1
|
Xiao W, Guo J, Fu Y, Li Z, Zhang T, He M, Liu T, Xiao Y, Shang X, Fu F, Li G, Su D, Gao Z, Shan Y. Long-term study of Citrus changshan-huyou Y.B. Chang essential oil: Chemical transformations and their impact on antibacterial efficacy. Food Chem 2025; 474:143118. [PMID: 39908813 DOI: 10.1016/j.foodchem.2025.143118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 01/24/2025] [Accepted: 01/26/2025] [Indexed: 02/07/2025]
Abstract
The essential oil from Citrus changshan-huyou Y.B. Chang (HYEO) contains volatile compounds with strong inhibitory effects on biofilms formed on food processing equipment. This study analyzed the compositional changes of HYEO over 9 years and evaluated its antibacterial and antibiofilm properties. HYEO showed significant antibacterial activity during the first 8 years, effectively removing mature biofilms. Gas chromatography-mass spectrometry analysis revealed that monoterpenes were the primary components, with d-limonene and γ-terpenes converting into oxygenated derivatives during storage, resulting in a more than 16-fold increase in antibacterial activity. The antibacterial strength correlated with the number of oxygenated derivatives from limonene and terpinene among the top 20 components. Significant associations were observed between antibacterial activity and the oxygenated derivatives of d-limonene and γ-terpenes. These findings suggest the need for further investigation into their synergistic effects, antibacterial mechanisms, potential applications in food processing, and the safety profiles of the main antibacterial components of HYEO.
Collapse
Affiliation(s)
- Wenbin Xiao
- Hunan Agriculture Product Processing Institute, Dongting Laboratory, Hunan Academy of Agricultural Sciences, Changsha 410125, China; College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Jiajing Guo
- Hunan Agriculture Product Processing Institute, Dongting Laboratory, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Yanjiao Fu
- Hunan Agriculture Product Processing Institute, Dongting Laboratory, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Zixuan Li
- Hunan Agriculture Product Processing Institute, Dongting Laboratory, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Tongping Zhang
- Fisheries College, Hunan Agricultural University, Changsha 410128, China
| | - Mingwang He
- Fisheries College, Hunan Agricultural University, Changsha 410128, China
| | - Ting Liu
- Chenzhou Tobacco Company of Hunan Province, Chenzhou 423000, China
| | - Yangbo Xiao
- Tea Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Xuebo Shang
- Hunan Agriculture Product Processing Institute, Dongting Laboratory, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Fuhua Fu
- Hunan Agriculture Product Processing Institute, Dongting Laboratory, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Gaoyang Li
- Hunan Agriculture Product Processing Institute, Dongting Laboratory, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Donglin Su
- Hunan Agriculture Product Processing Institute, Dongting Laboratory, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Zhipeng Gao
- Fisheries College, Hunan Agricultural University, Changsha 410128, China.
| | - Yang Shan
- Hunan Agriculture Product Processing Institute, Dongting Laboratory, Hunan Academy of Agricultural Sciences, Changsha 410125, China; College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
2
|
Xu B, Tao S, Yang H, Zhou R, Wu C. Identification and characterization of a novel bacteriocin produced by Lactiplantibacillus pentosus and the antibacterial mechanism on Listeria monocytogenes. Int J Biol Macromol 2025; 309:143113. [PMID: 40222526 DOI: 10.1016/j.ijbiomac.2025.143113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 03/26/2025] [Accepted: 04/10/2025] [Indexed: 04/15/2025]
Abstract
In this study, bacteriocin L14 was isolated and identified from Lactiplantibacillus pentosus L14, which could effectively inhibit the growth of Listeria monocytogenes with 62.45 % of the inhibition rate at a concentration of 1 mg/mL. Bacteriocin L14 showed good stability and tolerance to temperature (37.48 % retention at 60 °C for 30 min), pH (2-10), proteases and UV radiation. According to the results of electron microscopy and fluorescence assay, bacteriocin L14 could disrupt the cell structure, reduce the intracellular ATP level, and lead to intracellular Ca2+ accumulation, phosphatidylserine exposure, DNA leakage and apoptosis. Transcriptomic analysis indicated that a total of 941 genes in L. monocytogenes showed significant alterations in expression with 404 genes significantly upregulated and 537 genes significantly downregulated in bacteriocin L14 treated cells. In L. monocytogenes, energy metabolism-associated genes (exemplified by fba) exhibited significant downregulation, leading to impaired cellular proliferation and diminished metabolic vigor. The downregulation of transport-associated genes (exemplified by cbiM) also resulted in diminished metabolic activity of L. monocytogenes. The downregulation of genes in ribosomes caused the abnormal synthesis of peptides. In conclusion, this study showed that bacteriocin L14 had the potential to be used as an antibacterial agent in food industry and control foodborne pathogens.
