1
|
Nie R, Wang Z, Wei X, Zhang D, Liu H, Zhang C. Understanding protein-lipid interactions in pyrazine binding under heat treatment: A case study of collagen and triglycerides. Food Chem 2025; 482:144213. [PMID: 40215841 DOI: 10.1016/j.foodchem.2025.144213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 03/31/2025] [Accepted: 04/04/2025] [Indexed: 05/03/2025]
Abstract
BACKGROUND Collagen-triglyceride complexes in animal skin govern flavor retention during thermal processing, yet their molecular interactions with pyrazines remain unresolved. OBJECTIVES This study aims to elucidate heat-induced collagen-triglyceride complex formation (25 °C, 47 °C, 64 °C, 75 °C, and 79 °C), identify pyrazine-binding residues, and assess implications for flavor retention strategies. METHODS An in vitro collagen-triglyceride-pyrazine model was developed. Complex formation was validated via confocal laser scanning microscopy (CLSM), while heating-induced structural changes were analyzed through rheology, fluorescence spectroscopy, and XRD. Molecular docking quantified binding energies and dynamics. RESULTS Heating stabilized the collagen-triglyceride complexes via hydrogen bonds, van der Waals forces, and covalent bonds (zeta potential: -12.75 to -5.53 mV), showing high affinity for 2-ethyl-5-methyl and 3-ethyl-2,5-dimethyl pyrazines. Molecular docking revealed GLU-A-12, HYP-B-7, and PHE-C-9 as key residues, destabilizing hydrogen networks but enhancing thermal stability. CONCLUSION The integration of multi-scale analyses clarifies collagen-lipid-flavor interactions in flavor retention, providing valuable theoretical support for optimizing roasting technologies.
Collapse
Affiliation(s)
- Ruotong Nie
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs; Laboratory of Processing Technology Integration for Chinese-style Meat and Vegetable Dishes, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Zhenyu Wang
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs; Laboratory of Processing Technology Integration for Chinese-style Meat and Vegetable Dishes, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiangru Wei
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs; Laboratory of Processing Technology Integration for Chinese-style Meat and Vegetable Dishes, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Dequan Zhang
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs; Laboratory of Processing Technology Integration for Chinese-style Meat and Vegetable Dishes, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu National Agricultural Science & Technology Center, Chengdu 610213, China
| | - Huan Liu
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs; Laboratory of Processing Technology Integration for Chinese-style Meat and Vegetable Dishes, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Chunjiang Zhang
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs; Laboratory of Processing Technology Integration for Chinese-style Meat and Vegetable Dishes, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu National Agricultural Science & Technology Center, Chengdu 610213, China.
| |
Collapse
|
2
|
Wang Y, Yu Y, Shi C, Ren Y, Han J, Wu R. Development of curcumin nanoparticle-modified photodynamic gelatin/PVA-chitosan bilayer films for preserving bigeye tuna. Int J Biol Macromol 2025; 308:142299. [PMID: 40169059 DOI: 10.1016/j.ijbiomac.2025.142299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 03/16/2025] [Accepted: 03/18/2025] [Indexed: 04/03/2025]
Abstract
In this study, a biodegradable bilayer film was developed with polysaccharides chitosan as the outer layer and gelatin/polyvinyl alcohol (PVA) as the inner layer materials, incorporating curcumin-chitosan nanoparticles (CCN) as the photosensitizer. The bilayer film was used to prepare a new type of food packaging combined with photodynamic inactivation technology. The results showed that when the CCN content in the film was 2.5 %, the film exhibited outstanding performance in terms of mechanical properties, oxygen barrier properties, and antioxidant and antibacterial activities. When the film was used to preserve bigeye tuna, its thiobarbituric acid index, myoglobin content, and total bacterial count significantly improved after the 9 d of storage. These findings meet the current packaging material demands of the fresh food industry and provide theoretical reference and technical support for the development of new antibacterial packaging materials and their practical applications.
Collapse
Affiliation(s)
- Yang Wang
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang 050018, China; School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Yang Yu
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Chenshan Shi
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Yuanyuan Ren
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Junhua Han
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang 050018, China.
| | - Rongrong Wu
- College of Life Science, Hengshui University, Hengshui 053000, China; Hebei Technology Innovation Center for Fruits and Vegetables Fermentation, Hengshui 053000, China.
| |
Collapse
|
3
|
Xia L, Zhou S, Lian K, Chen S. Integrated Metabolomic and Microbial Analysis of Quality Dynamics in Channel Catfish ( Ictalurus punctatus) Under Refrigerated and Frozen Storage. Foods 2025; 14:1089. [PMID: 40238220 PMCID: PMC11988692 DOI: 10.3390/foods14071089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 03/13/2025] [Accepted: 03/20/2025] [Indexed: 04/18/2025] Open
Abstract
Channel catfish (Ictalurus punctatus) is a widely consumed freshwater fish known for its nutritional value but is highly prone to spoilage. This study investigated the quality changes of catfish muscle tissue under refrigeration and freezing through physicochemical, metabolomic, and microbial analyses. Results revealed that sensory scores decreased significantly during storage, with frozen samples maintaining similar scores to refrigerated ones after extended periods. Protein degradation and lipid oxidation, indicated by TVB-N and TBARS levels, were more pronounced during prolonged freezing. Metabolomic profiling identified 261 differential metabolites under long-term freezing, including elevated phosphatidylcholines, sphingomyelins, and disrupted amino acid pathways. Shifts in spoilage-associated microbial genera, such as Pseudomonas, and the correlations between microbial genera and specific metabolites, such as Methylobacterium with methylmalonic acid, highlighted microbial-driven spoilage processes. These findings provided a comprehensive understanding of quality deterioration during storage, guiding the development of enhanced preservation strategies for aquatic products.
Collapse
Affiliation(s)
- Liwei Xia
- College of Life Science and Technology, Tarim Research Center of Rare Fishes, Tarim University, Alar 843300, China
| | - Shun Zhou
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Kaiqi Lian
- School of Biotechnology and Food Science, Anyang Institute of Technology, Anyang 455000, China
| | - Shengao Chen
- College of Life Science and Technology, Tarim Research Center of Rare Fishes, Tarim University, Alar 843300, China
| |
Collapse
|
4
|
Chu Y, Wang J, Xie J. Effects of interactions between microorganisms and lipids on inferior volatile compound production during cold storage of grouper ( Epinephelus coioides). Food Chem X 2025; 25:102183. [PMID: 39897979 PMCID: PMC11786894 DOI: 10.1016/j.fochx.2025.102183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/31/2024] [Accepted: 01/12/2025] [Indexed: 02/04/2025] Open
Abstract
The interaction between microorganisms, proteins, and lipids plays a critical role in the odor production of fish. To explore the specific impact of the interaction between lipids and microorganisms on the overall odor of grouper, this study excluded the influence of proteins and assessed lipid (POV and TBARS) and microbial characteristics (biofilm mass and ATP content) in lipid solutions. The Results showed that microbial growth and lipid oxidation mutually promote each other. Lipidomics analysis identified 44 differential lipids, and microbial diversity analysis pinpointed five key microorganisms (Carnobacterium, Pseudomonas, Gluconacetobacter, Vagococcus, and Shewanella). Furthermore, 20 key volatile compounds (VOCs) related to odor changes in the grouper lipid solution were identified using HS-SPME-GC-MS. Correlation network analysis revealed potential microbial and lipid contributions to VOC categories, including alcohols, aldehydes, ketones, and nitrogen- and sulfur-containing compounds. This study provides new insights into the roles of microorganisms and lipids in flavor formation, offering valuable knowledge for improving seafood quality control.
