1
|
Campanher G, Andrade N, Lopes J, Silva C, Pena MJ, Rodrigues I, Martel F. The Counteracting Effect of Chrysin on Dietary Fructose-Induced Metabolic-Associated Fatty Liver Disease (MAFLD) in Rats with a Focus on Glucose and Lipid Metabolism. Molecules 2025; 30:380. [PMID: 39860248 PMCID: PMC11768066 DOI: 10.3390/molecules30020380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/15/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025] Open
Abstract
The prevalence of metabolic syndrome has been exponentially increasing in recent decades. Thus, there is an increasing need for affordable and natural interventions for this disorder. We explored the effect of chrysin, a dietary polyphenol, on hepatic lipid and glycogen accumulation, metabolic dysfunction-associated fatty liver disease (MAFLD) activity score and oxidative stress and on hepatic and adipose tissue metabolism in rats presenting metabolic syndrome-associated conditions. Rats fed a chow diet were separated into four groups: Control (tap water), Fructose (tap water with 10% fructose), Chrysin (tap water+ chrysin (100 mg/kg body weight/d)), and Fructose + Chrysin (tap water with 10% fructose + chrysin (100 mg/kg body weight/d, daily)) (for 18 weeks). When associated with the chow diet, chrysin reduced hepatic lipid and glycogen storage, increased the hepatic antioxidant potential of glutathione and reduced de novo lipogenesis in the adipose tissue. When associated with the high fructose-diet, chrysin attenuated the increase in lipid and glycogen hepatic storage, improved the MAFLD activity score, decreased hepatic lipid peroxidation, increased the antioxidant potential of glutathione, and improved lipid and glucose metabolic markers in the liver and adipose tissue. In conclusion, our results suggest that chrysin is a beneficial addition to a daily diet for improvement of hepatic metabolic health, particularly for individuals suffering from metabolic syndrome.
Collapse
Affiliation(s)
- Gabriela Campanher
- Unit of Biochemistry, Department of Biomedicine, Faculty of Medicine of Porto, University of Porto, 4200-319 Porto, Portugal; (G.C.); (N.A.); (C.S.); (M.J.P.); (I.R.)
- School of Medical Sciences, University of Örebro, Campus USÖ, S-701 82 Örebro, Sweden
| | - Nelson Andrade
- Unit of Biochemistry, Department of Biomedicine, Faculty of Medicine of Porto, University of Porto, 4200-319 Porto, Portugal; (G.C.); (N.A.); (C.S.); (M.J.P.); (I.R.)
- REQUIMTE/LAQV, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, R. J. Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Joanne Lopes
- Department of Pathology, Faculty of Medicine of Porto, University of Porto, 4200-319 Porto, Portugal;
| | - Cláudia Silva
- Unit of Biochemistry, Department of Biomedicine, Faculty of Medicine of Porto, University of Porto, 4200-319 Porto, Portugal; (G.C.); (N.A.); (C.S.); (M.J.P.); (I.R.)
- REQUIMTE/LAQV, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, R. J. Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Maria João Pena
- Unit of Biochemistry, Department of Biomedicine, Faculty of Medicine of Porto, University of Porto, 4200-319 Porto, Portugal; (G.C.); (N.A.); (C.S.); (M.J.P.); (I.R.)
| | - Ilda Rodrigues
- Unit of Biochemistry, Department of Biomedicine, Faculty of Medicine of Porto, University of Porto, 4200-319 Porto, Portugal; (G.C.); (N.A.); (C.S.); (M.J.P.); (I.R.)
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, 4200-135 Porto, Portugal
| | - Fátima Martel
- Unit of Biochemistry, Department of Biomedicine, Faculty of Medicine of Porto, University of Porto, 4200-319 Porto, Portugal; (G.C.); (N.A.); (C.S.); (M.J.P.); (I.R.)
