12/31/2022]
Abstract
Atmospheric cold plasma (ACP) is an innovative non-thermal decontamination technology that is considered a great alternative to conventional preservation methods. Most importantly, improving microbial safety along with maintaining the sensory and quality properties of the treated foods, especially for perishable products. Hence, this study aimed to investigate the antimicrobial effects of novel dielectric barrier discharge (DBD) and Jet cold plasma systems and their impact on the physicochemical, color, and sensory properties of refrigerated hamburger samples. In the current study, hamburger samples were inoculated with Staphylococcus aureus, Escherichia coli, Molds and Yeasts microbial suspension (~106 CFU/mL), and then were treated with argon (Ar), helium (He), nitrogen (N), and atmosphere (Atm) gases at different times (s) (0, 30, 60, 90, 180, 360). Similarly, uninoculated samples were considered for total viable count (TVC) testing. The results exhibited that plasma system type, gas type, and treatment time had a significant antimicrobial effect with a microbial reduction ranging from 0.01 to 2 log CFU/g and 0.04-1.5 log CFU/g for DBD and Jet plasma systems, respectively. Also, a treatment time longer than 90 s for DBD and 180 s for jet resulted in a significant reduction in microbial count. The ability of atmospheric cold plasma to inactivate tested foodborne pathogenic bacteria (E. coli and S. aureus) was stronger than other gases because the concentration of O3 and NO gases in atmospheric plasma is higher than other used plasma gases. Surface color measurements (L*, a* and b*) of samples in both methods (DBD and Jet) were not significantly affected. Moreover, samples treated with various plasma gases have indicated insignificant oxidation changes (Thiobarbituric acid assay). These outcomes can assist to reduce microbial contamination and oxidation of hamburgers as a high-consumption and perishable product using ACP technology. Owing to the non-thermal nature of ACP, samples treated with ACP have exhibited no or least effects on the physical, chemical, and sensory features of various food products. As a result, cold plasma innovative technology can be proposed and used as an efficient preservative method to increase the shelf life of food products.
Collapse
Affiliation(s)
- Sahar Roshanak
- Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mohammad Maleki
- Department of Food Hygiene and Aquaculture, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mahmood Alizadeh Sani
- Division of Food Safety and Hygiene, Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Milad Tavassoli
- Student Research Committee, Department of Food Sciences and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zana Pirkhezranian
- Department of Animal Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Fakhri Shahidi
- Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran.
| |
Collapse
|
10
|
dos Santos Rocha C, Magnani M, de Paiva Anciens Ramos GL, Bezerril FF, Freitas MQ, Cruz AG, Pimentel TC. Emerging technologies in food processing: impacts on sensory characteristics and consumer perception. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2022.100892] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
11
|
Wu M, Dong Q, Ma Y, Yang S, Zohaib Aslam M, Liu Y, Li Z. Potential antimicrobial activities of probiotics and their derivatives against Listeria monocytogenes in food field: A review. Food Res Int 2022; 160:111733. [DOI: 10.1016/j.foodres.2022.111733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/16/2022] [Accepted: 07/19/2022] [Indexed: 01/04/2023]
|
12
|
Solubilization of concentrated protein dispersion: Effect of hydrogen peroxide (H2O2) and sodium hexametaphosphate (SHMP). Food Chem 2022; 400:133980. [DOI: 10.1016/j.foodchem.2022.133980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 08/03/2022] [Accepted: 08/17/2022] [Indexed: 11/22/2022]
|
13
|
Ohmic heating treatment in high-protein vanilla flavored milk: Quality, processing factors, and biological activity. Food Res Int 2022; 161:111827. [DOI: 10.1016/j.foodres.2022.111827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 07/28/2022] [Accepted: 08/19/2022] [Indexed: 11/23/2022]
|
14
|
Birania S, Attkan AK, Kumar S, Kumar N, Singh VK. Cold plasma in food processing and preservation: A review. J FOOD PROCESS ENG 2022. [DOI: 10.1111/jfpe.14110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Sapna Birania
- Department of Processing and Food Engineering, College of Agricultural Engineering and Technology CCS Haryana Agricultural University Hisar India
| | - Arun Kumar Attkan
- Department of Processing and Food Engineering, College of Agricultural Engineering and Technology CCS Haryana Agricultural University Hisar India
| | - Sunil Kumar
- AICRP on Post Harvest Engineering and Technology, Department of Processing and Food Engineering, College of Agricultural Engineering and Technology CCS Haryana Agricultural University Hisar India
| | - Nitin Kumar
- Department of Processing and Food Engineering, College of Agricultural Engineering and Technology CCS Haryana Agricultural University Hisar India
| | - Vijay Kumar Singh
- Department of Processing and Food Engineering, College of Agricultural Engineering and Technology CCS Haryana Agricultural University Hisar India
| |
Collapse
|
15
|
Neoκleous I, Tarapata J, Papademas P. Non-thermal Processing Technologies for Dairy Products: Their Effect on Safety and Quality Characteristics. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.856199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Thermal treatment has always been the processing method of choice for food treatment in order to make it safe for consumption and to extend its shelf life. Over the past years non-thermal processing technologies are gaining momentum and they have been utilized especially as technological advancements have made upscaling and continuous treatment possible. Additionally, non-thermal treatments are usually environmentally friendly and energy-efficient, hence sustainable. On the other hand, challenges exist; initial cost of some non-thermal processes is high, the microbial inactivation needs to be continuously assessed and verified, application to both to solid and liquid foods is not always available, some organoleptic characteristics might be affected. The combination of thermal and non-thermal processing methods that will produce safe foods with minimal effect on nutrients and quality characteristics, while improving the environmental/energy fingerprint might be more plausible.