Collapse
Affiliation(s)
- Buqing Xu
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Siheng Tao
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Huan Yang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Rongqing Zhou
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Chongde Wu
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
3
|
Tang T, Zhong W, Tang P, Dai R, Guo J, Gao Z. Linalool combats Saprolegnia parasitica infections through direct killing of microbes and modulation of host immune system. eLife 2025; 13:RP100393. [PMID: 40183210 PMCID: PMC11970904 DOI: 10.7554/elife.100393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025] Open
Abstract
Saprolegnia parasitica is one of the most virulent oomycete species in freshwater aquatic environments, causing severe saprolegniasis and leading to significant economic losses in the aquaculture industry. Thus far, the prevention and control of saprolegniasis face a shortage of medications. Linalool, a natural antibiotic alternative found in various essential oils, exhibits promising antimicrobial activity against a wide range of pathogens. In this study, the specific role of linalool in protecting S. parasitica infection at both in vitro and in vivo levels was investigated. Linalool showed multifaceted anti-oomycetes potential by both of antimicrobial efficacy and immunomodulatory efficacy. For in vitro test, linalool exhibited strong anti-oomycetes activity and mode of action included: (1) Linalool disrupted the cell membrane of the mycelium, causing the intracellular components leak out; (2) Linalool prohibited ribosome function, thereby inhibiting protein synthesis and ultimately affecting mycelium growth. Surprisingly, meanwhile we found the potential immune protective mechanism of linalool in the in vivo test: (1) Linalool enhanced the complement and coagulation system which in turn activated host immune defense and lysate S. parasitica cells; (2) Linalool promoted wound healing, tissue repair, and phagocytosis to cope with S. parasitica infection; (3) Linalool positively modulated the immune response by increasing the abundance of beneficial Actinobacteriota; (4) Linalool stimulated the production of inflammatory cytokines and chemokines to lyse S. parasitica cells. In all, our findings showed that linalool possessed multifaceted anti-oomycetes potential which would be a promising natural antibiotic alternative to cope with S. parasitica infection in the aquaculture industry.
Collapse
Affiliation(s)
- Tao Tang
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Fisheries College, Hunan Agricultural UniversityChangshaChina
| | - Weiming Zhong
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Fisheries College, Hunan Agricultural UniversityChangshaChina
| | - Puyu Tang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of SciencesWuhanChina
| | - Rongsi Dai
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Fisheries College, Hunan Agricultural UniversityChangshaChina
| | - Jiajing Guo
- Hunan Agriculture Product Processing Institute, Hunan Academy of Agricultural SciencesChangshaChina
| | - Zhipeng Gao
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Fisheries College, Hunan Agricultural UniversityChangshaChina
| |
Collapse
|
4
|
Tan Y, Lin X, Huang L, Yan Q, Wang J, Weng Q, Zhengzhang Y, Chen Y, Ma Y, Zheng J. Transcriptomic analysis of the inhibition mechanisms against Pseudomonas plecoglossicida by antibacterial aptamer B4. Front Vet Sci 2024; 11:1511234. [PMID: 39776596 PMCID: PMC11704614 DOI: 10.3389/fvets.2024.1511234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
Pseudomonas plecoglossicida is a common bacterial pathogen in aquaculture, often leading to visceral white spot disease in large yellow croakers (Pseudosciaena crocea). Previous studies have found that certain aptamers show an efficient antibacterial effect against this pathogen. In this study, we analyzed the transcriptome of P. plecoglossicida to get insights into the antibacterial and inhibitions mechanisms following exposure to the aptamer B4. The results showed seven differentially expressed genes (DEGs) associated with the antibacterial effect of the aptamer, namely sad gene encoding aldehyde dehydrogenase, the paaB gene of phenylacetyl coenzyme A cyclooxygenase, the metN1 gene of ABC transporter proteins, two transposase genes with different positions but identical sequences involved in cutting and splicing DNA sequences, and two hypothetical protein genes with unknown functions. Gene Ontology (GO) analysis showed that the DEGs were mainly involved in DNA-mediated translocation, phenylacetic acid catabolism, growth hormone catabolism, polyamine transporter ATPase activity, betaine aldehyde dehydrogenase activity, ABC transporter protein complex, and other related pathways. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that the metabolic pathway of niacin and niacinamide mediated through the sad gene was the most significant and relevant, followed by the metabolism of phenylalanine, alanine, aspartic acid and glutamic acid. Real-time quantitative PCR validation showed that the changes in the DEGs were consistent with the transcriptome analysis. These results suggest that the antibacterial aptamer B4 may inhibit P. plecoglossicida by blocking the synthesis of essential nucleic acids and proteins through the modulation of these DEGs and inhibiting their metabolic pathways.
