1
|
Li T, Yang C, Zhang L. Novel comprehensive perspective on Amadori compounds: preparation, multiple roles and interaction with other compounds. Crit Rev Food Sci Nutr 2025:1-24. [PMID: 40269616 DOI: 10.1080/10408398.2025.2494059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2025]
Abstract
Amadori compounds are pivotal intermediates in the Maillard reaction. Amadori compounds serve as flavor enhancers, browning precursors and bioactive components, so they are promising versatile food additives. Comprehensive reviews on multiple roles of Amadori compounds are scarce. Furthermore, there is a lack of reviews on green, efficient and commercially prospective preparation techniques of Amadori compounds and their interactions with other components. This paper reviewed preparation, multiple roles and interactions with other components in foods. Spray drying, microwave heating, natural deep eutectic solvents and vacuum dewatering were deemed as green, efficient and commercially prospective preparation techniques for Amadori compounds. Amadori compounds broadened the application field of Maillard reaction-obtained additives compared to final-products, enabling their uses not only in dark-colored foodstuffs but also in light-colored. Peptide-derived Amadori compounds showed greater potency for flavor generation compared to amino acid-derived. Amadori compounds presented eleven physiological activities. Amadori compounds exerted synergistic effect with essential nutrients (lipids, exogenous amino acids and carbohydrates), functional ingredients (polyphenols, carotenoids, glycosides) as well as several drugs. More preparation approaches of Amadori compounds and their synergistic effects with other ingredients await investigation. This review provided comprehensive theoretical guidance for industrial preparation and application of Amadori compounds as versatile additives.
Collapse
Affiliation(s)
- Tingting Li
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Cheng Yang
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Lianfu Zhang
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
2
|
Li T, Yang C, Zhang L. Novel insight into Amadori compounds: Fate of Amadori compounds in food supply chain. Compr Rev Food Sci Food Saf 2025; 24:e70149. [PMID: 40091644 DOI: 10.1111/1541-4337.70149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/20/2025] [Accepted: 02/10/2025] [Indexed: 03/19/2025]
Abstract
Amadori compounds, pivotal intermediates in the Maillard reaction, act as flavor enhancer, browning precursor, and functional component. Amadori compounds consisting of diverse amino and carbonyl groups might show distinct flavor attributes and functional activities. Food production involves many supply chain stages where thermal treatment might produce Amadori compounds, and processing techniques and circumstances might affect the generation and stability of Amadori compounds. Moreover, gastrointestinal digestion might also influence the stability of Amadori compounds. To date, there is a lack of comprehensive review on the impact of various supply chain stages and digestion on Amadori compounds. This paper reviewed all reported Amadori compounds derived from diverse reducing sugars (glucose, xylose, ribose, maltose) and amino-containing compounds (common and specific amino acids, peptides), and compared differences in synthetic efficiency, flavor property, and functional activity among them; aggregated qualitative techniques; encapsulated quantitative techniques including indirect quantification and direct quantification, and intuitively compared strengths and weaknesses of these techniques; and outlined influence of processing, cooking, storage, and digestion on formation and stability of Amadori compounds. Appropriate processing techniques and conditions favored the generation and stability of Amadori compounds. Baking, frying, and roasting greatly facilitated Amadori compounds accumulation compared to steaming and boiling. Prolonged cooking at relatively low temperature favored Amadori compounds accumulation, whereas high-temperature cooking for a short duration resulted in fewer accumulation. Amadori compounds showed greater digestion resistance and could be absorbed by the intestine. This review offers scientific instruction for producing high-quality products with abundant Amadori compounds, or extracting plentiful Amadori compounds from processed foods as versatile food additives.
Collapse
Affiliation(s)
- Tingting Li
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Cheng Yang
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Lianfu Zhang
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
3
|
Yu C, Hu W, Chen L, Ouyang K, Chen H, Lin S, Wang W. Basic Amino Acids as Salt Substitutes in Low-Salt Gel-Based Meat Products: A Comprehensive Review of Mechanisms, Benefits, and Future Perspectives. Foods 2025; 14:637. [PMID: 40002081 PMCID: PMC11854570 DOI: 10.3390/foods14040637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/10/2025] [Accepted: 02/12/2025] [Indexed: 02/27/2025] Open
Abstract
Gel-based meat products have appealing market potential due to their unique texture, elasticity, and tender taste. Sodium chloride (NaCl) is commonly used in these products to enhance flavor, improve texture, ensure food safety, and extend shelf life. However, excessive long-term NaCl intake is connected with health issues such as hypertension and cardiovascular diseases, raising concerns about its impact on human health. As a result, the reduction of NaCl in these products, while maintaining their flavor and texture, has become a key area in the food industry. Salt reduction strategies often compromise product quality, limiting the search for substitutes. Consequently, there is growing interest in developing new salt substitutes. Recently, basic amino acids (BAA) have emerged as a viable alternative to NaCl in low-salt gel-based meat products. Studies have shown that BAAs not only enhance the solubility, gelation, and emulsification properties of salt-soluble proteins but also reduce protein and lipid oxidation in low-salt conditions, improving sensory characteristics and texture. When combined with chloride salts, BAAs can further lower salt content while improving the quality of the products. In addition, adding modern processing techniques (such as ultrasound, pulsed electric fields) has indicated positive effects on the taste and texture of low-salt meat products. Future studies should deploy advanced tools to dissect the micro-/macro-level impacts of BAAs on low-salt gel products. Furthermore, integrating modern food processing and information technologies could lead to the development of personalized, intelligent low-salt meat products that satisfy consumer demands for both health and taste.