Collapse
|
16
|
Balthazar CF, Guimarães JF, Coutinho NM, Pimentel TC, Ranadheera CS, Santillo A, Albenzio M, Cruz AG, Sant'Ana AS. The future of functional food: Emerging technologies application on prebiotics, probiotics and postbiotics. Compr Rev Food Sci Food Saf 2022; 21:2560-2586. [PMID: 35470949 DOI: 10.1111/1541-4337.12962] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 03/10/2022] [Accepted: 03/15/2022] [Indexed: 12/21/2022]
Abstract
This review was the first to gather literature about the effect of emerging technologies on probiotic, prebiotic, and postbiotic products. Applying emerging technologies to probiotic products can increase probiotic survival and improve probiotic properties (cholesterol attachment, adhesion to Caco-2 cells, increase angiotensin-converting enzyme (ACE) inhibitory, antioxidant, and antimicrobial activities, and decrease systolic blood pressure). Furthermore, it can optimize the fermentation process, produce or maintain compounds of interest (bacteriocin, oligosaccharides, peptides, phenolic compounds, flavonoids), improve bioactivity (vitamin, aglycones, calcium), and sensory characteristics. Applying emerging technologies to prebiotic products did not result in prebiotic degradation. Still, it contributed to higher concentrations of bioactive compounds (citric and ascorbic acids, anthocyanin, polyphenols, flavonoids) and health properties (antioxidant activity and inhibition of ACE, α-amylase, and α-glucosidase). Emerging technologies may also be applied to obtain postbiotics with increased health effects. In this way, current studies suggest that emerging food processing technologies enhance the efficiency of probiotics and prebiotics in food. The information provided may help food industries to choose a more suitable technology to process their products and provide a basis for the most used process parameters. Furthermore, the current gaps are discussed. Emerging technologies may be used to process food products resulting in increased probiotic functionality, prebiotic stability, and higher concentrations of bioactive compounds. In addition, they can be used to obtain postbiotic products with improved health effects compared to the conventional heat treatment.
Collapse
Affiliation(s)
- Celso F Balthazar
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, São Paulo, Brazil
| | - Jonas F Guimarães
- Department of Food Science and Technology, School of Veterinary, Federal Fluminense University, Rio de Janeiro, Niteroi, Brazil
| | - Nathália M Coutinho
- Department of Food Science and Technology, School of Veterinary, Federal Fluminense University, Rio de Janeiro, Niteroi, Brazil
| | - Tatiana C Pimentel
- Federal Institute of Paraná, Campus Paranavaí, Paranavaí, Paraná, Brazil
| | - C Senaka Ranadheera
- School of Agriculture & Food, Faculty of Veterinary & Agricultural Sciences, The University of Melbourne, Melbourne, Victoria, Australia
| | - Antonella Santillo
- Department of the Science of Agriculture, Food and Environment (SAFE), University of Foggia (UNIFG), Foggia, Italy
| | - Marzia Albenzio
- Department of the Science of Agriculture, Food and Environment (SAFE), University of Foggia (UNIFG), Foggia, Italy
| | - Adriano G Cruz
- Department of Food, Federal Institute of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Anderson S Sant'Ana
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, São Paulo, Brazil
| |
Collapse
|
17
|
Momen S, Alavi F, Aider M. Impact of alkaline electro-activation treatment on physicochemical and functional properties of sweet whey. Food Chem 2022; 373:131428. [PMID: 34710696 DOI: 10.1016/j.foodchem.2021.131428] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/06/2021] [Accepted: 10/17/2021] [Indexed: 12/22/2022]
Abstract
The impact of alkaline electro-activation (EA) on the protein solubility, foaming, and emulsifying characteristics of whey was investigated. EA caused protein aggregation and conjugation. At low electric current and holding time, proteins aggregation through disulfide bonds was observed, whereas increasing currents and holding times caused proteins to conjugate with sugars such as lactose, lactulose and galactose. The EA process improved the protein solubility at the pH range of 4.0-7.0. Compared to untreated whey, which produced micron-sized and unstable emulsions at pH 3, whey samples treated under 750 mA and 24-48 h holding time formed nano-sized and stable emulsions at this pH. Furthermore, although both untreated and EA-whey produced stable emulsions at pH 7, those emulsions prepared with EA-whey had smaller particle size and were more stable against droplet flocculation. EA-treated whey tended to generate foams with significantly higher overrun and stability. The present study demonstrated that EA can enhance the functionality of whey.
Collapse
Affiliation(s)
- Shima Momen
- Department of Food Sciences, Université Laval, Quebec, QC G1V 0A6, Canada; Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec, QC G1V 0A6, Canada
| | - Farhad Alavi
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE 68588-6205, United States
| | - Mohammed Aider
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec, QC G1V 0A6, Canada; Department of Soil Sciences and Agri-Food Engineering, Université Laval, Quebec, QC G1V 0A6, Canada.
| |
Collapse
|
18
|
NMR Spectroscopy and Chemometrics to Evaluate the Effect of Different Non-Thermal Plasma Processing on Sapota-do-Solimões (Quararibea cordata Vischer) Juice Quality and Composition. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02792-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
19
|
Ricciardi EF, Del Nobile MA, Conte A, Fracassi F, Sardella E. Effects of plasma treatments applied to fresh ricotta cheese. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.102935] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|