Collapse
Affiliation(s)
- Yuanming Chu
- College of Food Science & Technology, Shanghai Ocean University, Shanghai, China
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai, China
| | - Jinfeng Wang
- College of Food Science & Technology, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Aquatic Products High Quality Utilization, Storage and Transportation (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shanghai, China
- Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai Ocean University, Shanghai, China
| | - Jing Xie
- College of Food Science & Technology, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Aquatic Products High Quality Utilization, Storage and Transportation (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shanghai, China
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Center of Aquatic Product Processing & Preservation, Shanghai Ocean University, Shanghai, China
- Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
5
|
Ying X, Li X, Deng S, Zhang B, Xiao G, Xu Y, Brennan C, Benjakul S, Ma L. How lipids, as important endogenous nutrient components, affect the quality of aquatic products: An overview of lipid peroxidation and the interaction with proteins. Compr Rev Food Sci Food Saf 2025; 24:e70096. [PMID: 39812142 DOI: 10.1111/1541-4337.70096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 12/02/2024] [Accepted: 12/02/2024] [Indexed: 01/16/2025]
Abstract
As the global population continues to grow and the pressure on livestock and poultry supply increases, the oceans have become an increasingly important source of quality food for future generations. However, nutrient-rich aquatic product is susceptible to lipid oxidation during storage and transport, reducing its nutritional value and increasing safety risks. Therefore, identifying the specific effects of lipid oxidation on aquatic products has become particularly critical. At the same time, some lipid oxidation products have been found to interact with aquatic product proteins in various ways, posing a safety risk. This paper provides an in-depth exploration of the pathways, specific effects, and hazards of lipid oxidation in aquatic products, with a particular focus on the interaction of lipid oxidation products with proteins. Additionally, it discusses the impact of non-thermal treatment techniques on lipids in aquatic products and examines the application of natural antioxidants in aquatic products. Future research endeavors should delve into the interactions between lipids and proteins in these products and their specific effects to mitigate the impact of non-thermal treatment techniques on lipids, thereby enhancing the safety of aquatic products and ensuring food safety for future generations.
Collapse
Affiliation(s)
- Xiaoguo Ying
- Zhejiang Provincial Key Laboratory of Health Risk Factors for Seafood, Collaborative Innovation Center of Seafood Deep Processing, College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Xinyang Li
- Zhejiang Provincial Key Laboratory of Health Risk Factors for Seafood, Collaborative Innovation Center of Seafood Deep Processing, College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Shanggui Deng
- Zhejiang Provincial Key Laboratory of Health Risk Factors for Seafood, Collaborative Innovation Center of Seafood Deep Processing, College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Bin Zhang
- Zhejiang Provincial Key Laboratory of Health Risk Factors for Seafood, Collaborative Innovation Center of Seafood Deep Processing, College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Gengsheng Xiao
- College of Light Industry and Food, Zhongkai University of Agriculture and Engineering/Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture and Rural Affairs, Guangzhou, China
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, China
| | - Yujuan Xu
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, China
| | - Charles Brennan
- School of Science, Royal Melbourne Institute of Technology University, Melbourne, Australia
| | - Soottawat Benjakul
- Faculty of Agro-Industry, International Center of Excellence in Seafood Science and Innovation, Prince of Songkla University, Songkhla, Thailand
| | - Lukai Ma
- College of Light Industry and Food, Zhongkai University of Agriculture and Engineering/Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture and Rural Affairs, Guangzhou, China
| |
Collapse
|
6
|
Liu H, Zhang Y, Ji H, Li J, Ma Q, Hamid N, Xing J, Gao P, Li P, Li J, Li Q. A lipidomic and volatilomic approach to map the lipid profile and related volatile compounds in roasted quail meat using circulating non-fried roast technology. Food Chem 2024; 461:140948. [PMID: 39182334 DOI: 10.1016/j.foodchem.2024.140948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024]
Abstract
Lipids play a significant role in aroma formation. However, lipid variations and their impact on aroma during the processing of quail meat remain unknown. Therefore, a comprehensive analysis of lipids and aroma compounds was conducted in circulating non-fried roasted quail meat. Nineteen odorants were identified as key aroma compounds in the roasted quail meat at 40 min with OAVs of >1. The concentrations of most key odorants significantly increased in circulating non-fried roasted (CNR) quail meat within the first 30 min of roasting, reaching maximum values at 40 min. Phospholipids, neutral lipids, and sphingolipids emerged as potential markers for distinguishing different samples. Neutral lipids had the highest peak areas and significantly contributed to the aroma retention. Phospholipids and neutral lipids with unsaturated fatty acids, particularly C18 acyl groups, played a crucial role in aroma formation. This study provides valuable insights into the role of lipids in determining aroma quality.
Collapse
Affiliation(s)
- Huan Liu
- School of Food Engineering, Yantai Key Laboratory of Nanoscience and Technology for Prepared Food, Yantai Engineering Research Center of Green Food Processing and Quality Control, Bionanotechnology Institute, Ludong University, Yantai 264025, China.
| | - Yuping Zhang
- School of Food Engineering, Yantai Key Laboratory of Nanoscience and Technology for Prepared Food, Yantai Engineering Research Center of Green Food Processing and Quality Control, Bionanotechnology Institute, Ludong University, Yantai 264025, China
| | - Hengbin Ji
- Yantai Institute of Technology, Yantai, 264025, China
| | - Junke Li
- School of Food Engineering, Yantai Key Laboratory of Nanoscience and Technology for Prepared Food, Yantai Engineering Research Center of Green Food Processing and Quality Control, Bionanotechnology Institute, Ludong University, Yantai 264025, China
| | - Qianli Ma
- Department of Food Science, Auckland University of Technology, Private Bag 92006, Auckland 1142, New Zealand
| | - Nazimah Hamid
- Department of Food Science, Auckland University of Technology, Private Bag 92006, Auckland 1142, New Zealand
| | | | - Peng Gao
- Thermo Fisher Scientific, Beijing 100102, China
| | - Pi Li
- Thermo Fisher Scientific, Beijing 100102, China
| | - Jianxun Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Qianqian Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China.
| |
Collapse
|
7
|
Peng X, Li Y, Yu J, Gao Y, Zhao X, Jia N. Assessment of the impact of whey protein hydrolysate on myofibrillar proteins in surimi during repeated freeze-thaw cycles: Quality enhancement and antifreeze potential. Food Chem 2024; 460:140552. [PMID: 39047476 DOI: 10.1016/j.foodchem.2024.140552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/14/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024]
Abstract
The quality of surimi, widely used in processed seafood, is compromised by freeze-thaw cycles, leading to protein denaturation and oxidative degradation. The objective of this study is to explore the effects of adding natural whey peptide hydrolysate (WPH) on the myofibrillar proteins of repeatedly freeze-thawed surimi. Results indicated surimi treated with 15% WPH exhibited only a 128% increase in surface hydrophobicity and a maximum peroxide value of 7.84 μg/kg, significantly lower than the control group. Additionally, salt-soluble protein content, emulsification activity, and stability decreased with the increase in freeze-thaw cycles. With a 15% WPH offering the most significant protective effect, evidenced by reductions of only 25.02%, 42.52% and 37.02% in salt-soluble protein content, emulsification activity, and stability, respectively. These outcomes demonstrate that WPH effectively reduces protein denaturation during repeated freeze-thaw processes. Future research should explore the molecular mechanisms underlying WPH's protective effects and evaluate their applicability in other food systems.
