1
|
Turkiewicz IP, Tkacz K, Nowicka P, Wojdyło A. Investigating in vitro anticholinergic potential (anti-AChE and anti-BuChE) of Chaenomeles leaves extracts and its phytochemicals including chlorophylls, carotenoids and minerals. Sci Rep 2024; 14:23132. [PMID: 39367071 PMCID: PMC11452384 DOI: 10.1038/s41598-024-73595-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 09/19/2024] [Indexed: 10/06/2024] Open
Abstract
The goal of this work was to evaluate the chemical constitution and health-promoting potential of 12 varieties of Chaenomeles × superba, speciosa and japonica leaves. Carotenoids, chlorophylls, triterpenes, sugars, polyols and acids were analyzed quantitatively and qualitatively using high pressure liquid chromatography (LC) coupled with mass spectrometry (MS), while the mineral profile was determined using atomic absorption spectroscopy (AAS). Moreover, the in vitro anticholinergic potential (inhibition of acetyl-cholinesterase (AChE) and butyryl-cholinesterase (BuChE)) and antioxidant (ABTS, FRAP, ORAC) capacity were evaluated. For the first time in Chaenomeles genotypes 26 carotenoid derivatives and 22 chlorophyll derivatives were identified. Some varieties contained high amounts of carotenoids and chlorophylls (Ch. × superba 'Colour Trail', 'Nicoline', 'Pink Lady', 'Texas Scarlet'), and triterpenes (Ch. speciosa 'Simonii', 'Rubra', and Ch. × superba 'Colour Trail', 'Nicoline') and showed high ORAC antioxidant (Ch. × superba 'Pink Lady' and Ch. speciosa 'Simonii') and anticholinergic (Ch. speciosa species) activity. The studied leaves also contained sugars (3.1 to 16.5 mg/100 g), organic acids (3.9-8.1 g/100 g), and minerals (Ca, Cu, Fe, K, Mg, Mn, Na, and Zn). In conclusion, Chaenomeles leaves show potential as a new source for the production of nutraceuticals, as well as for medical and/or cosmetic purposes.
Collapse
Affiliation(s)
- Igor Piotr Turkiewicz
- Department of Fruit, Vegetable and Plant Nutraceutical Technology, The Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, 37 Chełmońskiego Street, Wrocław, 51-630, Poland
| | - Karolina Tkacz
- Department of Fruit, Vegetable and Plant Nutraceutical Technology, The Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, 37 Chełmońskiego Street, Wrocław, 51-630, Poland
| | - Paulina Nowicka
- Department of Fruit, Vegetable and Plant Nutraceutical Technology, The Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, 37 Chełmońskiego Street, Wrocław, 51-630, Poland
| | - Aneta Wojdyło
- Department of Fruit, Vegetable and Plant Nutraceutical Technology, The Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, 37 Chełmońskiego Street, Wrocław, 51-630, Poland.
| |
Collapse
|
2
|
Mello BCBS, Malarski A, Böhm V. Bioactive Compounds and Antioxidant Capacity of Pulp, Peel and Seeds from Jeriva ( Syagrus romanzoffiana). Antioxidants (Basel) 2024; 13:711. [PMID: 38929150 PMCID: PMC11200598 DOI: 10.3390/antiox13060711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/06/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Jeriva (Syagrus romanzoffiana) is a fruit from palm trees of the Arecaceae family, widely distributed in tropical and subtropical areas of Latin America. It has low production costs and high productivity throughout the year; however, its consumption is very low, and the production goes almost entirely to feed animals or to waste. To improve its consumption, a good characterization of the whole fruit is necessary. The objective of this work was to evaluate the jeriva pulp, peel and seeds according to carotenoids, phenolic compounds, vitamin C, tocopherols and antioxidant potential using HPLC, microplate readers and spectrophotometric methods. Every part of the fruit exhibited antioxidant capacity in the ORAC and TEAC tests, which can be attributed to its high concentration of polyphenols. Carotenoids were more present in the pulp and peel and almost absent in the seeds. Vitamin C ranged from 12 ± 1 for the seeds up to 92 ± 3 mg/100 g for the pulp. The total phenolic content was quantified between 473 ± 39 for the seeds and 1089 ± 32 mg of gallic acid equivalents (GAEs)/100 g for the pulp. These results demonstrate that all parts of this fruit have important bioactive nutrients, with promising perspectives for further scientific approaches and for composing formulations of food products to enhance functional properties.