Collapse
Affiliation(s)
- Chuanlong Yu
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China; (C.Y.)
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Wenbing Hu
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China; (C.Y.)
| | - Lingli Chen
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China; (C.Y.)
| | - Kehui Ouyang
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Hui Chen
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China; (C.Y.)
| | - Suyun Lin
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China; (C.Y.)
| | - Wenjun Wang
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China; (C.Y.)
| |
Collapse
|
4
|
Hu R, Sun DW, Tian Y, Xu L, Sun L. Instability of natural deep eutectic solvents (NADESs) induced by Amadori rearrangement and its effects on cryopreservation of yeast cells. Food Chem 2024; 461:140917. [PMID: 39226794 DOI: 10.1016/j.foodchem.2024.140917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/07/2024] [Accepted: 08/16/2024] [Indexed: 09/05/2024]
Abstract
Natural deep eutectic solvents (NADESs) showing higher cryoprotective effects are attracting concerns, because during the storage, system browning always occurs in aldose/amino acid-based NADESs, which generated brown substances remarkably weaken the cryoprotective effects. In this study, proline/glucose-based (PG) and proline/sorbitol-based (PS) NADESs were prepared, of which storage stability, browning profile, brown substance, and cryoprotective effects were investigated. Results showed that PG at molar ratios of 1:1, 2:1, and 3:1, as well as PS at 1:1, and 2:1 can form NADESs, among which only the PG-based ones could get browning after storage. The predominant brown substance was identified as 1-deoxy-1-L-proline-d-fructose (C11H19O7N, 278 m/z), which was subsequently verified to show cytotoxicity and decrease Saccharomyces cerevisiae cells viability after cryopreservation, suggesting that the brown substance could take a negative effect on cryopreservation. This study may help to attract more concerns to the storage and cryopreservation stabilities of the NADESs in food-related applications.
Collapse
Affiliation(s)
- Rui Hu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Da-Wen Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Food Refrigeration and Computerized Food Technology (FRCFT), Agriculture and Food Science Centre, University College Dublin, National University of Ireland, Belfield, Dublin 4, Ireland.
| | - You Tian
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Liang Xu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Libin Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| |
Collapse
|
5
|
Hu Y, Badar IH, Liu Y, Zhu Y, Yang L, Kong B, Xu B. Advancements in production, assessment, and food applications of salty and saltiness-enhancing peptides: A review. Food Chem 2024; 453:139664. [PMID: 38761739 DOI: 10.1016/j.foodchem.2024.139664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/01/2024] [Accepted: 05/12/2024] [Indexed: 05/20/2024]
Abstract
Salt is important for food flavor, but excessive sodium intake leads to adverse health consequences. Thus, salty and saltiness-enhancing peptides are developed for sodium-reduction products. This review elucidates saltiness perception process and analyses correlation between the peptide structure and saltiness-enhancing ability. These peptides interact with taste receptors to produce saltiness perception, including ENaC, TRPV1, and TMC4. This review also outlines preparation, isolation, purification, characterization, screening, and assessment techniques of these peptides and discusses their potential applications. These peptides are from various sources and produced through enzymatic hydrolysis, microbial fermentation, or Millard reaction and then separated, purified, identified, and screened. Sensory evaluation, electronic tongue, bioelectronic tongue, and cell and animal models are the primary saltiness assessment approaches. These peptides can be used in sodium-reduction food products to produce "clean label" items, and the peptides with biological activity can also serve as functional ingredients, making them very promising for food industry.