Collapse
Affiliation(s)
- Xinyan Peng
- College of Life Science, Yantai University, Yantai, Shandong 264005, China.
| | - Yunying Li
- College of Life Science, Yantai University, Yantai, Shandong 264005, China
| | - Juan Yu
- College of Life Science, Yantai University, Yantai, Shandong 264005, China
| | - Yonglin Gao
- College of Life Science, Yantai University, Yantai, Shandong 264005, China
| | - Xinxin Zhao
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Na Jia
- College of Food Science and Technology, Bohai University, Food Safety Key Lab of Liaoning Province, National & Local Joint Engineering Research Center of Storage, Jinzhou, Liaoning 121013, China
| |
Collapse
|
8
|
Tao X, Yin M, Lin L, Song R, Wang X, Tao N, Wang X. UPLC-ESI-MS/MS strategy to analyze fatty acids composition and lipid profiles of Pacific saury ( Cololabis saira). Food Chem X 2024; 23:101682. [PMID: 39229617 PMCID: PMC11369443 DOI: 10.1016/j.fochx.2024.101682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/09/2024] [Accepted: 07/20/2024] [Indexed: 09/05/2024] Open
Abstract
The Pacific saury (Cololabis saira) is a highly nutritious deep-sea fish, rich in omega-3 polyunsaturated fatty acids (n-3 PUFAs). This study comprehensively investigated fatty acids composition and lipid profiles of different parts of Pacific saury based on an untargeted lipidomic strategy. Results suggested that the crude fat content of meat, head and viscera were 5.81%, 10.90%, and 19.46%, respectively. The contents of PUFAs were 41.08%, 34.96% and 33.14%, respectively. Among them, the n-3 PUFAs in the head (34.58%) were significantly higher than meat (29.40%) and viscera (27.95%). Moreover, 5752 lipid molecules were identified, where glycerophospholipids (GP) were the most numerous lipid type (45.58%), with phosphatidylcholine (PC) being main differential subclass. PC (20:3_22:6) was the most abundant molecule in the head (14.59%) and meat (19.60%). Head_vs_viscera group had higher characteristic PC abundance. This study will provide a theoretical basis for the physiological activity and lipid high-value utilization of Pacific saury.
Collapse
Affiliation(s)
- Xinyi Tao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Mingyu Yin
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Liu Lin
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Rongzhen Song
- College of Food Science and Pharmaceutical Engineering Zaozhuang University, 277160, China
| | - Xiaodong Wang
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Ningping Tao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Xichang Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| |
Collapse
|
9
|
Jin W, Zhao S, Li J, Cheng K, Xi L, Pei J, Gao R, Jiang P. Unraveling gender-specific lipids and flavor volatiles in giant salamander ( Andrias davidianus) livers via lipidomics and GC-IMS. Food Chem X 2024; 23:101786. [PMID: 39286042 PMCID: PMC11403451 DOI: 10.1016/j.fochx.2024.101786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/16/2024] [Accepted: 08/26/2024] [Indexed: 09/19/2024] Open
Abstract
To uncover the relationships between lipid components and flavor volatiles, distinctness in lipid components and odor substances in giant salamander livers of different genders were comparatively characterized through UPLC-Q Exactive-MS lipidomics and gas chromatography-ion migration spectrometry (GC-IMS). A total of 2171 and 974 lipid metabolites were detected in positive and negative ion modes, respectively. Triglycerides (TG) and phosphatidylcholines (PC) are the most abundant types of lipids. TG level in male livers was higher than that in female livers (P < 0.05), whereas PC level showed no marked variation (P > 0.05). Additionally, a total of 51 volatile components were detected through GC-IMS. Ketones (42.18 % ∼ 45.44 %) and alcohols (24.19 % ∼ 26.50 %) were the predominant categories, and their relative contents were higher in female livers. Finally, 30 differential lipid metabolites and 12 differential odor substances were screened and could be used as distinguishing labels in giant salamander livers of different genders. Correlation analysis indicated that PS(36:2e), TG(48:13), ZyE(37:6), and ZyE(33:6) correlated positively with 3-methyl butanal, 3-hydroxy-2-butanone, and 2-methyl-1-propanol (P < 0.05), but adversely linked with 1-penten-3-one, and 1-octen-3-one (P < 0.01). By three-fold cross-validation, prediction accuracies of these differential lipids and volatile compounds for gender recognition based on random forest model were 100 % and 92 %, respectively. These findings might not only add knowledge on lipid and volatile profiles in giant salamander livers as affected by genders, but also provide clues for their gender recognition.
Collapse
Affiliation(s)
- Wengang Jin
- Qinba State Key Laboratory of Biological Resource and Ecological Environment (Incubation), Collaborative Innovation Center of Bio-Resource in Qinba Mountain Area, Shaanxi University of Technology, Hanzhong 723001, China
- Key Laboratory of Bio-Resources of Shaanxi Province, School of Bioscience and Engineering, Shaanxi, University of Technology, Hanzhong, 723001, China
| | - Shibo Zhao
- Qinba State Key Laboratory of Biological Resource and Ecological Environment (Incubation), Collaborative Innovation Center of Bio-Resource in Qinba Mountain Area, Shaanxi University of Technology, Hanzhong 723001, China
| | - Jiayao Li
- Qinba State Key Laboratory of Biological Resource and Ecological Environment (Incubation), Collaborative Innovation Center of Bio-Resource in Qinba Mountain Area, Shaanxi University of Technology, Hanzhong 723001, China
| | - Kaiqi Cheng
- Qinba State Key Laboratory of Biological Resource and Ecological Environment (Incubation), Collaborative Innovation Center of Bio-Resource in Qinba Mountain Area, Shaanxi University of Technology, Hanzhong 723001, China
| | - Linjie Xi
- Qinba State Key Laboratory of Biological Resource and Ecological Environment (Incubation), Collaborative Innovation Center of Bio-Resource in Qinba Mountain Area, Shaanxi University of Technology, Hanzhong 723001, China
| | - Jinjin Pei
- Qinba State Key Laboratory of Biological Resource and Ecological Environment (Incubation), Collaborative Innovation Center of Bio-Resource in Qinba Mountain Area, Shaanxi University of Technology, Hanzhong 723001, China
| | - Ruichang Gao
- Qinba State Key Laboratory of Biological Resource and Ecological Environment (Incubation), Collaborative Innovation Center of Bio-Resource in Qinba Mountain Area, Shaanxi University of Technology, Hanzhong 723001, China
- College of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Pengfei Jiang
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
10
|
Zhao S, Yu J, Xi L, Kong X, Pei J, Jiang P, Gao R, Jin W. Sex-Specific Lipid Profiles and Flavor Volatiles in Giant Salamander ( Andrias davidianus) Tails Revealed by Lipidomics and GC-IMS. Foods 2024; 13:3048. [PMID: 39410083 PMCID: PMC11476126 DOI: 10.3390/foods13193048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/11/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
To elucidate the relationships between lipid components and odor traits, this study comparatively characterized the distinct lipid compositions and flavor volatiles in giant salamander tails of different sexes via mass-spectrometry-based lipidomics and GC-IMS. A total of 3145 fat metabolites were detected in male and female giant salamander tails, with the largest contributors being triglycerides (TGs, 840) and phosphatidylcholines (PCs, 383). Notably, the contents of PCs and TGs were greater in female tails than in male tails, and the levels of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) were also greater in the female group. Additionally, a total of 45 volatile components were detected, namely, 14 aldehydes, 14 alcohols, 9 ketones, 3 acids, 3 esters, 1 ether, and 1 amine. Alcohols (29.96% to 34.85%) and aldehydes (21.07% to 22.75%) were the predominant volatiles. Multivariate statistical analysis revealed 22 key differential fats and 26 differential odor substances as distinguishing labels between sexes. Correlation analysis revealed that the concentrations of triethylamine, dimethyl sulfide, ethanol-D, and 3-methyl butanal-D were significantly positively correlated with the concentrations of diglyceride (DG) (26:6e), cardiolipin (CL) (59:4), acylcarnitine (AcCa) (22:4), and triglyceride (TG) (52:10) (p < 0.01). Threefold cross-validation revealed that the prediction accuracies of these differential lipids and volatile compounds for sex recognition via the random forest model were 100%. These findings might not only provide insight into the effects of sexes on the lipid and volatile profiles of giant salamander tails but also provide clues for their gender recognition.