Collapse
Affiliation(s)
- Beatriz C. B. S. Mello
- Center for Natural Sciences, Federal University of São Carlos, Campus Lagoa do Sino, Buri 18290-000, Brazil
| | - Angelika Malarski
- Institute of Nutritional Sciences, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Volker Böhm
- Institute of Nutritional Sciences, Friedrich Schiller University Jena, 07743 Jena, Germany
| |
Collapse
|
3
|
Papaefthimiou M, Kontou PI, Bagos PG, Braliou GG. Integration of Antioxidant Activity Assays Data of Stevia Leaf Extracts: A Systematic Review and Meta-Analysis. Antioxidants (Basel) 2024; 13:692. [PMID: 38929131 PMCID: PMC11201069 DOI: 10.3390/antiox13060692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/22/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
Stevia rebaudiana Bertoni, a no-calorie natural sweetener, contains a plethora of polyphenols that exert antioxidant properties with potential medicinal significance. Due to the variety of functional groups, polyphenols exhibit varying solubility depending on the nature of the extraction solvents (water, organic, or their mixtures, defined further on as hydroalcoholic extracts). In the present study, we performed a systematic review, following PRISMA guidelines, and meta-analysis, synthesizing all available data from 45 articles encompassing 250 different studies. Our results showed that the total phenolic content (TPC) of hydroalcoholic and aqueous extracts presents higher values (64.77 and 63.73 mg GAE/g) compared to organic extracts (33.39). Total flavonoid content (TFC) was also higher in aqueous and hydroalcoholic extracts; meta-regression analysis revealed that outcomes in different measuring units (mg QE/g, mg CE/g, and mg RUE/g) do not present statistically significant differences and can be synthesized in meta-analysis. Using meta-regression analysis, we showed that outcomes from the chemical-based ABTS, FRAP, and ORAC antioxidant assays for the same extract type can be combined in meta-analysis because they do not differ statistically significantly. Meta-analysis of ABTS, FRAP, and ORAC assays outcomes revealed that the antioxidant activity profile of various extract types follows that of their phenolic and flavonoid content. Using regression meta-analysis, we also presented that outcomes from SOD, CAT, and POX enzymatic antioxidant assays are independent of the assay type (p-value = 0.905) and can be combined. Our study constitutes the first effort to quantitatively and statistically synthesize the research results of individual studies using all methods measuring the antioxidant activity of stevia leaf extracts. Our results, in light of evidence-based practice, uncover the need for a broadly accepted, unified, methodological strategy to perform antioxidant tests, and offer documentation that the use of ethanol:water 1:1 mixtures or pure water can more efficiently extract stevia antioxidant compounds.
Collapse
Affiliation(s)
- Maria Papaefthimiou
- Department of Computer Science and Biomedical Informatics, University of Thessaly, 35131 Lamia, Greece; (M.P.); (P.G.B.)
| | | | - Pantelis G. Bagos
- Department of Computer Science and Biomedical Informatics, University of Thessaly, 35131 Lamia, Greece; (M.P.); (P.G.B.)
| | - Georgia G. Braliou
- Department of Computer Science and Biomedical Informatics, University of Thessaly, 35131 Lamia, Greece; (M.P.); (P.G.B.)