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, 4200-135 Porto, Portugal
| |
Collapse
|
2
|
Westerbeke FHM, Rios-Morales M, Attaye I, Nieuwdorp M. Fructose catabolism and its metabolic effects: Exploring host-microbiota interactions and the impact of ethnicity. J Physiol 2025. [PMID: 39805044 DOI: 10.1113/jp287316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 12/16/2024] [Indexed: 01/16/2025] Open
Abstract
Important health disparities are observed in the prevalence of obesity and associated non-communicable diseases (NCDs), including type 2 diabetes (T2D) and metabolic dysfunction-associated steatotic liver disease (MASLD) among ethnic groups. Yet, the underlying factors accounting for these disparities remain poorly understood. Fructose has been widely proposed as a potential mediator of these NCDs, given that hepatic fructose catabolism can result in deleterious metabolic effects, including insulin resistance and hepatic steatosis. Moreover, the fermentation of fructose by the gut microbiota can produce metabolites such as ethanol and acetate, both which serve as potential substrates for de novo lipogenesis (DNL) and could therefore contribute to the development of these metabolic conditions. Significant inter-ethnic differences in gut microbiota composition have been observed. Moreover, fructose consumption varies across ethnic groups, and fructose intake has been demonstrated to significantly alter gut microbiota composition, which can influence its fermenting properties and metabolic effects. Therefore, ethnic differences in gut microbiota composition, which may be influenced by variations in fructose consumption, could contribute to the observed health disparities. This review provides an overview of the complex interactions between host and microbial fructose catabolism, the role of ethnicity in shaping these metabolic processes and their impact on host health. Understanding these interactions could provide insights into the mechanisms driving ethnic health disparities to improve personalized nutrition strategies. KEY POINTS: Dietary fructose consumption has increased substantially over recent decades, which has been associated with the rising prevalence of obesity and non-communicable diseases (NCDs) such as type 2 diabetes and metabolic dysfunction-associated steatotic liver disease. Pronounced disparities among different ethnic groups in NCD prevalence and dietary fructose consumption underscore the need to elucidate the underlying mechanisms of fructose catabolism and its health effects. Together with the well-known toxic effects of hepatic fructose catabolism, emerging evidence highlights a role for the small intestinal microbiota in fermenting sugars like fructose into various bacterial products with potential deleterious metabolic effects. There are significant ethnic differences in gut microbiota composition that, combined with varying fructose consumption, could mediate the observed health disparities. To comprehensively understand the role of the gut microbiota in mediating fructose-induced adverse metabolic effects, future research should focus on the small intestinal microbiota. Future research on fructose - microbiota - host interactions should account for ethnic differences in dietary habits and microbial composition to elucidate the potential role of the gut microbiota in driving the mentioned health disparities.
Collapse
Affiliation(s)
- Florine H M Westerbeke
- Department of Internal and Experimental Vascular Medicine, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Melany Rios-Morales
- Department of Internal and Experimental Vascular Medicine, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Ilias Attaye
- Department of Internal and Experimental Vascular Medicine, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Max Nieuwdorp
- Department of Internal and Experimental Vascular Medicine, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| |
Collapse
|
3
|
Hamamah S, Iatcu OC, Covasa M. Dietary Influences on Gut Microbiota and Their Role in Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD). Nutrients 2024; 17:143. [PMID: 39796579 PMCID: PMC11722922 DOI: 10.3390/nu17010143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 12/27/2024] [Accepted: 12/30/2024] [Indexed: 01/13/2025] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a major contributor to liver-related morbidity, cardiovascular disease, and metabolic complications. Lifestyle interventions, including diet and exercise, are first line in treating MASLD. Dietary approaches such as the low-glycemic-index Mediterranean diet, the ketogenic diet, intermittent fasting, and high fiber diets have demonstrated potential in addressing the metabolic dysfunction underlying this condition. The development and progression of MASLD are closely associated with taxonomic shifts in gut microbial communities, a relationship well-documented in the literature. Given the importance of diet as a primary treatment for MASLD, it is important to understand how gut microbiota and their metabolic byproducts mediate favorable outcomes induced by healthy dietary patterns. Conversely, microbiota changes conferred by unhealthy dietary patterns such as the Western diet may induce dysbiosis and influence steatotic liver disease through promoting hepatic inflammation, up-regulating lipogenesis, dysregulating bile acid metabolism, increasing insulin resistance, and causing oxidative damage in hepatocytes. Although emerging evidence has identified links between diet, microbiota, and development of MASLD, significant gaps remain in understanding specific microbial roles, metabolite pathways, host interactions, and causal relationships. Therefore, this review aims to provide mechanistic insights into the role of microbiota-mediated processes through the analysis of both healthy and unhealthy dietary patterns and their contribution to MASLD pathophysiology. By better elucidating the interplay between dietary nutrients, microbiota-mediated processes, and the onset and progression of steatotic liver disease, this work aims to identify new opportunities for targeted dietary interventions to treat MASLD efficiently.