Collapse
Affiliation(s)
- Shibo Zhao
- Qinba State Key Laboratory of Biological Resource and Ecological Environment (Incubation), Collaborative Innovation Center of Bio-Resource in Qinba Mountain Area, Shaanxi University of Technology, Hanzhong 723001, China; (S.Z.); (J.Y.); (L.X.); (X.K.); (J.P.)
- Key Laboratory of Bio-Resources of Shaanxi Province, School of Bioscience and Engineering, Shaanxi University of Technology, Hanzhong 723001, China
| | - Jinghong Yu
- Qinba State Key Laboratory of Biological Resource and Ecological Environment (Incubation), Collaborative Innovation Center of Bio-Resource in Qinba Mountain Area, Shaanxi University of Technology, Hanzhong 723001, China; (S.Z.); (J.Y.); (L.X.); (X.K.); (J.P.)
| | - Linjie Xi
- Qinba State Key Laboratory of Biological Resource and Ecological Environment (Incubation), Collaborative Innovation Center of Bio-Resource in Qinba Mountain Area, Shaanxi University of Technology, Hanzhong 723001, China; (S.Z.); (J.Y.); (L.X.); (X.K.); (J.P.)
- Key Laboratory of Bio-Resources of Shaanxi Province, School of Bioscience and Engineering, Shaanxi University of Technology, Hanzhong 723001, China
| | - Xiangdong Kong
- Qinba State Key Laboratory of Biological Resource and Ecological Environment (Incubation), Collaborative Innovation Center of Bio-Resource in Qinba Mountain Area, Shaanxi University of Technology, Hanzhong 723001, China; (S.Z.); (J.Y.); (L.X.); (X.K.); (J.P.)
| | - Jinjin Pei
- Qinba State Key Laboratory of Biological Resource and Ecological Environment (Incubation), Collaborative Innovation Center of Bio-Resource in Qinba Mountain Area, Shaanxi University of Technology, Hanzhong 723001, China; (S.Z.); (J.Y.); (L.X.); (X.K.); (J.P.)
- Key Laboratory of Bio-Resources of Shaanxi Province, School of Bioscience and Engineering, Shaanxi University of Technology, Hanzhong 723001, China
| | - Pengfei Jiang
- SKL of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China;
| | - Ruichang Gao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Wengang Jin
- Qinba State Key Laboratory of Biological Resource and Ecological Environment (Incubation), Collaborative Innovation Center of Bio-Resource in Qinba Mountain Area, Shaanxi University of Technology, Hanzhong 723001, China; (S.Z.); (J.Y.); (L.X.); (X.K.); (J.P.)
- Key Laboratory of Bio-Resources of Shaanxi Province, School of Bioscience and Engineering, Shaanxi University of Technology, Hanzhong 723001, China
- SKL of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China;
| |
Collapse
|
11
|
Wang W, Xiao Y, Ding Y, Li Y, Zhu Y, Zhou X. Effect of microwave (MW)-subcritical extraction on oil recovery, oxidative stability, and lipid types from Katsuwonus pelamis livers. Food Chem X 2024; 22:101351. [PMID: 38623513 PMCID: PMC11016954 DOI: 10.1016/j.fochx.2024.101351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/19/2024] [Accepted: 04/01/2024] [Indexed: 04/17/2024] Open
Abstract
Katsuwonus pelamis is a tuna species mostly sold for canned fillets, its livers were lack of utilization. This study thus investigated an oil production method combining microwave (MW) pretreatment and subcritical dimethyl ether (SDME) in aim to reach improved efficiency and oil quality. The heating characteristics from different MW powers (400, 600, and 800 W) were evaluated, and SEM showed MW having hydrolysis effect on matrix lipoprotein, the fortified recovery rate was also found. Under the MW-SDME condition with 600 W power, 1:5 solid-to-liquid ratio, and 100 min, the recovery reached 93.21% in maximal (SDME ∼50%). To further improve quality, MW powers was noticed affecting lipid types, fatty acid composition, and oxidative stability of produced oils. 1286 lipid types (mostly glyceride and phospholipid-type) were identified, while higher MW lowered the emulsifying phospholipids prompting phase separation. Several oxidation indexes consistently increased with the rising MW power, GC-MS suggested 400 W for higher DHA.
Collapse
Affiliation(s)
- Wenjie Wang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
- Zhejiang Key Laboratory of Green, Low-carbon and Efficient Development of Marine Fishery Resources, Hangzhou 310014, China
- National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou 310014, China
| | - Yuliang Xiao
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
- Zhejiang Key Laboratory of Green, Low-carbon and Efficient Development of Marine Fishery Resources, Hangzhou 310014, China
- National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou 310014, China
| | - Yicheng Ding
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yihong Li
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
- Zhejiang Key Laboratory of Green, Low-carbon and Efficient Development of Marine Fishery Resources, Hangzhou 310014, China
- National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou 310014, China
| | - Yihua Zhu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
- Zhejiang Key Laboratory of Green, Low-carbon and Efficient Development of Marine Fishery Resources, Hangzhou 310014, China
| | - Xuxia Zhou
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
- Zhejiang Key Laboratory of Green, Low-carbon and Efficient Development of Marine Fishery Resources, Hangzhou 310014, China
- National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou 310014, China
| |
Collapse
|
12
|
Wang Y, Cai Z, Sang X, Deng W, Zeng L, Wang J, Zhang J. Lc-ms-based lipidomics analyses revealed changes in lipid profiles in Asian sea bass (Lates calcarifer) with dielectric barrier discharge (DBD) atmospheric plasma treatment. Food Chem 2024; 439:138098. [PMID: 38043272 DOI: 10.1016/j.foodchem.2023.138098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/09/2023] [Accepted: 11/25/2023] [Indexed: 12/05/2023]
Abstract
A comprehensive LC-MS-based lipidomics analysis of Asian sea bass (Lates calcarifer) muscle after dielectric barrier discharge (DBD) atmospheric plasma treatment was performed. Through the analysis, 1500 lipid species were detected, phosphatidylcholine (PC, 27.80%) was the most abundant lipid, followed by triglyceride (TG, 20.50%) and phosphatidylethanolamine (PE, 17.10%). Among them, 125 lipid species were detected and identified as differentially abundant lipids in Asian sea bass (ASB). PCA and OPLS-DA showed that ASB lipids changed significantly after DBD treatment. Moreover, glycerophospholipid metabolism was key metabolic pathways, as PC, PE, and lysophosphatidylcholine (LPC) were key lipid metabolites. The findings concerning fatty acids revealed that the saturated fatty acids (SFA) content of ASB after DBD treatment increased by 8.54%, while the content of monounsaturated fatty acids (MUFA) and polyunsaturated fatty acids (PUFA) decreased by 13.77% and 9.16%, respectively. Our study establishes a foundation for the lipid oxidation mechanism of ASB following DBD treatment.