Collapse
Affiliation(s)
- Ying Tan
- State Key Laboratory of Mariculture Breeding, Engineering Research Centre of the Modern Technology for Eel Industry, Ministry of Education, Fisheries College of Jimei University, Xiamen, China
| | - Xiaojun Lin
- State Key Laboratory of Mariculture Breeding, Engineering Research Centre of the Modern Technology for Eel Industry, Ministry of Education, Fisheries College of Jimei University, Xiamen, China
| | - Lixing Huang
- State Key Laboratory of Mariculture Breeding, Engineering Research Centre of the Modern Technology for Eel Industry, Ministry of Education, Fisheries College of Jimei University, Xiamen, China
| | - Qingpi Yan
- State Key Laboratory of Mariculture Breeding, Engineering Research Centre of the Modern Technology for Eel Industry, Ministry of Education, Fisheries College of Jimei University, Xiamen, China
| | - Jiaen Wang
- National Research and Development Center for Eel Processing Technology, Key Laboratory of Eel Aquaculture and Processing of Fujian Province, Fujian Provincial Engineering Research Center for Eel Processing Enterprise, Changle Juquan Food Co. Ltd., Fuzhou, China
| | - Qibiao Weng
- National Research and Development Center for Eel Processing Technology, Key Laboratory of Eel Aquaculture and Processing of Fujian Province, Fujian Provincial Engineering Research Center for Eel Processing Enterprise, Changle Juquan Food Co. Ltd., Fuzhou, China
| | - Yuwei Zhengzhang
- Institute of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Yiran Chen
- School of Life Sciences, Xiamen University, Xiamen, China
| | - Ying Ma
- State Key Laboratory of Mariculture Breeding, Engineering Research Centre of the Modern Technology for Eel Industry, Ministry of Education, Fisheries College of Jimei University, Xiamen, China
| | - Jiang Zheng
- State Key Laboratory of Mariculture Breeding, Engineering Research Centre of the Modern Technology for Eel Industry, Ministry of Education, Fisheries College of Jimei University, Xiamen, China
| |
Collapse
|
5
|
Peng J, Chen G, Guo S, Lin Z, Zeng Y, Ren J, Wang Q, Yang W, Liang Y, Li J. Anti-Bacterial and Anti-Biofilm Activities of Essential Oil from Citrus reticulata Blanco cv. Tankan Peel Against Listeria monocytogenes. Foods 2024; 13:3841. [PMID: 39682912 DOI: 10.3390/foods13233841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/20/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
In recent years, plant essential oils have been confirmed as natural inhibitors of foodborne pathogens. Citrus reticulata Blanco cv. Tankan peel essential oil (CPEO) showed anti-Listeria monocytogenes (LM) activities, and this study investigated the associated mechanisms by using high-resolution electron microscope, fluorescence spectrometer, flow cytometer, potentiometer, and transcriptome sequencing. The results showed that CPEO restrained LM growth at a minimum inhibitory concentration of 2% (v/v). The anti-LM abilities of CPEO were achieved by disrupting the permeability of the cell wall, damaging the permeability, fluidity, and integrity of the cell membrane, disturbing the membrane hydrophobic core, and destroying the membrane protein conformation. Moreover, CPEO could significantly inhibit the LM aggregation from forming biofilm by reducing the extracellular polymeric substances' (protein, polysaccharide, and eDNA) production and bacterial surface charge numbers. The RNA sequencing data indicated that LM genes involved in cell wall and membrane biosynthesis, DNA replication and repair, quorum sensing and two-component systems were expressed differently after CPEO treatment. These results suggested that CPEO could be used as a novel anti-LM agent and green preservative in the food sector. Further studies are needed to verify the anti-LM activities of CPEO in real food.
Collapse
Affiliation(s)
- Jinming Peng
- Guangdong Key Laboratory of Science and Technology of Lingnan Specialty Food, Guangzhou 510225, China
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Guangwei Chen
- Guangdong Key Laboratory of Science and Technology of Lingnan Specialty Food, Guangzhou 510225, China
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Shaoxin Guo
- Guangdong Key Laboratory of Science and Technology of Lingnan Specialty Food, Guangzhou 510225, China
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Ziyuan Lin
- Guangdong Key Laboratory of Science and Technology of Lingnan Specialty Food, Guangzhou 510225, China
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Yue Zeng
- Guangdong Key Laboratory of Science and Technology of Lingnan Specialty Food, Guangzhou 510225, China
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Jie Ren
- Nuspower Greatsun (Guangdong) Biotechnology Co., Ltd., Guangzhou 510900, China
| | - Qin Wang
- Guangdong Key Laboratory of Science and Technology of Lingnan Specialty Food, Guangzhou 510225, China
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Wenhua Yang
- Guangdong Key Laboratory of Science and Technology of Lingnan Specialty Food, Guangzhou 510225, China
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Yongqian Liang
- School of Pharmacy, Guangdong Pharmaceutical university, Guangzhou 510006, China
| | - Jun Li
- Guangdong Key Laboratory of Science and Technology of Lingnan Specialty Food, Guangzhou 510225, China
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| |
Collapse
|
6
|
Hochma E, Ishai PB, Firer MA, Minnes R. Phyto-Photodynamic Therapy of Prostate Cancer Cells Mediated by Yemenite 'Etrog' Leave Extracts. Nutrients 2024; 16:1820. [PMID: 38931175 PMCID: PMC11206993 DOI: 10.3390/nu16121820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 05/30/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Cancer therapy, from malignant tumor inhibition to cellular eradication treatment, remains a challenge, especially regarding reduced side effects and low energy consumption during treatment. Hence, phytochemicals as cytotoxic sensitizers or photosensitizers deserve special attention. The dark and photo-response of Yemenite 'Etrog' leaf extracts applied to prostate PC3 cancer cells is reported here. An XTT cell viability assay along with light microscope observations revealed pronounced cytotoxic activity of the extract for long exposure times of 72 h upon concentrations of 175 μg/mL and 87.5 μg/mL, while phototoxic effect was obtained even at low concentration of 10.93 μg/mL and a short introduction period of 1.5 h. For the longest time incubation of 72 h and for the highest extract concentration of 175 μg/mL, relative cell survival decreased by up to 60% (below the IC50). In combined phyto-photodynamic therapy, a reduction of 63% compared to unirradiated controls was obtained. The concentration of extract in cells versus the accumulation time was inversely related to fluorescence emission intensity readings. Extracellular ROS production was also shown. Based on an ATR-FTIR analysis of the powdered leaves and their liquid ethanolic extract, biochemical fingerprints of both polar and non-polar phyto-constituents were identified, thereby suggesting their implementation as phyto-medicine and phyto-photomedicine.
Collapse
Affiliation(s)
- Efrat Hochma
- Department of Physics, Ariel University, Ariel 4070000, Israel; (E.H.); (P.B.I.)