Collapse
Affiliation(s)
- Sevag Hamamah
- Department of Internal Medicine, Scripps Mercy Hospital, San Diego, CA 92103, USA;
| | - Oana C. Iatcu
- Department of Biomedical Sciences, College of Medicine and Biological Science, University of Suceava, 720229 Suceava, Romania;
| | - Mihai Covasa
- Department of Biomedical Sciences, College of Medicine and Biological Science, University of Suceava, 720229 Suceava, Romania;
| |
Collapse
|
4
|
Park JE, Park HY, Kim YS, Park M. The Role of Diet, Additives, and Antibiotics in Metabolic Endotoxemia and Chronic Diseases. Metabolites 2024; 14:704. [PMID: 39728485 DOI: 10.3390/metabo14120704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/06/2024] [Accepted: 12/10/2024] [Indexed: 12/28/2024] Open
Abstract
Background/Objectives: Dietary patterns, including high-fat and high-carbohydrate diets (HFDs and HCDs), as well as non-dietary factors such as food additives and antibiotics, are strongly linked to metabolic endotoxemia, a critical driver of low-grade chronic inflammation. This review explores the mechanisms through which these factors impair intestinal permeability, disrupt gut microbial balance, and facilitate lipopolysaccharide (LPS) translocation into the bloodstream, contributing to metabolic disorders such as obesity, type 2 diabetes mellitus, and inflammatory bowel disease. Methods: The analysis integrates findings from recent studies on the effects of dietary components and gut microbiota interactions on intestinal barrier function and systemic inflammation. Focus is given to experimental designs assessing gut permeability using biochemical and histological methods, alongside microbiota profiling in both human and animal models. Results: HFDs and HCDs were shown to increase intestinal permeability and systemic LPS levels, inducing gut dysbiosis and compromising barrier integrity. The resulting endotoxemia promoted a state of chronic inflammation, disrupting metabolic regulation and contributing to the pathogenesis of various metabolic diseases. Food additives and antibiotics further exacerbated these effects by altering microbial composition and increasing gut permeability. Conclusions: Diet-induced alterations in gut microbiota and barrier dysfunction emerge as key mediators of metabolic endotoxemia and related disorders. Addressing dietary patterns and their impact on gut health is crucial for developing targeted interventions. Further research is warranted to standardize methodologies and elucidate mechanisms for translating these findings into clinical applications.
Collapse
Affiliation(s)
- Ji-Eun Park
- Food Functionality Research Division, Korea Food Research Institute, Jeonju 55365, Republic of Korea
- Department of Food Science and Technology, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Ho-Young Park
- Food Functionality Research Division, Korea Food Research Institute, Jeonju 55365, Republic of Korea
- Department of Food Biotechnology, Korea National University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Young-Soo Kim
- Department of Food Science and Technology, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Miri Park
- Food Functionality Research Division, Korea Food Research Institute, Jeonju 55365, Republic of Korea
| |
Collapse
|
5
|
Demirel MA, Şumlu E, Özercan İH, Şahin K, Tuzcu M, Bay V, Kurşun ÖED, Uludağ MO, Akar F. Impact of high-fructose diet and metformin on histomorphological and molecular parameters of reproductive organs and vaginal microbiota of female rat. Sci Rep 2024; 14:27463. [PMID: 39523383 PMCID: PMC11551161 DOI: 10.1038/s41598-024-76211-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 10/11/2024] [Indexed: 11/16/2024] Open
Abstract
There are limited data on the effects of a high-fructose diet on the female reproductive system. Although metformin has some functional effects on female fertility, its reproductive outcome on high fructose diet-induced metabolic syndrome is unclear. The aim of the present study is to evaluate the impact of a high fructose diet on histomorphological and molecular parameters of the reproductive organs and vaginal microbiota as well as the treatment potential of metformin. Wistar albino rats were used in the study. The metabolic syndrome model was induced by a high-fructose diet in rats for 15 weeks. Metformin was orally administered once a day for the last 6 weeks. The high-fructose diet increased blood glucose, triglycerides, insulin, and ovarian testosterone levels; however, it reduced ovarian aromatase levels and follicle numbers and caused uterine inflammation. The high-fructose diet-induced molecular abnormalities on ovarian tissue were demonstrated by the downregulation of ovarian insulin signaling pathway proteins and dysregulation of ovarian mitogenic and apoptotic pathway proteins. A high-fructose diet caused vaginal dysbiosis, metformin increased probiotic bacteria in the vaginal microbiota. Our results revealed that metformin improves ovarian impairments by modulating hormonal balance, insulin level, mapk, and apoptotic signaling molecules, as well as regulating the vaginal microbiota.