Collapse
Affiliation(s)
- Yuanyuan Wang
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Seafood Processing of Haikou, School of Food Science and Engineering, Hainan University, Haikou, 570228, China
| | - Zhicheng Cai
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Seafood Processing of Haikou, School of Food Science and Engineering, Hainan University, Haikou, 570228, China
| | - Xiaohan Sang
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Seafood Processing of Haikou, School of Food Science and Engineering, Hainan University, Haikou, 570228, China
| | - Wentao Deng
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Seafood Processing of Haikou, School of Food Science and Engineering, Hainan University, Haikou, 570228, China
| | - Lixian Zeng
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Seafood Processing of Haikou, School of Food Science and Engineering, Hainan University, Haikou, 570228, China
| | - Jiamei Wang
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Seafood Processing of Haikou, School of Food Science and Engineering, Hainan University, Haikou, 570228, China; Collaborative Innovation Center of Provincial and Ministerial Co-Construction for Marine Food Deep Processing, Dalian Polytechnic University, Dalian 116034, China.
| | - Jianhao Zhang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
13
|
Chen H, Liu L, Jiang L, Hu W, Cen Q, Zhang R, Hui F, Li J, Zeng X. Effect of L. Plantarum Y279 and W. Cibaria Y113 on microorganism, lipid oxidation and fatty acid metabolites in Yu jiaosuan, A Chinese tradition fermented snack. Food Chem X 2024; 21:101246. [PMID: 38426073 PMCID: PMC10901845 DOI: 10.1016/j.fochx.2024.101246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/12/2024] [Accepted: 02/18/2024] [Indexed: 03/02/2024] Open
Abstract
Fatty acids are one of the main sources of flavour in fermented Yu jiaosuan (YJS) in southwest China. Bacilli (50.18 %) and Oxyphotobacteria (32.70 %) were the dominant class. Lactiplantibacillus (40.51 %) and Weissella (20.43 %) were the dominant species in the inoculated fermented group (HY). The peroxide value (ZY: 0.025 g/100 g, HY: 0.016 g/100 g) and lipoxygenase (LOX) (ZY: 5.7654 U/min·g, HY: 3.3856 U/min·g) in the HY group were significantly lower compared with the natural fermentation group (ZY), while acid lipase activity (ZY: 0.3184 U/h·g, HY: 0.7075 U/h·g) and neutral lipase activity (ZY: 12.65443 U/h·g, HY: 20.25142 U/h·g) were significantly higher than the control sample. Totally 40 differential fatty acid metabolites were screened. Arachidonic acid metabolism, unsaturated fatty acid biosynthesis and linoleic acid metabolism were potential metabolic pathways. Seven major bacterial species were closely associated with 15 differential fatty acid. This study contributes to the targeted production of fatty acid functional active substances of YJS.
Collapse
Affiliation(s)
- Hongyan Chen
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
- Guizhou Provincial Key Laboratory of Agricultural and Animal Products Storage and Processing, Guiyang, China
| | - Lu Liu
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
- Bureau of Agriculture and Rural Affairs of Majiang County, Guizhou Province, China
| | - Lu Jiang
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
- Guizhou Provincial Key Laboratory of Agricultural and Animal Products Storage and Processing, Guiyang, China
| | - Wenkang Hu
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
- Guizhou Provincial Key Laboratory of Agricultural and Animal Products Storage and Processing, Guiyang, China
| | - Qin Cen
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
- Guizhou Provincial Key Laboratory of Agricultural and Animal Products Storage and Processing, Guiyang, China
| | - Rui Zhang
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
- Guizhou Provincial Key Laboratory of Agricultural and Animal Products Storage and Processing, Guiyang, China
| | - Fuyi Hui
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
- Guizhou Provincial Key Laboratory of Agricultural and Animal Products Storage and Processing, Guiyang, China
| | - Jiamin Li
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
- Guizhou Provincial Key Laboratory of Agricultural and Animal Products Storage and Processing, Guiyang, China
| | - Xuefeng Zeng
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
- Guizhou Provincial Key Laboratory of Agricultural and Animal Products Storage and Processing, Guiyang, China
- Edible Fungus Research Institute Guizhou University, Guiyang, China
| |
Collapse
|
14
|
Chu Y, Mei J, Xie J. Exploring the effects of lipid oxidation and free fatty acids on the development of volatile compounds in grouper during cold storage based on multivariate analysis. Food Chem X 2023; 20:100968. [PMID: 38144829 PMCID: PMC10740102 DOI: 10.1016/j.fochx.2023.100968] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/12/2023] [Accepted: 10/25/2023] [Indexed: 12/26/2023] Open
Abstract
To investigate the relationship between lipid oxidation and the development of volatile compounds (VOCs) in grouper lipid during cold storage, lipids were extracted from grouper as a single-factor study to avoid the complex interactions between microorganisms and proteins. Lipid oxidation during storage and the content of 12 long-chain fatty acids (FAs) in grouper lipids were evaluated. The HS-SPME-GC-MS technique was used to analyze the VOCs in grouper lipids, and a total of 13 key VOCs, primarily comprising alcohols and aldehydes, were screened. Pearson correlation analysis showed a strong acorrelation between these 13 key VOCs, which influenced the overall flavor of grouper lipids, and lipid oxidation, mainly involving secondary oxidation of lipids and the oxidation of long-chain polyunsaturated fatty acids, such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). Possible solutions for grouper lipid deterioration were proposed, providing a reference for maintaining the overall quality of grouper and regulating flavor formation.
Collapse
Affiliation(s)
- Yuanming Chu
- College of Food Science & Technology, Shanghai Ocean University, Shanghai, China
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai, China
| | - Jun Mei
- College of Food Science & Technology, Shanghai Ocean University, Shanghai, China
- Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai Ocean University, Shanghai, China
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Center of Aquatic Product Processing & Preservation, Shanghai Ocean University, Shanghai, China
| | - Jing Xie
- College of Food Science & Technology, Shanghai Ocean University, Shanghai, China
- Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai Ocean University, Shanghai, China
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Center of Aquatic Product Processing & Preservation, Shanghai Ocean University, Shanghai, China
- Collaborative Innovation Center of Seafood Deep Processing, Ministry of Education, Dalian 116034, China
| |
Collapse
|
15
|
Xiang X, Chen L, Dong S, Wang F, Li X, Huang Y, Liu Y, Huang Q, Li S, Ye L. Multiomics reveals the formation pathway of volatile compounds in preserved egg yolk (PEY) induced by NaCl: Based on the model of PEY and salted egg yolk (SEY) treated with/without NaCl. Food Chem 2023; 429:136823. [PMID: 37480774 DOI: 10.1016/j.foodchem.2023.136823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 06/26/2023] [Accepted: 07/04/2023] [Indexed: 07/24/2023]
Abstract
The models of preserved egg yolk (PEY) and salted egg yolk both treated with or without NaCl were performed to explore the effect of NaCl on the characteristic volatile compounds (VOCs) in PEY. 1-hexanol, 2-heptanone, isoamyl acetate, etc., compounds were confirmed as the characteristic VOCs in PEY mainly induced by NaCl and the formation of 1-octanol, 2-pentylfuran, ammonia, etc., characteristic VOCs induced by NaCl may depend on the combined effect of Cu2+ and OH-. Among them, 1-hexanol and 2-heptanone were formed from linoleic acid in PS(18:0_18:2) and oleic acid in PG(22:6_18:1), respectively, through multi-omics and correlation analysis. Meanwhile, 1-octanol may originated from β-oxidation of oleic acid in PS(18:1); 2-pentylfuran and ammonia maybe derived from the derivative of aspartate and the degradation of l-methionine, respectively. Moreover, this study provides a new insight to parse the influence of NaCl with/without other exogenous factors on the formation of VOCs in food products.
Collapse
Affiliation(s)
- Xiaole Xiang
- School of Food Science and Bioengineering, Changsha University of Science and Technology, Changsha, Hunan 410114, China
| | - Le Chen
- School of Food Science and Bioengineering, Changsha University of Science and Technology, Changsha, Hunan 410114, China
| | - Shiqin Dong
- School of Food Science and Bioengineering, Changsha University of Science and Technology, Changsha, Hunan 410114, China
| | - Faxiang Wang
- School of Food Science and Bioengineering, Changsha University of Science and Technology, Changsha, Hunan 410114, China
| | - Xianghong Li
- School of Food Science and Bioengineering, Changsha University of Science and Technology, Changsha, Hunan 410114, China
| | - Yiqun Huang
- School of Food Science and Bioengineering, Changsha University of Science and Technology, Changsha, Hunan 410114, China
| | - Yongle Liu
- School of Food Science and Bioengineering, Changsha University of Science and Technology, Changsha, Hunan 410114, China.
| | - Qun Huang
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, China.
| | - Shugang Li
- Engineering Research Center of Bio-process, Ministry of Education/Key Laboratory for Agricultural Products Processing of Anhui Province/School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China.