- Department of Chemical Engineering, Ariel University, Ariel 4070000, Israel
| | - Paul Ben Ishai
- Department of Physics, Ariel University, Ariel 4070000, Israel; (E.H.); (P.B.I.)
| | - Michael A. Firer
- Department of Chemical Engineering, Ariel University, Ariel 4070000, Israel
- Adelson School of Medicine, Ariel University, Ariel 4070000, Israel
| | - Refael Minnes
- Department of Physics, Ariel University, Ariel 4070000, Israel; (E.H.); (P.B.I.)
| |
Collapse
|
7
|
Quintieri L, Palumbo M, Ricci I, Pace B, Caputo L, Adduci A, Luparelli A, Cefola M, Siano F, Cozzolino R. Postharvest Quality of Citrus medica L. (cv Liscia-Diamante) Fruit Stored at Different Temperatures: Volatile Profile and Antimicrobial Activity of Essential Oils. Foods 2024; 13:1596. [PMID: 38890825 PMCID: PMC11171597 DOI: 10.3390/foods13111596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/02/2024] [Accepted: 05/16/2024] [Indexed: 06/20/2024] Open
Abstract
Citron (Citrus medica L. cv. Liscia-diamante), cultivated in the "Riviera dei Cedri" (southern Italy), is mainly utilized in the production of candied fruit and essential oils (EOs). Up to now, no information regarding the effect of storage temperatures on citron has been reported. Here, citron samples, after harvesting, were stored at different temperatures (5, 10 and 20 °C at 70% relative humidity) for two weeks, and the main postharvest quality parameters were evaluated. Moreover, EOs extracted from the stored samples were chemically characterized to reveal changes in the volatiles profile and antimicrobial activity. The EOs presented monoterpene hydrocarbons (87.1 to 96.3% of the total oil profile) as the most abundant compounds, followed by oxygenated metabolites ranging from 9.7 to 3.1% of the total pattern. Postharvest quality traits showed a good retention of green peel color during storage at 5 °C, while EOs from samples stored for 7 and 14 days at 10 and 20 °C, respectively, showed the highest antimicrobial activity against most assayed strains. The results indicated storage at 10 °C for 7 days as the most suitable for the preservation of the postharvest quality of the fruit and the antimicrobial activity of the extracted EOs.
Collapse
Affiliation(s)
- Laura Quintieri
- Institute of Sciences of Food Production, National Research Council of Italy (CNR), Via G. Amendola, 122/O, 70126 Bari, Italy; (L.Q.); (L.C.); (A.L.)
| | - Michela Palumbo
- Institute of Sciences of Food Production, National Research Council of Italy (CNR), c/o CS-DAT, Via M. Protano, 71121 Foggia, Italy; (M.P.); (I.R.); (B.P.)
| | - Ilde Ricci
- Institute of Sciences of Food Production, National Research Council of Italy (CNR), c/o CS-DAT, Via M. Protano, 71121 Foggia, Italy; (M.P.); (I.R.); (B.P.)
| | - Bernardo Pace
- Institute of Sciences of Food Production, National Research Council of Italy (CNR), c/o CS-DAT, Via M. Protano, 71121 Foggia, Italy; (M.P.); (I.R.); (B.P.)
| | - Leonardo Caputo
- Institute of Sciences of Food Production, National Research Council of Italy (CNR), Via G. Amendola, 122/O, 70126 Bari, Italy; (L.Q.); (L.C.); (A.L.)
| | - Angelo Adduci
- Consorzio del Cedro di Calabria, Corso del Tirreno, 353, 87020 Santa Maria del Cedro, Italy
| | - Anna Luparelli
- Institute of Sciences of Food Production, National Research Council of Italy (CNR), Via G. Amendola, 122/O, 70126 Bari, Italy; (L.Q.); (L.C.); (A.L.)
| | - Maria Cefola
- Institute of Sciences of Food Production, National Research Council of Italy (CNR), c/o CS-DAT, Via M. Protano, 71121 Foggia, Italy; (M.P.); (I.R.); (B.P.)
| | - Francesco Siano
- Institute of Food Science, National Research Council of Italy (CNR), Via Roma 64, 83100 Avellino, Italy;
| | - Rosaria Cozzolino
- Institute of Food Science, National Research Council of Italy (CNR), Via Roma 64, 83100 Avellino, Italy;
| |
Collapse
|
8
|
Yang X, Peng Z, He M, Li Z, Fu G, Li S, Zhang J. Screening, probiotic properties, and inhibition mechanism of a Lactobacillus antagonistic to Listeria monocytogenes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167587. [PMID: 37797767 DOI: 10.1016/j.scitotenv.2023.167587] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/01/2023] [Accepted: 10/02/2023] [Indexed: 10/07/2023]
Abstract
Listeria monocytogenes is one of the most lethal foodborne pathogens, and there is a lack of microorganisms that can strongly inhibit its growth. Safe lactic acid bacteria with probiotic and antibacterial properties are ideal sources of antagonistic bacteria. This study isolated a strain of Lactobacillus plantarum 4-10 that completely killed L. monocytogenes from northeastern Chinese sauerkraut. Probiotic characterization revealed broad-spectrum bacterial inhibition, antagonizing 16 Gram-positive, Gram-negative, and fungal species. After tolerance to simulated intestinal and gastric fluids, the survival rate was >45 %. L. plantarum 4-10 was sensitive to chloramphenicol, doxycycline, erythromycin, and tetracycline, and exhibited good hydrophobicity, auto-aggregation, and co-aggregation. It could disrupt the cell structure when co-cultured with L. monocytogenes and act as a lethal agent within 15 h. Through transcriptomic analysis and validation experiments, we found that L. plantarum 4-10 could inhibit the expression of L. monocytogenes membrane transport-related genes by producing bacteriocins, thus disrupting the cell membrane structure and inhibiting the growth, metabolic viability, and biofilm formation of L. monocytogenes in a short time. In conclusion, L. plantarum 4-10 has good probiotic properties and antibacterial effects and shows excellent research and application prospects as a natural bacteriostat.