Collapse
Affiliation(s)
- Yingying Hu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, China; State Key Laboratory of Meat Quality Control and Cultured Meat Development, Jiangsu Yurun Meat Industry Group Co., Ltd, Nanjing, Jiangsu 210041, China
| | - Iftikhar Hussain Badar
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Department of Meat Science and Technology, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Yue Liu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Yuan Zhu
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Jiangsu Yurun Meat Industry Group Co., Ltd, Nanjing, Jiangsu 210041, China
| | - Linwei Yang
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Jiangsu Yurun Meat Industry Group Co., Ltd, Nanjing, Jiangsu 210041, China
| | - Baohua Kong
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Baocai Xu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, China.
| |
Collapse
|
6
|
Cao J, Tsao R, Yang C, Zhang L. Aqueous preparation of arginyl-fructosyl-glucose (a maltose-arginine AC) and determination of Amadori compounds (ACs) in red ginseng by ultra-high performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS). Food Res Int 2024; 187:114436. [PMID: 38763683 DOI: 10.1016/j.foodres.2024.114436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/19/2024] [Accepted: 04/27/2024] [Indexed: 05/21/2024]
Abstract
Amadori compounds (ACs) are key Maillard intermediates in various foods after thermal processing, and are also important non-saponin components in red ginseng. Currently, due to the difficulty in obtaining AC standards, the determination of multiple ACs is limited and far from optimal. In this study, an ultra-high performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method was developed and validated. A green synthetic method was developed for arginyl-fructosyl-glucose (AFG), the major AC in red ginseng with potential health benefits. The UPLC-MS/MS method was then applied in identification and quantification of ACs in red ginseng samples, which showed for the first time that 12 other ACs also exist in red ginseng in addition to AFG and arginyl-fructose (total 98.88 % of all ACs). Contents of AFG and arginyl-fructose in whole red ginseng were 36.23 and 10.80 mg/g dry weight, respectively. Raw ginseng can be steamed and then dried whole to obtain whole red ginseng, or sliced before drying to obtain sliced red ginseng. Slicing before drying was found to reduce ACs content. Results of the present study will help to reveal the biological functions of red ginseng and related products associated with ACs and promote the standardization of red ginseng manufacture.
Collapse
Affiliation(s)
- Jialing Cao
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China
| | - Rong Tsao
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, 93 Stone Road West, Guelph, Ontario, N1G 5C9 Canada
| | - Cheng Yang
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China
| | - Lianfu Zhang
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
7
|
Long P, Su S, Han Z, Granato D, Hu W, Ke J, Zhang L. The effects of tea plant age on the color, taste, and chemical characteristics of Yunnan Congou black tea by multi-spectral omics insight. Food Chem X 2024; 21:101190. [PMID: 38357378 PMCID: PMC10864201 DOI: 10.1016/j.fochx.2024.101190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 01/25/2024] [Accepted: 02/02/2024] [Indexed: 02/16/2024] Open
Abstract
The present study comprehensively used integrated multi-spectral omics combined with sensory evaluation analysis to investigate the quality of three types of Yunnan Congou black teas from different tree ages (decades, DB; hundreds, HB; a thousand years, TB). TB infusion presented the highest scores of sweetness and umami, higher brightness, and yellow hue. Eighty-four marker metabolites were identified, including Amadori rearrangement products, catechin oxidation products, flavonoid glycosides, and organic acids, which are simultaneously related to tea infusions' color and taste. Moreover, the content of some characteristic flavonoid glycosides and organic acids was determined. Our finding implied trans-4-O-p-coumaroylquinic acid and quercetin 3-O-rutinoside contributed to bitterness and astringency, while dehydro theanine-glucose Amadori product and xylopyranosyl-glucopyranose resulted in umami and sweetness. These results provided quantitative and qualitative information for deciphering differences among black teas with different tea plant ages, conducing to the further utilization of ancient tea plants in Southwest China.
Collapse
Affiliation(s)
- Piaopiao Long
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Shengxiao Su
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Zisheng Han
- Department of Food Science, Rutgers University, New Brunswick, NJ 08901, USA
| | - Daniel Granato
- Bioactivity and Applications Laboratory, Department of Biological Sciences, University of Limerick, Limerick V94 T9PX, Ireland
| | - Wei Hu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Jiaping Ke
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Liang Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| |
Collapse
|
8
|
Wang Z, Cheng Y, Muhoza B, Sun M, Feng T, Yao L, Liu Q, Song S. Discovery of peptides with saltiness-enhancing effects in enzymatic hydrolyzed Agaricus bisporus protein and evaluation of their salt-reduction property. Food Res Int 2024; 177:113917. [PMID: 38225152 DOI: 10.1016/j.foodres.2023.113917] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 12/14/2023] [Accepted: 12/21/2023] [Indexed: 01/17/2024]
Abstract
This study aimed to screen peptides with saltiness-enhancing effects from enzymatic hydrolyzed Agaricus bisporus protein and quantify their salt-reduction. The saltiness evaluation standard curve was first established to evaluate salinity. The peptide fractions (U-1, U-2, and U-3) were obtained from enzymatic hydrolyzed Agaricus bisporus protein by ultrafiltration. Quantitative calculations showed that the U-2 fraction (200-2000 Da) had the strongest saltiness-enhancing effect, and its perceived saltiness in 50 mmol NaCl solution was 60.24 ± 0.10 mmol/L. The peptide sequences were identified by liquid chromatography/mass spectrometry (LC-MS/MS). Results suggested that the potential peptides with saltiness-enhancing effects were umami peptides. Molecular docking with the umami receptor T1R1/T1R3 revealed that the key amino acid residues were Asp82, Glu392, Glu270, and Asp269. Furthermore, peptide YDPNDPEK (976.4138 Da), DDWDEDAPR(1117.4312 Da), and DVPDGPPPE (1058.4668 Da) were synthesized for salt-reduction quantification. 0.4 % peptide YDPNDPEK in NaCl solution was found to have a salt-reduction of 30 %, which provided the basic theory and data for the salt-reduction of peptide in enzymatic hydrolyzed Agaricus bisporus protein.