| | - Lin Ye
- College of Food Science and Engineering, Tarim University, Alar, Xinjiang 843300, China
| |
Collapse
|
16
|
Liu H, Liu D, Suleman R, Gao P, Li P, Xing J, Ma Q, Hamid N, Wang P, Gong H. Understanding the role of lipids in aroma formation of circulating non-fried roasted chicken using UHPLC-HRMS-based lipidomics and heat transfer analysis. Food Res Int 2023; 173:113370. [PMID: 37803706 DOI: 10.1016/j.foodres.2023.113370] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/07/2023] [Accepted: 08/10/2023] [Indexed: 10/08/2023]
Abstract
The role of lipids in aroma formation of circulating non-fried roasted (CNR) chicken with different roasting times was studied using ultra-high performance liquid chromatography high-resolution mass spectrometry (UHPLC-HRMS)-based lipidomics and heat transfer analysis. Thirteen odorants were confirmed as important aroma compounds of CNR chicken, including dimethyl trisulfide, 3,5-dimethyl-2-ethylpyrazine, nonanal, and 1-octen-3-ol. A comprehensive lipidomics analysis identified 1254 lipids in roasted chickens, classified into 23 distinct lipid categories that included 281 phosphatidylcholines (PC), 223 phosphatidylethanolamines (PE), and 202 triglycerides (TG). Using OPLS-DA analysis, the lipid PG (18:1_18:1) showed promise as a potential biomarker for distinguishing between chickens subjected to CNR treatments with varying roasting times. The lipids PC, PE, and their derivatives are likely to play a crucial role in the formation of aroma compounds. In addition, TGs that contributed to the retention of key odorants in roasted chicken included TG (16:0_16:0_18:1), TG (16:0_16:0_18:0), and TG (16:0_18:1_18:1). Findings further showed that lower water activity and specific heat capacity promoted the formation and retention of aroma compounds during the CNR process. This study contributed to a better understanding of the formation of aroma compounds through lipid oxidation in roasted chicken.
Collapse
Affiliation(s)
- Huan Liu
- School of Food Engineering, Yantai Key Laboratory of Nanoscience and Technology for Prepared Food, Yantai Engineering Research Center of Green Food Processing and Quality Control, Bionanotechnology Institute, Ludong University, Yantai 264025, China.
| | - Dengyong Liu
- College of Food Science and Technology, Bohai University, Jinzhou 121013, China
| | - Raheel Suleman
- Department of Food Science and Technology, Faculty of Food Science and Nutrition Bahauddin Zakariya University Multan, Pakistan
| | - Peng Gao
- Thermo Fisher Scientific, Beijing 100102, China
| | - Pi Li
- Thermo Fisher Scientific, Beijing 100102, China
| | | | - Qianli Ma
- Department of Food Science, Auckland University of Technology, Private Bag 92006, Auckland 1142, New Zealand
| | - Nazimah Hamid
- Department of Food Science, Auckland University of Technology, Private Bag 92006, Auckland 1142, New Zealand
| | - Ping Wang
- School of Food Engineering, Yantai Key Laboratory of Nanoscience and Technology for Prepared Food, Yantai Engineering Research Center of Green Food Processing and Quality Control, Bionanotechnology Institute, Ludong University, Yantai 264025, China
| | - Hansheng Gong
- School of Food Engineering, Yantai Key Laboratory of Nanoscience and Technology for Prepared Food, Yantai Engineering Research Center of Green Food Processing and Quality Control, Bionanotechnology Institute, Ludong University, Yantai 264025, China.
| |
Collapse
|
17
|
Liu C, Wan J, Wang Y, Chen G. Effects of Cold Plasma Treatment Conditions on the Lipid Oxidation Kinetics of Tilapia Fillets. Foods 2023; 12:2845. [PMID: 37569114 PMCID: PMC10417625 DOI: 10.3390/foods12152845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/20/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
This study investigated the effects of different cold plasma treatment conditions on the lipid oxidation kinetics of tilapia fillets. The results indicated that increasing the voltage and prolonging the treatment time of cold plasma could cause an increase in the peroxide value and thiobarbituric acid-reactive substance values of the fillets. The changes in the primary and secondary oxidation rates of the lipids in the fillets under different treatment conditions were consistent with zero-order reaction kinetics. The analysis of the fitting of the Arrhenius equation showed that the effect of treatment voltage on the activation energy of lipid oxidation was higher than that of treatment time. When the voltage was higher than 64.71 kV, the activation energy of the primary oxidation of lipids was greater than that of secondary oxidation. Within 0-5 min, the activation energy of primary oxidation first increased then decreased, and was always greater than that of secondary oxidation. Therefore, the primary lipid oxidation of tilapia was more sensitive to the treatment conditions of cold plasma.
Collapse
Affiliation(s)
- Chencheng Liu
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Seafood Processing of Haikou, School of Food Science and Engineering, Hainan University, Haikou 570228, China; (C.L.); (Y.W.); (G.C.)
- Collaborative Innovation Center of Provincial and Ministerial Co-Construction for Marine Food Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Jiamei Wan
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Seafood Processing of Haikou, School of Food Science and Engineering, Hainan University, Haikou 570228, China; (C.L.); (Y.W.); (G.C.)
- Collaborative Innovation Center of Provincial and Ministerial Co-Construction for Marine Food Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Yuanyuan Wang
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Seafood Processing of Haikou, School of Food Science and Engineering, Hainan University, Haikou 570228, China; (C.L.); (Y.W.); (G.C.)
- Collaborative Innovation Center of Provincial and Ministerial Co-Construction for Marine Food Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Gu Chen
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Seafood Processing of Haikou, School of Food Science and Engineering, Hainan University, Haikou 570228, China; (C.L.); (Y.W.); (G.C.)