Collapse
Affiliation(s)
- Xinyu Yang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Zheng Peng
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Mengni He
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Zhibin Li
- Fujian Maidu Food Development Co., Ltd, Quanzhou, Fujian 362000, China
| | - Guihua Fu
- Fujian Maidu Food Development Co., Ltd, Quanzhou, Fujian 362000, China
| | - Shaolei Li
- Fujian Maidu Food Development Co., Ltd, Quanzhou, Fujian 362000, China
| | - Juan Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China.
| |
Collapse
|
9
|
Wang C, Huang J, Zhou Z, Xu P, Shi J, Yang Y, Tong S, Hu H. Coumarins from Jinhua Finger Citron: Separation by Liquid-Liquid Chromatography and Potential Antitumor Activity. Molecules 2023; 28:6917. [PMID: 37836760 PMCID: PMC10574065 DOI: 10.3390/molecules28196917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/13/2023] [Accepted: 09/19/2023] [Indexed: 10/15/2023] Open
Abstract
In this paper, liquid-liquid chromatography was introduced for the first time for the separation of fingered citron (Citrus medica L. var. sarcodactylis Swingle). The fingered citron cultivated in Jinhua is of significant industrial and medicinal value, with several major coumarin compounds detected in its extract. Therefore, further separation for higher purity was of necessity. A preparative liquid-liquid chromatographic method was developed by combining two elution modes (isocratic and step-gradient) with selection according to different polarities of the target sample. Five coumarin derivatives-5,7-dimethoxycoumarin (52.6 mg, 99.6%), phellopterin (4.9 mg, 97.1%), 5-prenyloxy-7-methoxycoumarin (6.7 mg, 98.7%), 6-hydroxy-7-methoxycoumarin (7.1 mg, 82.2%), and byakangelicol (10.5 mg, 90.1%)-with similar structures and properties were isolated on a large scale from 100 mg of petroleum ether (PE) extract and 100 mg of ethyl acetate (EA) extract in Jinhua fingered citron. The productivity was much improved. The anti-growth activity of the isolated coumarins was evaluated against three cancer cell lines (HeLa, A549, and MCF7) with an MTT assay. The coumarins demonstrated potential anti-tumor activity on the HeLa cell line, with 5,7-dimethoxycoumarin in particular exhibiting the best anti-growth activity (IC50 = 10.57 ± 0.24 μM) by inhibiting proliferation. It inhibited colony formation and reduced the size of the tumor sphere in a concentration-dependent manner. The main mechanism was confirmed as inducing apoptosis. This work was informative for further studies aimed at exploring new natural-product-based antitumor agents.
Collapse
Affiliation(s)
- Chaoyue Wang
- Jinhua Advanced Research Institute, Jinhua 321015, China (Y.Y.)
- Xingzhi College, Zhejiang Normal University, Lanxi 321100, China
| | - Jiangang Huang
- Xingzhi College, Zhejiang Normal University, Lanxi 321100, China
| | - Zhiling Zhou
- Jinhua Advanced Research Institute, Jinhua 321015, China (Y.Y.)
| | - Ping Xu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jingyi Shi
- Jinhua Advanced Research Institute, Jinhua 321015, China (Y.Y.)
| | - Yushun Yang
- Jinhua Advanced Research Institute, Jinhua 321015, China (Y.Y.)
| | - Shengqiang Tong
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Hongyu Hu
- Xingzhi College, Zhejiang Normal University, Lanxi 321100, China
| |
Collapse
|
10
|
Liu Y, Ning Y, Chen Z, Han P, Zhi T, Li S, Ma A, Jia Y. Transcriptomics reveals substance biosynthesis and transport on membranes of Listeria monocytogenes affected by antimicrobial lipopeptide brevilaterin B. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2022.10.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
11
|
Jiang LL, Wang JB, Wang WH, Lei B, Feng JT, Wu H, Ma ZQ. Effects of Three Essential Oil Fumigation Treatments on the Postharvest Control of Botrytis cinerea and Their Efficacy as Preservatives of Cherry Tomatoes. PLANT DISEASE 2023; 107:1874-1882. [PMID: 36480731 DOI: 10.1094/pdis-09-22-2134-re] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Cherry tomatoes (Solanum lycopersicum) are becoming increasingly popular due to their nutrition and delicious flavor. However, cherry tomatoes are highly perishable and susceptible to various pathogenic microorganisms after harvest, such as Botrytis cinerea. In the pretest experiment, we screened out three kinds of plant essential oils (EOs) (Torreya grandis oil, Eriobotrya japonica oil, and Citrus medica oil) that have strong fungicidal activity on B. cinerea from cherry tomatoes. To further evaluate the postharvest preservation application prospect of these three oils for cherry tomatoes, the oils were extracted from different parts of three plants by hydrodistillation, and their chemical constituents were analyzed by gas chromatography-mass spectrometry. The main representative components of T. grandis oil, E. japonica oil, and C. medica oil were δ-cadinene (11.76%), transnerolidol (9.70%), and 5,7-dimethoxycoumarin (23.22%), respectively. These three EOs effectively inhibited the mycelial growth of B. cinerea in vitro, with EC50 values of 81.672, 144.046, and 221.500 μl/liter, respectively. Compared with the blank control and other oil treatments, the T. grandis oil (at a concentration of 200 µl/liter) fumigation treatment was more effective at inhibiting the growth rate of the pathogen. In addition, the phenolic content and phenylalanine ammonia lyase, β-1,3-glucanase, chitinase, and peroxidase activities of tomatoes significantly increased on the seventh day due to the T. grandis oil treatment. The present study shows that these three oils with high extraction rates have preservation potential for cherry tomatoes. Among these three EOs, T. grandis oil can be used to further develop preservative products as a fumigant.