Collapse
Affiliation(s)
- Mürşide Ayşe Demirel
- Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, Laboratory Animals Breeding, and Experimental Researches Center, Gazi University, Etiler, Ankara, 06330, Turkey.
| | - Esra Şumlu
- Department of Medical Pharmacology, Faculty of Medicine, KTO Karatay University, Konya, Turkey
| | - İbrahim Hanifi Özercan
- Department of Pathology, Medicine Faculty, Health Sciences Institution, University of Firat, Elazig, Turkey
| | - Kazım Şahin
- Department of Animal Nutrition, Faculty of Veterinary Medicine, Firat University, Elazig, Turkey
| | - Mehmet Tuzcu
- Department of Biology, Faculty of Science, Firat University, Elazig, Turkey
| | - Veysel Bay
- Department of Animal Science, Faculty of Agriculture, Ege University, 35100, İzmir, Turkey
| | | | - Mecit Orhan Uludağ
- Department of Clinical Pharmacy, Faculty of Pharmacy, Near East University, Nicosia, Turkey
| | - Fatma Akar
- Department of Pharmacology, Faculty of Pharmacy, Gazi University, Ankara, Turkey
| |
Collapse
|
6
|
Albuquerque Pereira MDF, Matias Albuini F, Gouveia Peluzio MDC. Anti-inflammatory pathways of kefir in murine model: a systematic review. Nutr Rev 2024; 82:210-227. [PMID: 37203423 DOI: 10.1093/nutrit/nuad052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023] Open
Abstract
CONTEXT Kefir consumption has been associated with immune response modulation, antioxidant, and anti-inflammatory effects. OBJECTIVE The objective of this systematic review was to investigate the role of kefir against inflammation and the main response mechanisms involved in this process in a murine model. DATA SOURCES The searches were searched in the PubMed, Science Direct, and LILACS databases. Only murine model studies, according to PRISMA guidelines, published in the past 10 years were included. STUDY SELECTION Only articles about original and placebo-controlled experiments in murine models used to investigate the anti-inflammatory mechanisms of kefir were considered. Of the articles found, 349 were excluded according to the following criteria: duplicate articles (n = 99), off-topic title and abstract (n = 157), reviews (n = 47), studies in vitro (n = 29), and studies with humans (n = 17). In total, 23 studies were included in this review. DATA EXTRACTION Two independently working authors assessed the risk of bias and extracted data from the included studies. RESULTS Kefir consumption had positive effects on inflammation modulation. The main mechanisms involved were the reduction of pro-inflammatory and molecular markers; reduction in inflammatory infiltrate in tissues, serum biomarkers, risk factors for chronic diseases, and parasitic infection; composition and metabolic activity change of intestinal microbiota and mycobiota; activation of humoral and cellular immunity; and modulation of oxidative stress. CONCLUSIONS Kefir modulates the immune system in different experimental models, among other secondary outcomes, to improve overall health. The beverage reduces inflammation through the alternation between innate, Th1, and Th2 responses, reducing levels of pro-inflammatory cytokines while increasing those of anti-inflammatory ones. In addition, it also mediates immunomodulatory and protective effects through the numerous molecular biomarkers and organic acids produced and secreted by kefir in the intestinal microbiota. The health-promoting effects attributed to kefir may help in the different treatments of inflammatory, chronic, and infectious diseases in the population.
Collapse
Affiliation(s)
- Mariana de Fátima Albuquerque Pereira
- Food Analysis and Nutritional Biochemistry Laboratories, Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Fernanda Matias Albuini
- Molecular Biotechnology Laboratory. Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Maria do Carmo Gouveia Peluzio
- Food Analysis and Nutritional Biochemistry Laboratories, Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| |
Collapse
|
7
|
Guney C, Bal NB, Akar F. The impact of dietary fructose on gut permeability, microbiota, abdominal adiposity, insulin signaling and reproductive function. Heliyon 2023; 9:e18896. [PMID: 37636431 PMCID: PMC10447940 DOI: 10.1016/j.heliyon.2023.e18896] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 07/24/2023] [Accepted: 08/02/2023] [Indexed: 08/29/2023] Open
Abstract
The excessive intake of fructose in the regular human diet could be related to global increases in metabolic disorders. Sugar-sweetened soft drinks, mostly consumed by children, adolescents, and young adults, are the main source of added fructose. Dietary high-fructose can increase intestinal permeability and circulatory endotoxin by changing the gut barrier function and microbial composition. Excess fructose transports to the liver and then triggers inflammation as well as de novo lipogenesis leading to hepatic steatosis. Fructose also induces fat deposition in adipose tissue by stimulating the expression of lipogenic genes, thus causing abdominal adiposity. Activation of the inflammatory pathway by fructose in target tissues is thought to contribute to the suppression of the insulin signaling pathway producing systemic insulin resistance. Moreover, there is some evidence that high intake of fructose negatively affects both male and female reproductive systems and may lead to infertility. This review addresses dietary high-fructose-induced deteriorations that are obvious, especially in gut permeability, microbiota, abdominal fat accumulation, insulin signaling, and reproductive function. The recognition of the detrimental effects of fructose and the development of relevant new public health policies are necessary in order to prevent diet-related metabolic disorders.