Collapse
Affiliation(s)
- Zhangjingyi Wang
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China
| | - Yunpeng Cheng
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China
| | - Bertrand Muhoza
- College of Food Science, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, Heilongjiang, China
| | - Min Sun
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China
| | - Tao Feng
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China
| | - Linyun Yao
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China
| | - Qian Liu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China.
| | - Shiqing Song
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China.
| |
Collapse
|
9
|
Wang H, Yang Y, Chen L, Xu A, Wang Y, Xu P, Liu Z. Identifying the structures and taste characteristics of two novel Maillard reaction products in tea. Food Chem 2024; 431:137125. [PMID: 37586230 DOI: 10.1016/j.foodchem.2023.137125] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 07/25/2023] [Accepted: 08/07/2023] [Indexed: 08/18/2023]
Abstract
Maillard reaction products (MRPs) produced during thermal processing of tea are intimately related to its flavor. Our recent work revealed that both levels of l-theanine and d-galacturonic acid in tea leaves decreased dramatically during drying, whereas the specific MRPs from l-theanine and d-galacturonic acid remain elusive. Here, the MRPs formed from l-theanine and d-galacturonic acid were investigated and their taste characteristics and the involved mechanisms were explored. Two novel MRPs from l-theanine and d-galacturonic acid were identified as 1-(1-carboxy-4-(ethylamino)-4-oxobutyl)-3-hydroxypyridin-1-ium (MRP 1) and 2-(2-formyl-1H-pyrrole-1-yl) theanine (MRP 2). MRP 1 and MRP 2 accumulated in dark tea and black tea and were associated with sour (threshold, 0.25 mg/mL) and astringent tastes and an umami taste (threshold, 0.18 mg/mL), respectively. Molecular docking revealed that the taste characteristics of MRPs may be due to strong binding to umami taste receptor proteins (CASR, T1R1/T1R3) and the sour taste protein OTOP1 via hydrogen bonds and hydrophobic interactions.
Collapse
Affiliation(s)
- Huajie Wang
- Institute of Tea Science, Zhejiang University, Hangzhou 310058, China
| | - Yijun Yang
- Institute of Tea Science, Zhejiang University, Hangzhou 310058, China
| | - Lin Chen
- Institute of Tea Science, Zhejiang University, Hangzhou 310058, China
| | - Anan Xu
- Institute of Tea Science, Zhejiang University, Hangzhou 310058, China
| | - Yuefei Wang
- Institute of Tea Science, Zhejiang University, Hangzhou 310058, China.
| | - Ping Xu
- Institute of Tea Science, Zhejiang University, Hangzhou 310058, China.
| | - Zhonghua Liu
- Institute of Tea Science, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
10
|
Chen YP, Wang M, Fang X, Liya A, Zhang H, Blank I, Zhu H, Liu Y. Odorants Identified in Chinese Dry-Cured Ham Contribute to Salty Taste Enhancement. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:613-624. [PMID: 38156454 DOI: 10.1021/acs.jafc.3c05848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2023]
Abstract
Jinhua dry-cured ham (JDH) is a traditional fermented Chinese meat product. We studied the dynamic sensory and emotional profiles of JDHs obtained by five preparation methods and the corresponding release of sodium ions (Na+), potassium ions (K+), and volatile organic compounds (VOCs) during oral processing. The VOCs with salty taste enhancement abilities were screened based on the correlations of VOCs with salty flavor and concentration of Na and K ions with salty flavor. A trained sensory panel evaluated the saltiness enhancements of selected VOCs by using static and dynamic sensory methods. The results revealed that Na+, K+, and selected VOCs were mainly released during 0-10 s of the chewing process. The release of Na+ and K+ in JDH residue samples exhibited consistently decreasing trends, while in saliva, their concentrations increased. The VOCs showing a high correlation with Na+ and K+ and salty flavor have saltiness enhancement abilities in both NaCl solutions and NaCl + MSG mixtures. Odor-induced saltiness was pronounced at low salt concentrations (0.2% NaCl). The investigation demonstrated 16 VOCs exhibiting saltiness enhancement abilities, including 4 pyrazines, 5 acids, 4 sulfur-containing compounds, and 3 other compounds. The sensory evaluation suggested pyrazines and sulfur-containing compounds as good saltiness enhancers. 2-Furfuryl mercaptan significantly enhanced the salty sensation in the NaCl + MSG solutions when compared with MSG alone (p < 0.05). This research provides evidence that certain odorants identified in JDHs exhibit salty-enhancing properties, indicating their potential for salt reduction at the industrial level.