Collapse
Affiliation(s)
- Lin-Lin Jiang
- College of Plant Protection, Northwest A&F University, Yangling 712100, China
| | - Jing-Bo Wang
- College of Plant Protection, Northwest A&F University, Yangling 712100, China
| | - Wen-Hao Wang
- College of Plant Protection, Northwest A&F University, Yangling 712100, China
| | - Bin Lei
- Research at the Xinjiang Academy of Agricultural Sciences Biotechnology Institute of Nuclear Technology, Xinjiang 830091, China
| | - Jun-Tao Feng
- College of Plant Protection, Northwest A&F University, Yangling 712100, China
- Provincial Center for Bio-Pesticide Engineering, Yangling, Shaanxi Province 712100, China
| | - Hua Wu
- College of Plant Protection, Northwest A&F University, Yangling 712100, China
- Provincial Center for Bio-Pesticide Engineering, Yangling, Shaanxi Province 712100, China
| | - Zhi-Qing Ma
- College of Plant Protection, Northwest A&F University, Yangling 712100, China
- Provincial Center for Bio-Pesticide Engineering, Yangling, Shaanxi Province 712100, China
| |
Collapse
|
12
|
Schneider G, Steinbach A, Putics Á, Solti-Hodován Á, Palkovics T. Potential of Essential Oils in the Control of Listeria monocytogenes. Microorganisms 2023; 11:1364. [PMID: 37374865 DOI: 10.3390/microorganisms11061364] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/03/2023] [Accepted: 05/20/2023] [Indexed: 06/29/2023] Open
Abstract
Listeria monocytogenes is a foodborne pathogen, the causative agent of listeriosis. Infections typically occur through consumption of foods, such as meats, fisheries, milk, vegetables, and fruits. Today, chemical preservatives are used in foods; however, due to their effects on human health, attention is increasingly turning to natural decontamination practices. One option is the application of essential oils (EOs) with antibacterial features, since EOs are considered by many authorities as being safe. In this review, we aimed to summarize the results of recent research focusing on EOs with antilisterial activity. We review different methods via which the antilisterial effect and the antimicrobial mode of action of EOs or their compounds can be investigated. In the second part of the review, results of those studies from the last 10 years are summarized, in which EOs with antilisterial effects were applied in and on different food matrices. This section only included those studies in which EOs or their pure compounds were tested alone, without combining them with any additional physical or chemical procedure or additive. Tests were performed at different temperatures and, in certain cases, by applying different coating materials. Although certain coatings can enhance the antilisterial effect of an EO, the most effective way is to mix the EO into the food matrix. In conclusion, the application of EOs is justified in the food industry as food preservatives and could help to eliminate this zoonotic bacterium from the food chain.
Collapse
Affiliation(s)
- György Schneider
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, Szigeti St. 12, H-7624 Pécs, Hungary
| | - Anita Steinbach
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, Szigeti St. 12, H-7624 Pécs, Hungary
| | - Ákos Putics
- Central Laboratory, Aladár Petz Teaching Hospital, Vasvári Pál Street 2-4, H-9024 Győr, Hungary
| | - Ágnes Solti-Hodován
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, Szigeti St. 12, H-7624 Pécs, Hungary
| | - Tamás Palkovics
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, Szigeti St. 12, H-7624 Pécs, Hungary
| |
Collapse
|
13
|
Yi X, Xu X, Chen Y, Xu G, Zhu Z, Li H, Shen H, Lin M, Zhao W, Zheng J, Jiang X. Genetic analysis of Vibrio alginolyticus challenged by Fructus schisandrae reveals the mechanism of virulence genes. Gene 2023; 870:147421. [PMID: 37031882 DOI: 10.1016/j.gene.2023.147421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/21/2023] [Accepted: 04/04/2023] [Indexed: 04/11/2023]
Abstract
Due to the abusive use of antibiotics, bacterial resistance has become a global problem and poses severe threats to aquaculture. The drug-resistant diseases caused by Vibrio alginolyticus have caused significant economic losses to cultured marine fish. Fructus schisandrae is used to treat inflammatory diseases in China and Japan. There have been no reports of bacterial molecular mechanisms associated with F. schisandrae stress. In this study, the inhibiting effect of F. schisandrae on the growth of V. alginolyticus was detected to understand response mechanisms at the molecular level. The antibacterial tests were analyzed via next-generation deep sequencing technology (RNA sequencing, RNA-seq). Wild V. alginolyticus (CK) was compared with V. alginolyticus, F. schisandrae incubated for 2 h, and V. alginolyticus, F. schisandrae incubated for 4 h. Our results revealed that there were 582 genes (236 upregulated and 346 downregulated) and 1068 genes (376 upregulated and 692 downregulated), respectively. Differentially expressed genes (DEGs) were involved in the following functional categories: metabolic process, single-organism process, catalytic activity, cellular process, binding, membrane, cell part, cell, and localization. FS_2 h was compared with FS_4 h, and 21 genes (14 upregulated and 7 downregulated) were obtained. The RNA-seq results were validated by detecting the expression levels of 13 genes using quantitative real-time polymerase chain reaction (qRT-PCR). The qRT-PCR results matched those of the sequencing, which reinforced the reliability of the RNA-seq. The results revealed the transcriptional response of V. alginolyticus to F. schisandrae, which will provide new ideas for studying V. alginolyticus' complex virulence molecular mechanism and the possibility of developing Schisandra to prevent and treat drug-resistant diseases.