- Collaborative Innovation Center of Provincial and Ministerial Co-Construction for Marine Food Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
18
|
Yin M, Chen M, Matsuoka R, Song X, Xi Y, Zhang L, Wang X. UHPLC-Q-Exactive Orbitrap MS/MS based untargeted lipidomics reveals fatty acids and lipids profiles in different parts of capelin (Mallotus villosus). J Food Compost Anal 2023. [DOI: 10.1016/j.jfca.2022.105096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
19
|
Insights into lipid oxidation and free fatty acid profiles to the development of volatile organic compounds in traditional fermented golden pomfret based on multivariate analysis. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
20
|
Wei Q, Mei J, Xie J. Application of electron beam irradiation as a non-thermal technology in seafood preservation. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
21
|
Meng Y, Qiu N, Guyonnet V, Keast R, Zhu C, Mine Y. UHPLC-Q-Orbitrap-based untargeted lipidomics reveals the variation of yolk lipids during egg storage. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:5690-5699. [PMID: 35411552 DOI: 10.1002/jsfa.11916] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/03/2022] [Accepted: 04/12/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Egg yolk is recognized for its excellent nutritional benefit and economic value; however, egg is a perishable food, potentially losing quality if not handled properly between the time from farm production to consumption. Knowledge of the changes of yolk lipid composition under an extreme storage condition close to vitelline membrane breaking, which results in an inedible condition for shelf-eggs, remains incomplete. Considering the complexity of yolk lipids, the architectural features of yolk lipids at high-temperature storage (30°C for 10 days versus fresh) were classified through lipidomics. RESULTS This strategy yielded 1508 features within the lipid database coupled with 74 significantly different lipids (P < 0.05, fold change > 1.2 or < 0.83), mainly triglycerides, phospholipids, and sphingolipids. Most of them were decreased after storage; for example, triglycerides were assumed to play a role as a 'buffer' to maintain the system stability during storage by balancing fatty acid saturation, which strongly reduces the egg edible value for humans. Furthermore, phospholipids, especially the highly unsaturated phosphatidylcholine, decreased significantly and were suggested to be the primary cause for the variation in yolk emulsifying properties and flavor. CONCLUSION Altogether, these results deriving from oxidation and lipolysis reactions enhance our understanding of lipid transformation and the biochemical mechanisms, at the molecular level, of the deteriorative process of the egg yolk. These findings may lay the foundation for identifying processes, including some modifications of the lipid composition of rations fed to laying hens, aiming to improve the long-term shelf-stability of shell eggs and egg products. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yaqi Meng
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Ning Qiu
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | | | - Russell Keast
- CASS Food Research Centre, School of Exercise and Nutrition Sciences, Deakin University, Burwood, VI, Australia
| | - Chunxia Zhu
- Center of Stomatology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yoshinori Mine
- Department of Food Science, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| |
Collapse
|
22
|
Investigation of the changes in the lipid profiles in hairtail (Trichiurus haumela) muscle during frozen storage using chemical and LC/MS-based lipidomics analysis. Food Chem 2022; 390:133140. [DOI: 10.1016/j.foodchem.2022.133140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 04/11/2022] [Accepted: 04/30/2022] [Indexed: 11/23/2022]
|
23
|
Li HL, Li MJ, Zhao Q, Huang JJ, Zu XY. Analysis of Water Distribution and Muscle Quality of Silver Carp ( Hypophthalmichthys molitrix) Chunks Based on Electron-Beam Irradiation. Foods 2022; 11:2963. [PMID: 36230039 PMCID: PMC9563409 DOI: 10.3390/foods11192963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/08/2022] [Accepted: 09/19/2022] [Indexed: 11/20/2022] Open
Abstract
Electron-beam irradiation (EBI) is an efficient, safe, and nonthermal sterilization technique that is extensively used in food preservation research. Here we report the effects of different EBI doses (0, 4, 8 kGy) and preservation temperatures (room temperature [RT], 4 °C) on the muscle water distribution and muscle quality indices of silver carp chunks (SCCs). The highest entrapped water content was found in the 4-kGy-irradiated/4-°C-stored samples. The expressible moisture content (EMC) of the SCCs increased with increasing irradiation dose and was significantly lower in the RT group than in the 4 °C group. The irradiation dose and preservation temperature had no significant effect on the moisture content, whiteness value and protein content of SCCs (p > 0.05). When the irradiation dose reached 8 kGy, AV value, POV value and TVB value were significantly increased (p < 0.05). The myofibrillar protein content and actomyosin content of the SCCs in the 4 °C group was higher than that of the specimens in the RT group by 0.29−0.98 mg/mL (p < 0.05) and 36.21−296.58 μg/mL (p < 0.05), respectively. Overall, EBI treatment (4 kGy) and low-temperature preservation (4 °C) helped retain the muscle water content of the SCCs and preserve their quality, thereby endorsing the EBI treatment of silver carp products.
Collapse
Affiliation(s)
- Hai-Lan Li
- Institute of Agricultural Products Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
- Key Laboratory of Cold Chain Logistics Technology for Agro-Product, Ministry of Agriculture and Rural Affairs, Wuhan 430064, China
| | - Mei-Jin Li
- Institute of Agricultural Products Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
- College of Bioengineering and Food, Hubei University of Technology, Wuhan 430068, China
| | - Qing Zhao
- Institute of Agricultural Products Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
- College of Bioengineering and Food, Hubei University of Technology, Wuhan 430068, China
| | - Jia-Jun Huang
- Institute of Agricultural Products Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
- College of Bioengineering and Food, Hubei University of Technology, Wuhan 430068, China
| | - Xiao-Yan Zu
- Institute of Agricultural Products Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
- Key Laboratory of Cold Chain Logistics Technology for Agro-Product, Ministry of Agriculture and Rural Affairs, Wuhan 430064, China
| |
Collapse
|
24
|
Yan H, Jiao L, Fang C, Benjakul S, Zhang B. Chemical and LC–MS-based lipidomics analyses revealed changes in lipid profiles in hairtail (Trichiurus haumela) muscle during chilled storage. Food Res Int 2022; 159:111600. [DOI: 10.1016/j.foodres.2022.111600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 06/14/2022] [Accepted: 06/28/2022] [Indexed: 11/04/2022]
|
25
|
Wang Z, Karrar E, Wang Y, Liu R, Chang M, Wang X. The bioactive of four dietary sources phospholipids on heavy metal-induced skeletal muscle injury in zebrafish: A comparison of phospholipid profiles. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
26
|
Lin L, Cao Z, Zhang X, Kang M, Wang X, Zhong J, Xu C, Zhang L, Tao N, Deng S. Effects of Salt and Homogenization Processing on the Gastrointestinal Fate of Micro/Nano-Sized Colloidal Particles in Bigeye Tuna (Thunnus obesusis) Head Soup: In vitro Digestion Study. Front Nutr 2022; 9:833712. [PMID: 35223960 PMCID: PMC8873788 DOI: 10.3389/fnut.2022.833712] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 01/11/2022] [Indexed: 11/29/2022] Open
Abstract
The effects of condiment (salt) and processing technic (homogenization) on digestion and interfacial properties of micro/nano-sized colloidal particles (MNCPs) in bigeye tuna head soup (BTHS) using simulated gastrointestinal digestion model in vitro were investigated. For MNCPs in BTHS, the triglycerides were wrapped with proteins in the form of a ring. After salting, the average particle size of the MNCPs in salted BTHS (SBTHS) decreased compared with BTHS. However, the partial demulsification phenomenon existed, and part of the protein was encapsulated in some MNCPs. After further homogenization, the average particle size of the MNCPs in homogenous SBTHS (HSBTHS) was further decreased based on SBTHS and the MNCP was rearranged, which changed the original membrane structure. After gastrointestinal digestion, adding salt decreased the release of total fatty acids compared with unsalted. But homogenization processing increased the release of total fatty acids in HSBTHS and there was no significant difference (p ≥ 0.05) between HSBTHS and BTHS. Thus, the decrease in the release of some fatty acids due to adding salt was compensated by homogenization. Therefore, the changes in composition and microstructure of MNCPs induced by salt and homogenization might contribute to the digestion difference of MNCPs.
Collapse
Affiliation(s)
- Liu Lin
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Zhenhai Cao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Xuebing Zhang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Ming Kang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Xichang Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, Shanghai, China
| | - Jian Zhong
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, Shanghai, China
| | - ChangHua Xu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, Shanghai, China
| | - Long Zhang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Ningping Tao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, Shanghai, China
- *Correspondence: Ningping Tao
| | - Shanggui Deng
- College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| |
Collapse
|
27
|
Wang J, Wang YM, Li LY, Chi CF, Wang B. Twelve Antioxidant Peptides From Protein Hydrolysate of Skipjack Tuna (Katsuwonus pelamis) Roe Prepared by Flavourzyme: Purification, Sequence Identification, and Activity Evaluation. Front Nutr 2022; 8:813780. [PMID: 35127795 PMCID: PMC8814634 DOI: 10.3389/fnut.2021.813780] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 12/20/2021] [Indexed: 01/12/2023] Open
Abstract
For using aquatic by-products to manufacture high-value products, Skipjack tuna (Katsuwonus pelamis) roes were degreased, pretreated with microwave, and hydrolyzed using five proteases. The protein hydrolysate (TRPH) generated using Flavourzyme displayed the strongest 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity. Twelve antioxidative peptides were prepared from TRPH by ultrafiltration and chromatography methods and determined to be SGE, VDTR, AEM, QDHKA, TVM, QEAE, YEA, VEP, AEHNH, QEP, QAEP, and YVM with molecular weights of 291.24, 489.50, 349.41, 597.59, 349.44, 475.42, 381.36, 343.37, 606.58, 372.35, 443.42, and 411.49 Da, respectively. AEM, QDHKA, YEA, AEHNH, and YVM presented the strongest scavenging activity on DPPH radical (EC50 values of 0.250±0.035, 0.279±0.017, 0.233±0.012, 0.334±0.011, and 0.288±0.015 mg/ml, respectively), hydroxyl radical (EC50 values of 0.456±0.015, 0.536±0.021, 0.476 ± 0.051, 0.369 ± 0.052, and 0.413 ± 0.019 mg/ml, respectively), and superoxide anion free radical (EC50 values of 0.348 ± 0.018, 0.281 ± 0.013, 0.305 ± 0.022, 0.198 ± 0.011, and 0.425 ± 0.021 mg/ml, respectively). Moreover, AEM, QDHKA, YEA, AEHNH, and YVM presented high lipid peroxidation inhibition ability, Ferric-reducing power, and significant protective function on H2O2-induced Chang liver cells. Therefore, AEM, QDHKA, YEA, AEHNH, and YVM could be natural antioxidant ingredients used in pharmaceutical and functional products.