Collapse
Affiliation(s)
- Yan Ping Chen
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Mengni Wang
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaolei Fang
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China
- College of Food and Health, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - A Liya
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Haihua Zhang
- College of Food and Health, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Imre Blank
- Zhejiang Yiming Food Co., Ltd., Jiuting Center, Huting North Street No. 199, Shanghai 201600, China
| | - Hanyue Zhu
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, Guangdong, China
| | - Yuan Liu
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
11
|
Su G, Yu Z, Wang H, Zhao M, Zhao T, Zhang J. Impact of ternary NADES prepared from proline, glucose and water on the Maillard reaction: Reaction activity, Amadori compound yield, and taste-enhancing ability. Food Chem X 2023; 20:100905. [PMID: 37854794 PMCID: PMC10579958 DOI: 10.1016/j.fochx.2023.100905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/16/2023] [Accepted: 09/26/2023] [Indexed: 10/20/2023] Open
Abstract
This study employed proline, glucose, and water to prepare natural deep eutectic solvents (NADES) through heating and stirring. The Maillard reaction was then performed, producing a high yield of Amadori rearrangement product (ARP) and physicochemical properties of NADES were examined for impacts on the reaction. Water had a dual function by promoting the formation of hydrogen bonding networks within the NADES when present at less than 15%, and also working as a diluting agent that could potentially disturb its structure when exceed 15%. These changes further affected the subsequent Maillard reaction, especially the ARP accumulation (reached the highest when water content was 15%). Correlation analysis shows strong positive viscosity-ARP and negative water activity-ARP correlations within a range. Moreover, the product (rich in ARP) remarkably enhanced umami and saltiness. This finding provides insights into modulating the Maillard reaction by adjusting NADES properties, demonstrating feasibility of this approach for flavor enhancer development.
Collapse
Affiliation(s)
- Guowan Su
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 511458, China
| | - Zixiang Yu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 511458, China
| | - Huayang Wang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 511458, China
| | - Mouming Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 511458, China
| | - Tiantian Zhao
- Sericulture & Agri-food Research Institute Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Jianan Zhang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 511458, China
| |
Collapse
|
12
|
Feng L, Cui H, Chen P, Hayat K, Zhang X, Ho CT. Efficient Formation of N-(1-Deoxy- d-ribulos-1-yl)-Glutathione via Limited Oxidation and Degradation of Glutathione during the Atmospheric-Vacuum Thermal Reaction. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:17874-17885. [PMID: 37939699 DOI: 10.1021/acs.jafc.3c05593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
The efficient preparation of the ribose-glutathione (Rib-GSH) Amadori rearrangement product (RG-ARP) as a potent precursor of meaty flavor was studied through the atmospheric-vacuum thermal reaction. Liquid chromatography-mass spectrometry (LC-MS) analysis revealed that the oxidation and degradation of GSH occurred during the preparation of RG-ARP via the atmospheric thermal reaction, especially at a low molar ratio of Rib to GSH and high reaction temperature. The RG-ARP and the ARPs derived from the products of GSH oxidation and degradation with the participation of Rib were identified by MS/MS as N-(1-deoxy-d-ribulos-1-yl)-glutathione, N-(1-deoxy-d-ribulos-1-yl)-cysteinylglycine, and N-(1-deoxy-d-ribulos-1-yl)-glutathione disulfide. The selective formation of RG-ARP was disrupted due to the multiple consumption pathways of GSH and Rib. The removal of water and the reduction of oxygen content during vacuum dehydration exhibited an obvious inhibitory effect on the oxidation of cysteinyl and the cleavage of glutamyl, limiting the oxidation and degradation of GSH. Meanwhile, the rapid evaporation of water promoted the molecular collision between the reactants, which allowed the glycation reaction of GSH to be advanced and fragmentation of RG-ARP to be inhibited at a mild dehydration temperature. Accordingly, the atmospheric-vacuum thermal reaction was proposed to limit the generation of secondary byproducts and enhance the yield of RG-ARP, enabling the RG-ARP yield to reach 49.23% at 80 °C and a molar ratio of 2:1 (Rib/GSH) for 20 min.