Collapse
Affiliation(s)
- Xin Yi
- Fisheries College, Jimei University, Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fujian Province, Xiamen 361021, China
| | - XiaoJin Xu
- Fisheries College, Jimei University, Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fujian Province, Xiamen 361021, China; Fujian Province Key Laboratory of Special Aquatic Formula Feed(Fujian Tianma Science and Technology Group Co., Ltd.)
| | - YuNong Chen
- Fisheries College, Jimei University, Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fujian Province, Xiamen 361021, China; Fujian Province Key Laboratory of Special Aquatic Formula Feed(Fujian Tianma Science and Technology Group Co., Ltd.)
| | - Genhuang Xu
- Fisheries College, Jimei University, Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fujian Province, Xiamen 361021, China
| | - ZhiQin Zhu
- Fisheries College, Jimei University, Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fujian Province, Xiamen 361021, China
| | - Huiyao Li
- Fisheries Research Institute of Fujian, Xiamen 361013, China
| | - HaoYang Shen
- Fisheries College, Jimei University, Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fujian Province, Xiamen 361021, China
| | - Mao Lin
- Fisheries College, Jimei University, Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fujian Province, Xiamen 361021, China
| | - Wenyu Zhao
- Fisheries College, Jimei University, Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fujian Province, Xiamen 361021, China
| | - Jiang Zheng
- Fisheries College, Jimei University, Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fujian Province, Xiamen 361021, China
| | - XingLong Jiang
- Fisheries College, Jimei University, Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fujian Province, Xiamen 361021, China.
| |
Collapse
|
14
|
Gao Z, Jiang S, Zhong W, Liu T, Guo J. Linalool controls the viability of Escherichia coli by regulating the synthesis and modification of lipopolysaccharide, the assembly of ribosome, and the expression of substrate transporting proteins. Food Res Int 2023; 164:112337. [PMID: 36737930 DOI: 10.1016/j.foodres.2022.112337] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/08/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022]
Abstract
Escherichia coli (E. coli) is a Gram-negative bacterium and some pathogenic types may cause serious diseases, foods or food environments were the primary routes for its infection. Citrus aurantium L. var. amara Engl., a variety of sour orange, were used as a kind of non-conventional edible plant in China, but its antimicrobial activity and mechanisms were not well studied. Thus, in this study, EO from the flower of Citrus aurantium L. var. amara Engl. (CAEO) were studied as a kind of natural antimicrobial agent to control E. coli, our results showed that both of CAEO and its main component (linalool) exhibited strong antibacterial efficacy. Further, transcriptomic and proteomic analysis were carried out to explore cell response under linalool treatment and the main results included: (1) The synthesis and modification of lipopolysaccharide (LPS) was significantly influenced. (2) Ribosomal assembly and protein synthesis were significantly inhibited. (3) The expression of proteins related to the uptake of several essential substances was significantly changed. In all, our results would supply a theoretical basis for the proper use of CAEO and linalool as a promising antimicrobial agent to prevent and control E. coli infection in the future.
Collapse
Affiliation(s)
- Zhipeng Gao
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128, Hunan Province, China.
| | - Sifan Jiang
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128, Hunan Province, China
| | - Weiming Zhong
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128, Hunan Province, China
| | - Ting Liu
- Hunan Agriculture Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, Hunan Province, China
| | - Jiajing Guo
- Hunan Agriculture Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, Hunan Province, China.
| |
Collapse
|
15
|
Liu X, Pang X, Wu Y, Wu Y, Shi Y, Zhang X, Chen Q. Synergistic Antibacterial Mechanism of Mannosylerythritol Lipid-A and Lactic Acid on Listeria monocytogenes Based on Transcriptomic Analysis. Foods 2022; 11:foods11172660. [PMID: 36076848 PMCID: PMC9455235 DOI: 10.3390/foods11172660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/26/2022] [Accepted: 08/28/2022] [Indexed: 11/21/2022] Open
Abstract
Mannosylerythritol lipids-A (MEL-A) is a novel biosurfactant with multiple biological effects. The synergistic antibacterial activity and mechanism of MEL-A and lactic acid (LA) against Listeria monocytogenes were investigated. The synergistic effect resulted in a significant increase in the antibacterial rate compared to LA treatment alone. Genome-wide transcriptomic analysis was applied to deeply investigate the synergistic antibacterial mechanism. Gene Ontology (GO) enrichment analysis showed that the synergy between MEL-A and LA affected many potential cellular responses, including the sugar phosphotransferase system, carbohydrate transport, and ribosomes. KEGG enrichment analysis showed that the PTS system and ribosome-related pathways were significantly enriched. In addition, synergistic treatment affected locomotion and membrane-related cellular responses in GO enrichment analysis and carbohydrate metabolism and amino acid metabolism pathways in KEGG enrichment analysis compared to LA treatment alone. The accuracy of the transcriptome analysis results was verified by qPCR (R2 = 0.9903). This study will provide new insights for the prevention and control of L. monocytogenes.