Collapse
Affiliation(s)
- Jiao Wang
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Yu-Mei Wang
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Long-Yan Li
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Chang-Feng Chi
- National and Provincial Joint Laboratory of Exploration and Utilization of Marine Aquatic Genetic Resources, National Engineering Research Center of Marine Facilities Aquaculture, School of Marine Science and Technology, Zhejiang Ocean University, Zhoushan, China
- *Correspondence: Chang-Feng Chi
| | - Bin Wang
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
- Bin Wang
| |
Collapse
|
28
|
Characterization of the Flavor Profile of Bigeye Tuna Slices Treated by Cold Plasma Using E-Nose and GC-IMS. FISHES 2022. [DOI: 10.3390/fishes7010013] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
To avoid heat, treatment induces numerous physicochemical changes under severe conditions in the tuna, cold plasma (CP), as a non-thermal technology, possess objective potential on tuna processing. The effect of cold plasma on the volatile flavor compounds of bigeye tuna (Thunnus obesus) sashimi has been evaluated using electronic nose (E-nose) and gas chromatography-ion mobility spectrometry (GC-IMS). GC–IMS results revealed a total of 33 volatile compounds in tuna slices. The effect of CP treatment on tuna flavor was not significant, furthermore CP could protect volatile freshness compounds such as 1-hexanol. Principal component analysis (PCA) of the E-nose and GC–IMS results could effectively differentiate the effect of storage to tuna sashimi. There was a high correlation between the E-nose and GC–IMS results, providing a theoretical basis for establishing the flavor fingerprint of tuna sashimi.
Collapse
|
29
|
Chu Y, Tan M, Bian C, Xie J. Effect of ultrasonic thawing on the physicochemical properties, freshness, and protein-related properties of frozen large yellow croaker (Pseudosciaena crocea). J Food Sci 2021; 87:52-67. [PMID: 34897680 DOI: 10.1111/1750-3841.15983] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 09/28/2021] [Accepted: 10/20/2021] [Indexed: 11/30/2022]
Abstract
Ultrasonic treatment (UT) was used to thaw large yellow croaker in this study, and the effect of various ultrasonic power levels on the quality of large yellow croaker was evaluated after thawing. The effects of ultrasonic on water holding capacity (WHC), moisture distribution, thiobarbituric acid-reactive substance (TBARs), total volatile base nitrogen (TVB-N), ATP degradation (related to K value), surface color change, free amino acid (FAA) content, total sulfhydryl group (SH) content, Fourier transform infrared absorption spectra (FT-IR), fluorescence emission spectra, and microscopic observations of large yellow croaker myofibrillar proteins were investigated. The thawing times of the control sample, 200UT, 240UT, 280UT, and 320UT samples were 1750, 1190, 810, 580, and 570 s, respectively, which indicated that ultrasonic radiation could improve thawing efficiency. Additionally, ultrasonic thawing maintained better freshness and color and inhibited lipid oxidation. Compared with fresh samples, the TVB-N of large yellow croaker thawed by ultrasonication increased by 12.68%, and the K value increased by 0.9%. The 240UT sample had tightly arranged myofibrils and fewer changes in the structures of myogenic fibrillar proteins than the fresh samples, and the SH content of 240UT was decreased by 8.17%. Use of excessive ultrasonic power (320 W) damaged the protein microstructure and the microstructure of large yellow croaker. In conclusion, sample 240UT maintained the quality of large yellow croaker better with minimal damage, which is recommended for rapid thawing. PRACTICAL APPLICATION: Ultrasonic waves improve the thawing efficiency of large yellow croaker and maintain the freshness and color of the fish. According to results, sample 240UT exhibited slight changes in the structure of the myofibril protein, but excessive ultrasonic power destroyed the microstructure and protein structure. Appropriate ultrasonic treatment to the thawing of fish has good prospects.
Collapse
Affiliation(s)
- Yuanming Chu
- College of Food Science & Technology, Shanghai Ocean University, Shanghai, China.,National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai, China
| | - Mingtang Tan
- College of Food Science & Technology, Shanghai Ocean University, Shanghai, China.,National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai, China
| | - Chuhan Bian
- College of Food Science & Technology, Shanghai Ocean University, Shanghai, China.,National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai, China
| | - Jing Xie
- College of Food Science & Technology, Shanghai Ocean University, Shanghai, China.,National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai, China.,Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai Ocean University, Shanghai, China.,Shanghai Engineering Research Center of Aquatic Product Processing & Preservation, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
30
|
Zhao GH, Hu YY, Liu ZY, Xie HK, Zhang M, Zheng R, Qin L, Yin FW, Zhou DY. Simultaneous quantification of 24 aldehydes and ketones in oysters (Crassostrea gigas) with different thermal processing procedures by HPLC-electrospray tandem mass spectrometry. Food Res Int 2021; 147:110559. [PMID: 34399536 DOI: 10.1016/j.foodres.2021.110559] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/21/2021] [Accepted: 06/22/2021] [Indexed: 01/19/2023]
Abstract
Aldehydes and ketones are secondary oxidation products resulting from lipid oxidation that occurs during food processing. These small molecule compounds not only have an impact on the quality, odor and flavor of food, but also play a role in the pathogenesis of many human diseases. In this study, a HPLC-MS/MS analytical method was developed and validated for the simultaneous determination of 24 aldehydes and ketones. The coefficients of determination (R2) for all aldehydes and ketones were higher than 0.9975 at the range of 0.2-2000 ng/mL. The recoveries were in the range 71.20-108.13% with RSD < 10%. The method was tested by analyzing lipids from oysters with different thermal processing (boiling, frying, roasting and air frying) procedures; the highest concentration for saturated aldehydes and ketones while the highest content of unsaturated aldehydes in boiling treatment. Meanwhile, fatty acid oxidative decomposition was in agreement with aldehydes and ketones formation. Moreover, principal component analysis, orthogonal partial least-squares discriminant analysis and variable importance in projection value showed that lipid oxidation is positively related to the formation of a variety of aldehydes and ketones.
Collapse
Affiliation(s)
- Guan-Hua Zhao
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China; National Engineering Research Center of Seafood, Dalian 116034, PR China.
| | - Yuan-Yuan Hu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China; National Engineering Research Center of Seafood, Dalian 116034, PR China
| | - Zhong-Yuan Liu
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, 116034, PR China; School of Food Science and Engineering, Hainan University, Haikou 570228, PR China
| | - Hong-Kai Xie
- National Engineering Research Center of Seafood, Dalian 116034, PR China
| | - Min Zhang
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China; National Engineering Research Center of Seafood, Dalian 116034, PR China
| | - Rui Zheng
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China
| | - Lei Qin
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China; National Engineering Research Center of Seafood, Dalian 116034, PR China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, 116034, PR China
| | - Fa-Wen Yin
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China; National Engineering Research Center of Seafood, Dalian 116034, PR China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, 116034, PR China.
| | - Da-Yong Zhou
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China; National Engineering Research Center of Seafood, Dalian 116034, PR China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, 116034, PR China.
| |
Collapse
|