Collapse
Affiliation(s)
| | | | - Fatma Akar
- Department of Pharmacology, Faculty of Pharmacy, Gazi University, Ankara, Turkey
| |
Collapse
|
8
|
Aydin M, Ozturk A, Duran T, Ozmen UO, Sumlu E, Ayan EB, Korucu EN. In vitro antifungal and antibiofilm activities of novel sulfonyl hydrazone derivatives against Candida spp. J Mycol Med 2023; 33:101327. [PMID: 36272382 DOI: 10.1016/j.mycmed.2022.101327] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/26/2022] [Accepted: 08/15/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND The aim of this study was to investigate the antifungal and antibiofilm activity of the new sulfonyl hydrazones compound derived from sulphonamides. METHODS In this study, new sulfonyl hydrazone series were synthesized via a green chemistry method. The structures of the synthesized compounds were characterized by elemental analyses and spectroscopic methods. The antifungal activities of the Anaf compounds against Candida strains under planktonic conditions were tested. The biofilm-forming ability of Candida strains was determined and the inhibitory effects of Anaf compounds on Candida biofilms compared with fluconazole were measured by MTT assay. Expression analysis of biofilm-related genes was investigated with qRT-PCR. The statistical analysis was performed using a one-way ANOVA test. CANDIDA: strains was determined and the inhibitory effects of Anaf compounds on Candida biofilms compared with fluconazole were measured by MTT assay. Expression analysis of biofilm-related genes was investigated with qRT-PCR. The statistical analysis was performed using a one-way ANOVA test. RESULTS A total of 16 (45.7%) out of 35 Candida isolates were determined as strong biofilm producers in this study. C. albicans was the most biofilm producer, followed by C. krusei and C. lusitaniae. The Anaf compounds had a broad spectrum of activity with MIC values ranging from 4 μg/ml to 64 μg/ml. Our data indicated that the Anaf compound had a significant effect on inhibiting biofilm formation in both fluconazole-susceptible and -resistant strains. The expression levels of hypha-specific genes als3, hwp1, ece1 and sap5 were downregulated by Anaf compounds. CONCLUSIONS Our study revealed that the Anaf compounds had antifungal activity and inhibited fungal biofilms, which may be related to the suppression of C. albicans adherence and hyphal formation. These results suggest that Anaf compounds may have therapeutic potential for the treatment and prevention of biofilm-associated Candida infections.
Collapse
Affiliation(s)
- Merve Aydin
- Department of Medical Microbiology, Faculty of Medicine, KTO Karatay University, Konya, Turkey.
| | - Ali Ozturk
- Department of Medical Microbiology, Faculty of Medicine, Niğde Ömer Halisdemir University, Niğde, Turkey
| | - Tugce Duran
- Department of Medical Genetics, Faculty of Medicine, KTO Karatay University, Konya, Turkey
| | | | - Esra Sumlu
- Department of Medical Pharmacology, Faculty of Medicine, KTO Karatay University, Konya, Turkey
| | - Esra Bilen Ayan
- Department of Chemistry, Faculty of Science, Gazi University, Ankara, Turkey
| | - Emine Nedime Korucu
- Department of Molecular Biology and Genetics, Faculty of Science, Necmettin Erbakan University, Konya, Turkey
| |
Collapse
|
9
|
Metagenomic features of Tibetan kefir grains and its metabolomics analysis during fermentation. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
10
|
Cui Y, Ning M, Chen H, Zeng X, Yue Y, Yuan Y, Yue T. Microbial diversity associated with Tibetan kefir grains and its protective effects against ethanol-induced oxidative stress in HepG2 cells. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
11
|
Gutiérrez-Lara EJ, Sánchez-López A, Murbartián J, Acosta-Cota SJ, Centurión D. Effect of chronic administration of 17β-estradiol on the vasopressor responses induced by the sympathetic nervous system in insulin resistance rats. Steroids 2022; 188:109132. [PMID: 36273542 DOI: 10.1016/j.steroids.2022.109132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 09/14/2022] [Accepted: 10/14/2022] [Indexed: 11/05/2022]
Abstract
Several studies have demonstrated that the underlying mechanism of insulin resistance (IR) is linked with developing diseases like diabetes mellitus, hypertension, metabolic syndrome, and polycystic ovary syndrome. In turn, the dysfunction of female gonadal hormones (especially 17β-estradiol) may be related to the development of IR complications since different studies have shown that 17β-estradiol has a cardioprotector and vasorelaxant effect. This study aimed was to determine the effect of the 17β-estradiol administration in insulin-resistant rats and its effects on cardiovascular responses in pithed rats. Thus, the vasopressor responses are induced by sympathetic stimulation or i.v. bolus injections of noradrenaline (α1/2), methoxamine (α1), and UK 14,304 (α2) adrenergic agonist were determined in female pithed rats with fructose-induced insulin resistance or control rats treated with: 1) 17β-estradiol or 2) its vehicle (oil) for 5 weeks. Thus, 17β-estradiol decreased heart rate, prevented the increase of blood pressure induced by ovariectomy, but with the opposite effect on sham-operated rats; and decreased vasopressor responses induced by i.v. bolus injections of noradrenaline on sham-operated (control and fructose group) and ovariectomized (control) rats, and those induced by i.v. bolus injections of methoxamine (α1 adrenergic agonist). Overall, these results suggest 17β-estradiol has a cardioprotective effect, and its effect on vasopressor responses could be mediated mainly by the α1 adrenergic receptor. In contrast, IR with ovariectomy 17β-estradiol decreases or loses its cardioprotector effect, this could suggest a possible link between the adrenergic receptors and the insulin pathway.