| |
Collapse
|
4
|
Investigation of phenolic contents and bioactivities of water-based extracts prepared from cryogenically pulverized Turkish propolis. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01716-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
|
5
|
Cruz Reina LJ, Durán-Aranguren DD, Forero-Rojas LF, Tarapuez-Viveros LF, Durán-Sequeda D, Carazzone C, Sierra R. Chemical composition and bioactive compounds of cashew (Anacardium occidentale) apple juice and bagasse from Colombian varieties. Heliyon 2022; 8:e09528. [PMID: 35663750 PMCID: PMC9156865 DOI: 10.1016/j.heliyon.2022.e09528] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 02/20/2022] [Accepted: 05/18/2022] [Indexed: 12/15/2022] Open
Abstract
Cashew nut production generates large amounts of cashew apple as residue. In Colombia, cashew cultivation is increasing together with the concerns on residue management. The objective of this study was to provide the first chemical, physical and thermal decomposition characterization of cashew apple from Colombian varieties harvested in Vichada, Colombia. This characterization was focused to identify the important bioactive and natural compounds that can be further valorized in the formulation of food, nutraceuticals, and pharmacological products. The results obtained in this study are helpful to portray the cashew apple as a potential by-product due to its renewable nature and valuable composition, instead of seeing it just as an agricultural residue. For that, cashew apples of Regional 8315 and Mapiria varieties were studied. The natural juice (cashew apple juice) that was extracted from the cashew apples and the remanent solids (cashew apple bagasse) were separately analyzed. The HPLC analytical technique was used to determine the concentration of bioactive compounds, structural carbohydrates, and soluble sugars that constitute this biomass. Spectrophotometric techniques were used to determine the concentration of tannins, carotenoids, and total polyphenols. Mineral content and antioxidant activity (DPPH and ABTS assays) were determined in the biomass. Also, the thermal decomposition under an inert atmosphere or pyrolysis was performed on cashew apple bagasse. The varieties of cashew apple studied in this work showed similar content of bioactive compounds, total phenolic content, and structural carbohydrates. However, the Mapiria variety showed values slightly higher than the Regional 8315. Regarding cashew apple juice, it is rich in tannins and ascorbic acid with values of 191 mg/100 mL and 70 mg/100 mL, respectively, for Mapiria variety. Additionally, the principal reservoir of bioactive compounds and constitutive carbohydrates was the cashew apple bagasse. About 50 wt.% of it was composed of cellulose and hemicellulose. Also, in the bagasse, the ascorbic acid content was in a range of 180–200 mg/100 g, which is higher than other fruits and vegetables. Moreover, alkaloids were identified in cashew apples. The maximum value of antioxidant activity (DPPH assay: 405 TEs/g) was observed in the bagasse of Mapiria variety. The bagasse thermal decomposition started around 150 °C when the structural carbohydrates and other constitutive substances started to degrade. After thermogravimetric analysis, a remanent of 20% of the initial weight suggested the formation of a rich-carbon solid, which could correspond to biochar. Therefore, the cashew apple harvested in Vichada is a valuable reservoir of a wide range of biomolecules that potentially could be valorized into energy, foods, and pharmacologic applications. Nevertheless, future work is necessary to describe the complex compounds of this residual biomass that are still unknown.
Collapse
Affiliation(s)
- Luis J. Cruz Reina
- Product and Processes Design Group, Department of Chemical and Food Engineering, Universidad de Los Andes, Carrera 1 No. 18A-10, Bogotá 111711, Colombia
- Corresponding author.