Collapse
Affiliation(s)
- Linhui Feng
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, P. R. China
| | - Heping Cui
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, P. R. China
| | - Pusen Chen
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, P. R. China
| | - Khizar Hayat
- Department of Kinesiology, Nutrition, and Health, Miami University, Oxford, Ohio 45056, United States
| | - Xiaoming Zhang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, P. R. China
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, New Jersey 08901, United States
| |
Collapse
|
13
|
Cao J, Yang C, Zhang J, Zhang L, Tsao R. Amadori compounds: analysis, composition in food and potential health beneficial functions. Crit Rev Food Sci Nutr 2023; 65:406-428. [PMID: 39722481 DOI: 10.1080/10408398.2023.2274949] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Amadori compounds (ACs) are key intermediates of the Maillard reaction, and found in various thermally processed foods. Simultaneous analysis of multiple ACs is challenging due to the complex amino acid and carbohydrate compositions, and the different food matrices. Most studies focus on the effects of ACs on food flavor and related sensory properties, but not their biological functions. However, increasing evidence shows that ACs possess various beneficial effects on human health, thus a comprehensive review on the various biological activities is warranted. In this review, we summarized the composition and content of ACs in different foods, their formation and degradation reactions, and discussed the latest advances in analytical methods of ACs and their biological functions related to human health. Limitations and research gaps were identified and future perspectives on ACs research were proposed. This review points to the needs of systematic and comprehensive in vitro and in vivo studies on human health related biological functions of ACs and their mechanisms of action, particularly the synergistic effects with other food components and drugs, and roles in intestinal health and metabolic syndrome.
Collapse
Affiliation(s)
- Jialing Cao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Cheng Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jian Zhang
- College of Food, Shihezi University, Shihezi, China
| | - Lianfu Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- College of Food, Shihezi University, Shihezi, China
| | - Rong Tsao
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, Canada
| |
Collapse
|
14
|
Zhai Y, Hayat K, Li T, Fu Y, Ho CT. Intrinsic Molecular Mechanisms of Transformation between Isomeric Intermediates Formed at Different Stages of Cysteine-Xylose Maillard Reaction Model through Dehydration. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:16260-16269. [PMID: 37857511 DOI: 10.1021/acs.jafc.3c06506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
2-Threityl-thiazolidine-4-carboxylic acid (TTCA) and Amadori rearrangement product (ARP), the isomeric intermediates derived from the cysteine-xylose (Cys-Xyl) Maillard reaction model, possessed the ability to produce similar flavor profile during the thermal process, but the flavor formation or browning rate of heated TTCA was significantly lower than that of ARP. Macroscopically, the yield of TTCA reached the maximum when the moisture content of the reaction system just dropped to nearly 0% during the thermal reaction-vacuum dehydration process. During the subsequent dynamic intramolecular dehydration process, the reaction remained at an early stage of the Maillard reaction, and TTCA was the main intermediate. Thereinto, the water activity of the samples decreased with the increased dehydration time. From a molecular perspective, the dissipation of free water promoted the conversion of combined water to immobilized water and free water, increasing the intramolecular dehydration. Instantaneous high-temperature dehydration during the spray drying process revealed a higher efficiency than the thermal reaction-vacuum dehydration process, which facilitated the specific conversion of substrates to intermediates (TTCA, ARP). The loss of free water and immobilized water was a key driving force for the direct formation of TTCA/ARP, regulating the formation stages of MRIs. The increase of the inlet air temperature could alter the ratio of TTCA and ARP at the equilibrium state.
Collapse
Affiliation(s)
- Yun Zhai
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, P. R. China
| | - Khizar Hayat
- Department of Kinesiology, Nutrition, and Health, Miami University, Oxford, Ohio 45056, United States
| | - Teng Li
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, P. R. China
| | - Yuying Fu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, P. R. China
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, New Jersey 08901, United States
| |
Collapse
|
15
|
Li K, Wang J, Zhuang Y, Yuan G, Li Y, Zhu X. Glucose-Histidine Heyns compound: Preparation, characterization and fragrance enhancement. Carbohydr Res 2023; 532:108922. [PMID: 37573726 DOI: 10.1016/j.carres.2023.108922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/06/2023] [Accepted: 08/07/2023] [Indexed: 08/15/2023]
Abstract
N-(2-Deoxy-D-glucos-2-yl)-L-histidine (Glu-His), one of Heyns rearrangement products (HRPs), was prepared by condensation, dehydration and rearrangement using l-Histidine and d-Fructose as raw materials with methanol as solvent. The response surface method (RSM) was used to improve yield of product and the optimal reaction condition was as following: the original ratio of Fru:His was 1.2:1 and the temperature and time of reaction was 73.2 °C and 4.7 h, and the yield of final product was 74.10% with the purity of 99.7%. The structure of product was identified by IR, NMR and conformed as C12H19N3O7 (317.1 Da) by high-resolution mass spectrometry (HRMS) and UPLC-MS/MS. The pyrolysis behavior of Glu-His showed that its initial pyrolysis temperature was 145.2 °C and the total weight loss reached 70.61% at 800 °C. The number of pyrolysis products increased with the increase of temperature, and the main pyrolysis products were pyrans, furans, pyrazines, pyrroles, pyridines, indoles and etc. with burnt-sweet, baking, nutty, sweet and floral aroma features. At last, the fragrance enhancement effect of Glu-His in the preparation of reconstructed tobacco stem (RTS) was investigated and the result of sensory evaluation showed that the smoke of RTS cigarettes brought about more sweet and moist, less irritation, better flavor and comfort with the addition of Glu-His (0.25%, w/w).