Collapse
Affiliation(s)
- Erika J Gutiérrez-Lara
- Departamento de Farmacobiología, Cinvestav Unidad Coapa, Czda. de los Tenorios 235, Col. Granjas-Coapa, Deleg. Tlalpan, C.P. 14330 México City, México
| | - Araceli Sánchez-López
- Departamento de Farmacobiología, Cinvestav Unidad Coapa, Czda. de los Tenorios 235, Col. Granjas-Coapa, Deleg. Tlalpan, C.P. 14330 México City, México
| | - Janet Murbartián
- Departamento de Farmacobiología, Cinvestav Unidad Coapa, Czda. de los Tenorios 235, Col. Granjas-Coapa, Deleg. Tlalpan, C.P. 14330 México City, México
| | - Selene J Acosta-Cota
- Departamento de Ciencias de la Salud, Universidad Autónoma de Occidente, Blv. Lola Beltrán y Blv. Rolando Arjona. S/N, Col. 4 de marzo, C.P. 80020 Culiacán, Sinaloa, México
| | - David Centurión
- Departamento de Farmacobiología, Cinvestav Unidad Coapa, Czda. de los Tenorios 235, Col. Granjas-Coapa, Deleg. Tlalpan, C.P. 14330 México City, México.
| |
Collapse
|
12
|
Microbial Communities in Home-Made and Commercial Kefir and Their Hypoglycemic Properties. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8110590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Kefir is a popular traditional fermented dairy product in many countries. It has a complex and symbiotic culture made up of species of the genera Leuconostoc, Lactococcus, and Acetobacter, as well as Lactobacilluskefiranofaciens and Lentilactobacillus kefiri. Though kefir has been commercialized in some countries, people are still traditionally preparing kefir at the household level. Kefir is known to have many nutritious values, where its consistent microbiota has been identified as the main valuable components of the product. Type 2 diabetes mellitus (T2DM) is a common diet-related disease and has been one of the main concerns in the world’s growing population. Kefir has been shown to have promising activities in T2DM, mostly via hypoglycemic properties. This review aims to explain the microbial composition of commercial and home-made kefir and its possible effects on T2DM. Some studies on animal models and human clinical trials have been reviewed to validate the hypoglycemic properties of kefir. Based on animal and human studies, it has been shown that consumption of kefir reduces blood glucose, improves insulin signaling, controls oxidative stress, and decreases progression of diabetic nephropathy. Moreover, probiotic bacteria such as lactic-acid bacteria and Bifidobacterium spp. and their end-metabolites in turn directly or indirectly help in controlling many gut disorders, which are also the main biomarkers in the T2DM condition and its possible treatment.