| | - Daniel David Durán-Aranguren
- Product and Processes Design Group, Department of Chemical and Food Engineering, Universidad de Los Andes, Carrera 1 No. 18A-10, Bogotá 111711, Colombia
| | - Laura Fernanda Forero-Rojas
- Product and Processes Design Group, Department of Chemical and Food Engineering, Universidad de Los Andes, Carrera 1 No. 18A-10, Bogotá 111711, Colombia
| | - Luisa Fernanda Tarapuez-Viveros
- Product and Processes Design Group, Department of Chemical and Food Engineering, Universidad de Los Andes, Carrera 1 No. 18A-10, Bogotá 111711, Colombia
| | - Dinary Durán-Sequeda
- Product and Processes Design Group, Department of Chemical and Food Engineering, Universidad de Los Andes, Carrera 1 No. 18A-10, Bogotá 111711, Colombia
| | - Chiara Carazzone
- Laboratory of Advanced Analytical Techniques in Natural Products, Department of Chemistry, Universidad de Los Andes, Carrera 1 No. 18A-10, Bogotá 111711, Colombia
| | - Rocío Sierra
- Product and Processes Design Group, Department of Chemical and Food Engineering, Universidad de Los Andes, Carrera 1 No. 18A-10, Bogotá 111711, Colombia
| |
Collapse
|
6
|
Rebollo-Hernanz M, Aguilera Y, Martín-Cabrejas MA, Gonzalez de Mejia E. Activating Effects of the Bioactive Compounds From Coffee By-Products on FGF21 Signaling Modulate Hepatic Mitochondrial Bioenergetics and Energy Metabolism in vitro. Front Nutr 2022; 9:866233. [PMID: 35392289 PMCID: PMC8981461 DOI: 10.3389/fnut.2022.866233] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 02/23/2022] [Indexed: 12/17/2022] Open
Abstract
Coffee by-products contain bioactive compounds that have been shown to have the capacity to modulate human metabolism. The goal of this study was to investigate the effects of the main bioactive compounds in coffee by-products and two aqueous extracts from the coffee husk and silverskin on the activation of fibroblast growth factor 21 (FGF21) signaling and the subsequent regulation of mitochondrial bioenergetics and lipid and glucose metabolism. HepG2 cells treated with palmitic acid (PA) were used in a non-alcoholic fatty liver disease (NAFLD) cell model. The bioactive compounds from coffee by-products (50 μmol L−1) and the aqueous extracts from the coffee silverskin and coffee husk (100 μg mL−1) increased ERK1/2 phosphorylation and the secretion of FGF21 (1.3 to 1.9-fold). Coffee by-products' bioactive compounds counteracted inflammation and PA-triggered lipotoxicity. Oxidative stress markers (ROS, mitochondrial superoxide, and NADPH oxidase) and the activity of antioxidant enzymes (superoxide dismutase and catalase) were modulated through the activation of Nrf2 signaling. Mitochondrial bioenergetics were regulated by enhancing respiration and ATP production via PGC-1α, and the expression of oxidative phosphorylation complexes increased. Coffee by-products' bioactive compounds decreased lipid accumulation (23–41%) and fatty acid synthase activity (32–65%) and triggered carnitine palmitoyltransferase-1 activity (1.3 to 1.7-fold) by activating AMPK and SREBP-1c pathways. The GLUT2 expression and glucose uptake were increased (58–111%), followed by a promoted glucokinase activity (55–122%), while glucose production and phosphoenolpyruvate carboxykinase activity were reduced due to IRS-1/Akt1 regulation. The bioactive compounds from coffee by-products, primarily chlorogenic and protocatechuic acids, could regulate hepatic mitochondrial function and lipid and glucose metabolism by activating FGF21 and related signaling cascades.
Collapse
Affiliation(s)
- Miguel Rebollo-Hernanz
- Department of Production and Characterization of Novel Foods, Institute of Food Science Research, CIAL (UAM-CSIC), Madrid, Spain
- Department of Agricultural Chemistry and Food Science, Universidad Autónoma de Madrid, Madrid, Spain
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Yolanda Aguilera
- Department of Production and Characterization of Novel Foods, Institute of Food Science Research, CIAL (UAM-CSIC), Madrid, Spain
- Department of Agricultural Chemistry and Food Science, Universidad Autónoma de Madrid, Madrid, Spain
| | - Maria A. Martín-Cabrejas
- Department of Production and Characterization of Novel Foods, Institute of Food Science Research, CIAL (UAM-CSIC), Madrid, Spain