Collapse
Affiliation(s)
- Xiayu Liu
- Department of Food Science and Nutrition, Zhejiang University, Yuhangtang Rd. 866, Hangzhou 310058, China
| | - Xinxin Pang
- Department of Food Science and Nutrition, Zhejiang University, Yuhangtang Rd. 866, Hangzhou 310058, China
| | - Yansha Wu
- Department of Food Science and Nutrition, Zhejiang University, Yuhangtang Rd. 866, Hangzhou 310058, China
| | - Yajing Wu
- Department of Food Science and Nutrition, Zhejiang University, Yuhangtang Rd. 866, Hangzhou 310058, China
| | - Ying Shi
- Department of Food Science and Nutrition, Zhejiang University, Yuhangtang Rd. 866, Hangzhou 310058, China
| | - Xinglin Zhang
- Department of Food Science and Nutrition, Zhejiang University, Yuhangtang Rd. 866, Hangzhou 310058, China
- College of Agriculture and Forestry, Linyi University, Linyi 276005, China
| | - Qihe Chen
- Department of Food Science and Nutrition, Zhejiang University, Yuhangtang Rd. 866, Hangzhou 310058, China
- Correspondence: ; Tel.: +86-571-86984316
| |
Collapse
|
16
|
Global Proteomic Analysis of Listeria monocytogenes' Response to Linalool. Foods 2021; 10:foods10102449. [PMID: 34681498 PMCID: PMC8535586 DOI: 10.3390/foods10102449] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 01/13/2023] Open
Abstract
Listeria monocytogenes (LM) is one of the most serious foodborne pathogens. Listeriosis, the disease caused by LM infection, has drawn attention worldwide because of its high hospitalization and mortality rates. Linalool is a vital constituent found in many essential oils; our previous studies have proved that linalool exhibits strong anti-Listeria activity. In this study, iTRAQ-based quantitative proteomics analysis was performed to explore the response of LM exposed to linalool, and to unravel the mode of action and drug targets of linalool against LM. A total of 445 differentially expressed proteins (DEPs) were screened out, including 211 up-regulated and 234 down-regulated proteins which participated in different biological functions and pathways. Thirty-one significantly enriched gene ontology (GO) functional categories were obtained, including 12 categories in “Biological Process”, 10 categories in “Cell Component”, and 9 categories in “Molecular Function”. Sixty significantly enriched biological pathways were classified, including 6 pathways in “Cell Process”, 6 pathways in “Environmental Information Processing”, 3 pathways in “Human Disease”, 40 pathways in “Metabolism”, and 2 pathways in “Organic System”. GO and Kyoto Encyclopedia of Genes (KEGG) enrichment analysis together with flow cytometry data implied that cell membranes, cell walls, nucleoids, and ribosomes might be the targets of linalool against LM. Our study provides good evidence for the proteomic analysis of bacteria, especially LM, exposed to antibacterial agents. Further, those drug targets discovered by proteomic analysis can provide theoretical support for the development of new drugs against LM.
Collapse
|
17
|
Wang J, Lei Y, Yu Y, Yin L, Zhang Y. Use of Acetic Acid to Partially Replace Lactic Acid for Decontamination against Escherichia coli O157:H7 in Fresh Produce and Mechanism of Action. Foods 2021; 10:2406. [PMID: 34681456 PMCID: PMC8535275 DOI: 10.3390/foods10102406] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/06/2021] [Accepted: 10/07/2021] [Indexed: 11/16/2022] Open
Abstract
Escherichia coli O157:H7 is frequently detected in ready-to-eat produce and causes serious food-borne diseases. The decontamination efficacy of lactic acid (LA) is clearly established. In this study, LA was mixed with acetic acid (AA) to reduce costs while achieving consistent or better inhibitory effects. Time-kill curves and inoculation experiments using fresh-cut spinach and arugula indicated that 0.8%LA+0.2%AA shows similar antibacterial effects to those of 1%LA. To determine whether 1%LA and 0.8%LA+0.2%AA exert antibacterial effects by similar mechanisms, proteomics analysis was used. The proteins related to macromolecule localization, cellular localization, and protein unfolding were uniquely altered after the treatment with 1%LA, and the proteins related to taxis, response to stress, catabolic process, and the regulation of molecular function were uniquely altered after the treatment with 0.8%LA+0.2%AA. Based on these findings, combined with the results of a network clustering analysis, we speculate that cell membrane damage is greater in response to LA than to 0.8%LA+0.2%AA. This prediction was supported by cell membrane permeability experiments (analyses of protein, nucleotide, ATP, and alkaline phosphatase leakage), which showed that LA causes greater membrane damage than 0.8%LA+0.2%AA. These results provide a theoretical basis for the application of an acid mixture to replace LA for produce decontamination.
Collapse
Affiliation(s)
- Jiayi Wang
- College of Food and Chemical Engineering, Shaoyang University, Shaoyang 422000, China; (Y.Y.); (L.Y.); (Y.Z.)
| | - Yue Lei
- Institute of Rice Research, Guizhou Academy of Agricultural, Guiyang 550009, China;
| | - Yougui Yu
- College of Food and Chemical Engineering, Shaoyang University, Shaoyang 422000, China; (Y.Y.); (L.Y.); (Y.Z.)
| | - Lebin Yin
- College of Food and Chemical Engineering, Shaoyang University, Shaoyang 422000, China; (Y.Y.); (L.Y.); (Y.Z.)
| | - Yangyang Zhang
- College of Food and Chemical Engineering, Shaoyang University, Shaoyang 422000, China; (Y.Y.); (L.Y.); (Y.Z.)
| |
Collapse
|
18
|
Review controlling Listeria monocytogenes in ready-to-eat meat and poultry products: An overview of outbreaks, current legislations, challenges, and future prospects. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.07.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|