Collapse
|
13
|
Zhao H, Tian Y, Zuo Y, Zhang X, Gao Y, Wang P, Sun L, Zhang H, Liang H. Nicotinamide riboside ameliorates high-fructose-induced lipid metabolism disorder in mice via improving FGF21 resistance in the liver and white adipose tissue. Food Funct 2022; 13:12400-12411. [DOI: 10.1039/d2fo01934e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
NR supplementation could ameliorate high-fructose-induced lipid metabolism disorder by improving FGF21 resistance in the liver and WAT, which may be related to the inflammation state mediated by SIRT1/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Hui Zhao
- Department of Nutrition and Food Hygiene, School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China
| | - Yingjie Tian
- Department of Nutrition and Food Hygiene, School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China
| | - Yuwei Zuo
- Department of Nutrition and Food Hygiene, School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China
| | - Xiaoqi Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China
| | - Yijun Gao
- Department of Nutrition and Food Hygiene, School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China
| | - Peng Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China
| | - Lirui Sun
- Department of Nutrition and Food Hygiene, School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China
| | - Huaqi Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China
| | - Hui Liang
- Department of Nutrition and Food Hygiene, School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China
| |
Collapse
|
14
|
Ekici O, Aslan E, Guzel H, Korkmaz OA, Sadi G, Gurol AM, Boyaci MG, Pektas MB. Kefir alters craniomandibular bone development in rats fed excess dose of high fructose corn syrup. J Bone Miner Metab 2022; 40:56-65. [PMID: 34613434 DOI: 10.1007/s00774-021-01273-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 09/16/2021] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Dietary high fructose corn syrup (HFCS) is involved in the pathogenesis of oral diseases as well as metabolic diseases. The aim of this study was to investigate the effects of HFCS-feeding on the craniomandibular bone development at an early age and also the potential of milk kefir for preventive treatment. MATERIALS AND METHODS In this study, Control, Kefir, HFCS, and HFCS plus Kefir groups were formed; kefir was given by gastric gavage, while HFCS (20% beverages) was given in drinking water; for 8 weeks. RESULTS Based on morphological evaluations, immunohistochemical, and gene expression results, it was clearly determined that excess dose of HFCS consumption decreased osteoblastic activity in craniomandibular bones while increasing osteoclastic activity. However, it has been determined that the intake of kefir with the HFCS-feeding greatly suppresses the effects of HFCS on bone tissues. CONCLUSION In conclusion, dietary the excess dose of HFCS at an early age has been observed to pose a risk for cranial and mandible bone development. The healing effects of kefir may be a new approach to the treatment via kefir consumption in young's.
Collapse
Affiliation(s)
- O Ekici
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Afyonkarahisar Health Sciences University, 03200, Afyonkarahisar, Turkey
| | - E Aslan
- Department of Histology and Embryology, Faculty of Medicine, Afyonkarahisar Health Sciences University, 03200, Afyonkarahisar, Turkey
| | - H Guzel
- Department of Anatomy, Faculty of Medicine, Afyonkarahisar Health Sciences University, 03200, Afyonkarahisar, Turkey
| | - O A Korkmaz
- Department of Chemistry, Faculty of Science, Yildiz Technical University, 34220, Istanbul, Turkey
| | - G Sadi
- Department of Biology, K.O. Science Faculty, Karamanoglu Mehmetbey University, 70100, Karaman, Turkey
| | - A M Gurol
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Afyonkarahisar Health Sciences University, 03200, Afyonkarahisar, Turkey
| | - M G Boyaci
- Department of Neurosurgery, Faculty of Medicine, Afyonkarahisar Health Sciences University, 03200, Afyonkarahisar, Turkey
| | - M B Pektas
- Department of Medical Pharmacology, Faculty of Medicine, Afyonkarahisar Health Sciences University, 03200, Afyonkarahisar, Turkey.
| |
Collapse
|
15
|
Du G, Guo Q, Yan X, Chen H, Yuan Y, Yue T. Potential protective mechanism of Tibetan kefir underlying gut-derived liver injury induced by ochratoxin A. Food Funct 2022; 13:11690-11704. [DOI: 10.1039/d2fo02360a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Tibetan kefir against Ochratoxin A-induced liver injury by maintaining the intestinal barrier and modulating the gut microbiota and metabolites.