Collapse
Affiliation(s)
- Kuan Li
- Research Center of Tobacco and Health, University of Science and Technology of China, Hefei, 230052, China
| | - Jinling Wang
- Center of Technology, China Tobacco Jiangsu Industrial Corporation, Nanjing, 210019, China.
| | - Yadong Zhuang
- Center of Technology, China Tobacco Jiangsu Industrial Corporation, Nanjing, 210019, China
| | - Guangxiang Yuan
- Jiangsu Xinyuan Reconstituted Tobacco Co., Ltd., Huaian, 223002, China
| | - Yuxiu Li
- Research Center of Tobacco and Health, University of Science and Technology of China, Hefei, 230052, China
| | - Xiaolan Zhu
- Research Center of Tobacco and Health, University of Science and Technology of China, Hefei, 230052, China.
| |
Collapse
|
16
|
Xia X, Zhai Y, Cui H, Zhang H, Hayat K, Zhang X, Ho CT. Glycine, Diglycine, and Triglycine Exhibit Different Reactivities in the Formation and Degradation of Amadori Compounds. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:14907-14918. [PMID: 36378039 DOI: 10.1021/acs.jafc.2c06639] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
A series of Amadori compounds of glucose were prepared from glycine (G-ARP), diglycine (DiG-ARP), and triglycine (TriG-ARP), and identified by UPLC-MS/MS and NMR. The formation rate of ARPs was TriG-ARP > DiG-ARP > G-ARP, and their activation energies were 63.48 kJ/mol (TriG-ARP), 72.84 kJ/mol (DiG-ARP), and 84.76 kJ/mol (G-ARP), respectively, suggesting that ARP was formed more easily from small peptides than from amino acid. Although 1-DG was formed much more difficultly than 3-DG, the same order of the formation of 1-DG, 3-DG, and browning was DiGly > TriGly > Gly. It was also confirmed that more methylglyoxal and glyoxal would be formed from small peptides than equimolar amino acids. Compared with free amino acid, ARP, deoxyglycosones, and their secondary degradation products were more easily formed from dipeptide and tripeptide, thereby stronger browning occurred and higher reactivity was exhibited in Maillard reaction of di- or tripeptide.
Collapse
Affiliation(s)
- Xue Xia
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122 Jiangsu, P. R. China
| | - Yun Zhai
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122 Jiangsu, P. R. China
| | - Heping Cui
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122 Jiangsu, P. R. China
| | - Han Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122 Jiangsu, P. R. China
| | - Khizar Hayat
- Department of Kinesiology, Nutrition, and Health, Miami University, Oxford, Ohio 45056, United States
| | - Xiaoming Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122 Jiangsu, P. R. China
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, New Jersey 08901, United States
| |
Collapse
|
17
|
Han Z, Zhu M, Wan X, Zhai X, Ho CT, Zhang L. Food polyphenols and Maillard reaction: regulation effect and chemical mechanism. Crit Rev Food Sci Nutr 2022; 64:4904-4920. [PMID: 36382683 DOI: 10.1080/10408398.2022.2146653] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Maillard reaction is a non-enzymatic thermal reaction during food processing and storage. It massively contributes to the flavor, color, health benefits and safety of foods and could be briefly segmented into initial, intermediate and final stages with the development of a cascade of chemical reactions. During thermal reaction of food ingredients, sugar, protein and amino acids are usually the main substrates, and polyphenols co-existed in food could also participate in the Maillard reaction as a modulator. Polyphenols including flavan-3-ols, hydroxycinnamic acids, flavonoids, and tannins have shown various effects throughout the process of Maillard reaction, including conjugating amino acids/sugars, trapping α-dicarbonyls, capturing Amadori rearrangement products (ARPs), as well as decreasing acrylamide and 5-hydroxymethylfurfural (5-HMF) levels. These effects significantly influenced the flavor, taste and color of processed foods, and also decreased the hazard products' level. The chemical mechanism of polyphenols-Maillard products involved the scavenging of radicals, as well as nucleophilic addition and substitution reactions. In the present review, we concluded and discussed the interaction of polyphenols and Maillard reaction, and proposed some perspectives for future studies.