- Department of Agricultural Chemistry and Food Science, Universidad Autónoma de Madrid, Madrid, Spain
| | - Elvira Gonzalez de Mejia
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- *Correspondence: Elvira Gonzalez de Mejia
| |
Collapse
|
7
|
Meza-Gutiérrez NN, Magallón-Servín P, Balois-Morales R, Pérez-Ramírez IF, López-Guzmán GG, Berumen-Varela G, Bautista-Rosales PU. Growth Promoting Activity of Annona muricata L. Leaf Extracts on Lactobacillus casei. PLANTS (BASEL, SWITZERLAND) 2022; 11:581. [PMID: 35270049 PMCID: PMC8912565 DOI: 10.3390/plants11050581] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 06/14/2023]
Abstract
Soursop leaves are a source of phytochemical compounds, such as phenolic acids, flavonoids, hydrolyzable tannins, and acetogenins. These compounds can have several types of biological activities. Lactic acid bacteria can uptake phenolic compounds present in plants or fruits. The aim of the present work was to investigate the in vitro effect of hexane, acetone, methanolic, and aqueous extracts of soursop leaves (Annona muricata L.) on the growth, motility, and biofilm formation of Lactobacillus casei, and to determine compounds related to growth. The minimum concentration promoting growth, motility (swimming, swarming, and twitching), and biofilm-forming capacity (crystal violet) were evaluated. The results showed the growth-promoting capacity of acetone and aqueous extracts at low doses 25-50 mg/L, and an inhibition in the four extracts at higher doses of 100 mg/L. The L. casei growth is related to ellagic acid, quercetin rhamnoside, kaempferol dihexoside, quercetin hexoside, secoisolariciresinol, and kaempferol hexoside-rhamnoside. Hexane extract increased the three types of motility, while aqueous maintained swimming and twitching motility similar to control. The four extracts inhibited the biofilm formation capacity.
Collapse
Affiliation(s)
- Nimcy Noemí Meza-Gutiérrez
- Programa de Doctorado en Ciencias Biológico Agropecuarias, Universidad Autónoma de Nayarit, Km 9 Carretera Tepic-Compostela, Xalisco C.P. 63180, Nayarit, Mexico; (N.N.M.-G.); (R.B.-M.)
- Unidad de Tecnología de Alimentos, Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Ciudad de la Cultura S/N, Colonia Centro, Tepic C.P. 63000, Nayarit, Mexico;
| | - Paola Magallón-Servín
- Centro de Investigaciones Biológicas del Noroeste, Km 1 Carretera a San Juan de La Costa “El Comitan”, La Paz C.P. 23205, Baja California Sur, Mexico;
- Bashan Institure of Sciences, 1730 Post Oak Ct, Auburn, AL 36830, USA
| | - Rosendo Balois-Morales
- Programa de Doctorado en Ciencias Biológico Agropecuarias, Universidad Autónoma de Nayarit, Km 9 Carretera Tepic-Compostela, Xalisco C.P. 63180, Nayarit, Mexico; (N.N.M.-G.); (R.B.-M.)
- Unidad de Tecnología de Alimentos, Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Ciudad de la Cultura S/N, Colonia Centro, Tepic C.P. 63000, Nayarit, Mexico;
| | - Iza Fernanda Pérez-Ramírez
- Facultad de Química, Universidad Autónoma de Querétaro, C.U., Cerro de las Campanas S/N, Querétaro C.P. 76010, Querétaro, Mexico;
| | - Graciela Guadalupe López-Guzmán
- Unidad Académica de Agricultura, Universidad Autónoma de Nayarit, Km 9 Carretera Tepic-Compostela, Xalisco C.P. 63780, Nayarit, Mexico;
| | - Guillermo Berumen-Varela
- Unidad de Tecnología de Alimentos, Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Ciudad de la Cultura S/N, Colonia Centro, Tepic C.P. 63000, Nayarit, Mexico;
| | - Pedro Ulises Bautista-Rosales
- Programa de Doctorado en Ciencias Biológico Agropecuarias, Universidad Autónoma de Nayarit, Km 9 Carretera Tepic-Compostela, Xalisco C.P. 63180, Nayarit, Mexico; (N.N.M.-G.); (R.B.-M.)
- Unidad de Tecnología de Alimentos, Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Ciudad de la Cultura S/N, Colonia Centro, Tepic C.P. 63000, Nayarit, Mexico;
| |
Collapse
|
8
|
Santana Andrade JK, Chagas Barros RG, Gualberto NC, Santos de Oliveira C, Shanmugam S, Narain N. Influence of in vitro gastrointestinal digestion and probiotic fermentation on the bioaccessibility of gallic acid and on the antioxidant potential of Brazilian fruit residues. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|