Collapse
Affiliation(s)
- Gengan Du
- College of Food Science and Engineering, Northwest A & F University, 22. Xi-nong Road, Yangling, Shaanxi, 712100, China
- Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling, 712100, China
| | - Qi Guo
- College of Food Science and Engineering, Northwest A & F University, 22. Xi-nong Road, Yangling, Shaanxi, 712100, China
- Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling, 712100, China
| | - Xiaohai Yan
- College of Food Science and Engineering, Northwest A & F University, 22. Xi-nong Road, Yangling, Shaanxi, 712100, China
- Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling, 712100, China
| | - Hong Chen
- College of Food Science and Engineering, Northwest A & F University, 22. Xi-nong Road, Yangling, Shaanxi, 712100, China
- Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling, 712100, China
| | - Yahong Yuan
- College of Food Science and Engineering, Northwest A & F University, 22. Xi-nong Road, Yangling, Shaanxi, 712100, China
- Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling, 712100, China
- College of Food Science and Technology, Northwest University, Xi'an, 710069, China
| | - Tianli Yue
- College of Food Science and Engineering, Northwest A & F University, 22. Xi-nong Road, Yangling, Shaanxi, 712100, China
- Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling, 712100, China
- College of Food Science and Technology, Northwest University, Xi'an, 710069, China
| |
Collapse
|
16
|
Akar F, Yildirim OG, Yucel Tenekeci G, Tunc AS, Demirel MA, Sadi G. Dietary high-fructose reduces barrier proteins and activates mitogenic signalling in the testis of a rat model: Regulatory effects of kefir supplementation. Andrologia 2021; 54:e14342. [PMID: 34872158 DOI: 10.1111/and.14342] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 11/08/2021] [Accepted: 11/22/2021] [Indexed: 12/23/2022] Open
Abstract
There are limited data on the influence of fructose rich diet on the male reproductive system. Kefir may have health beneficial effects, but its mechanism of action remains mostly unclear. Herein, we investigated the impact of dietary high fructose on tight junction proteins and mitogenic pathways in rat testis as well as their modulation by kefir supplementation. Twenty-two male Wistar rats (4 weeks old) were divided into the following three groups: Control; Fructose; Fructose + Kefir. Fructose was added to drinking water at concentration of 20% and administered to the rats for 15 weeks and kefir was supplemented by gavage once a day during final 6 weeks. Dietary fructose-induced testicular degeneration was associated with the downregulation of the blood-testis barrier proteins, claudin-11 and N-cadherin as well as SIRT1 expression in testicular tissue of rats. However, p38MAPK, p-p38MAPK and p-ERK1/2 levels were increased in testis of fructose-fed rats. Interestingly, JNK1 and p-JNK1 protein levels were decreased following this dietary intervention. Raf1, ERK1/2, and caspase 3 and TUNEL staining of the testis reveal the activation of apoptosis due to fructose intake. Kefir supplementation markedly promoted the expression of claudin-11, SIRT1, JNK1 and p-JNK1 but suppressed testicular mitogenic and apoptotic factors in fructose-fed rats.
Collapse
Affiliation(s)
- Fatma Akar
- Department of Pharmacology, Faculty of Pharmacy, Gazi University, Ankara, Turkey
| | - Onur Gokhan Yildirim
- Department of Pharmacy Services, Vocational School of Health Services, Artvin Coruh University, Artvin, Turkey
| | - Gozde Yucel Tenekeci
- Department of Pathology, Faculty of Veterinary Medicine, Ankara University, Ankara, Turkey
| | - Arda Selin Tunc
- Department of Pathology, Faculty of Veterinary Medicine, Ankara University, Ankara, Turkey
| | - Murside Ayse Demirel
- Laboratory Animals Breeding and Experimental Researches Center, Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, Gazi University, Ankara, Turkey
| | - Gokhan Sadi
- Department of Biology, KO Science Faculty, Karamanoglu Mehmetbey University, Karaman, Turkey
| |
Collapse
|
17
|
Yu S, Li C, Ji G, Zhang L. The Contribution of Dietary Fructose to Non-alcoholic Fatty Liver Disease. Front Pharmacol 2021; 12:783393. [PMID: 34867414 PMCID: PMC8637741 DOI: 10.3389/fphar.2021.783393] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 11/02/2021] [Indexed: 12/26/2022] Open
Abstract
Fructose, especially industrial fructose (sucrose and high fructose corn syrup) is commonly used in all kinds of beverages and processed foods. Liver is the primary organ for fructose metabolism, recent studies suggest that excessive fructose intake is a driving force in non-alcoholic fatty liver disease (NAFLD). Dietary fructose metabolism begins at the intestine, along with its metabolites, may influence gut barrier and microbiota community, and contribute to increased nutrient absorption and lipogenic substrates overflow to the liver. Overwhelming fructose and the gut microbiota-derived fructose metabolites (e.g., acetate, butyric acid, butyrate and propionate) trigger the de novo lipogenesis in the liver, and result in lipid accumulation and hepatic steatosis. Fructose also reprograms the metabolic phenotype of liver cells (hepatocytes, macrophages, NK cells, etc.), and induces the occurrence of inflammation in the liver. Besides, there is endogenous fructose production that expands the fructose pool. Considering the close association of fructose metabolism and NAFLD, the drug development that focuses on blocking the absorption and metabolism of fructose might be promising strategies for NAFLD. Here we provide a systematic discussion of the underlying mechanisms of dietary fructose in contributing to the development and progression of NAFLD, and suggest the possible targets to prevent the pathogenetic process.
Collapse
Affiliation(s)
| | | | - Guang Ji
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Li Zhang
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|