Collapse
Affiliation(s)
- Zisheng Han
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
- Department of Food Science, Rutgers University, New Brunswick, New Jersey, USA
| | - Mengting Zhu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Xiaochun Wan
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Xiaoting Zhai
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, New Jersey, USA
| | - Liang Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| |
Collapse
|
18
|
Le B, Yu B, Amin MS, Liu R, Zhang N, Soladoye OP, Aluko RE, Zhang Y, Fu Y. Salt taste receptors and associated salty/salt taste-enhancing peptides: A comprehensive review of structure and function. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
19
|
Variation of moisture state and taste characteristics during vacuum drying of Maillard reaction intermediates of hydrolyzed soybean protein and characterization of browning precursors via fluorescence spectroscopy. Food Res Int 2022; 162:112086. [DOI: 10.1016/j.foodres.2022.112086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 09/18/2022] [Accepted: 10/23/2022] [Indexed: 11/21/2022]
|
20
|
Frankincense-like Flavor Formation Through the Combined Effect of Moderate Enzymatically Hydrolyzed Milk Fat and Glutamic Acid-galactose Amadori Rearrangement Product During Thermal Processing. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02819-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
21
|
Zhou R, Yang C, Xie T, Zhang J, Wang C, Ma Z, Zhang L. Angiotensin-converting enzyme inhibitory activity of four Amadori compounds (ACs) and mechanism analysis of N-(1-Deoxy-D-fructos-1-yl)-glycine (Fru-Gly). Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
22
|
Cui Y, Zhang H, Zhu J, Liao Z, Wang S, Liu W. Correlations of Salivary and Blood Glucose Levels among Six Saliva Collection Methods. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19074122. [PMID: 35409805 PMCID: PMC8999001 DOI: 10.3390/ijerph19074122] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/27/2022] [Accepted: 03/29/2022] [Indexed: 02/07/2023]
Abstract
Background: Saliva has been studied as a better indicator of disorders and diseases than blood. Specifically, the salivary glucose level is considered to be an indicator of diabetes mellitus (DM). However, saliva collection methods can affect the salivary glucose level, thereby affecting the correlation between salivary glucose and blood glucose. Therefore, this study aims to identify an ideal saliva collection method and to use this method to determine the population and individual correlations between salivary glucose and blood glucose levels in DM patients and healthy controls. Finally, an analysis of the stability of the individual correlations is conducted. Methods: This study included 40 age-matched DM patients and 40 healthy controls. In the fasting state, saliva was collected using six saliva collection methods, venous blood was collected simultaneously from each study participant, and both samples were analyzed at the same time using glucose oxidase peroxidase. A total of 20 DM patients and 20 healthy controls were arbitrarily selected from the above participants for one week of daily testing. The correlations between salivary glucose and blood glucose before and after breakfast were analyzed. Finally, 10 DM patients and 10 healthy controls were arbitrarily selected for one month of daily testing to analyze the stability of individual correlations. Results: Salivary glucose levels were higher in DM patients than healthy controls for the six saliva collection methods. Compared with unstimulated saliva, stimulated saliva had decreased glucose level and increased salivary flow. In addition, unstimulated parotid salivary glucose was most correlated with blood glucose level (R2 = 0.9153), and the ROC curve area was 0.9316, which could accurately distinguish DM patients. Finally, it was found that the correlations between salivary glucose and blood glucose in different DM patients were quite different. The average correlation before breakfast was 0.83, and the average correlation after breakfast was 0.77. The coefficient of variation of the correlation coefficient before breakfast within 1 month was less than 5%. Conclusion: Unstimulated parotid salivary glucose level is the highest and is most correlated with blood glucose level, which can be accurately used to distinguish DM patients. Meanwhile, the correlation between salivary glucose and blood glucose was found to be relatively high and stable before breakfast. In general, the unstimulated parotid salivary glucose before breakfast presents an ideal saliva collecting method with which to replace blood-glucose use to detect DM, which provides a reference for the prediction of DM.
Collapse
Affiliation(s)
- Yangyang Cui
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (Y.C.); (H.Z.); (J.Z.)
- Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
- Biomechanics and Biotechnology Lab, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057, China;
| | - Hankun Zhang
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (Y.C.); (H.Z.); (J.Z.)
- Biomechanics and Biotechnology Lab, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057, China;
| | - Jia Zhu
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (Y.C.); (H.Z.); (J.Z.)
- Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
- Biomechanics and Biotechnology Lab, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057, China;
| | - Zhenhua Liao
- Biomechanics and Biotechnology Lab, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057, China;
| | - Song Wang
- Biomechanics and Biotechnology Lab, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057, China;
- Correspondence: (S.W.); (W.L.); Tel.: +86-0755-26558633 (S.W.); +86-0755-26551376 (W.L.)
| | - Weiqiang Liu
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (Y.C.); (H.Z.); (J.Z.)
- Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
- Biomechanics and Biotechnology Lab, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057, China;
- Correspondence: (S.W.); (W.L.); Tel.: +86-0755-26558633 (S.W.); +86-0755-26551376 (W.L.)
| |
Collapse
|
23
|
Abstract
Food oral processing (FOP) is a fast-emerging research area in the food science discipline. Since its first introduction about a decade ago, a large amount of literature has been published in this area, forming new frontiers and leading to new research opportunities. This review aims to summarize FOP research progress from current perspectives. Food texture, food flavor (aroma and taste), bolus swallowing, and eating behavior are covered in this review. The discussion of each topic is organized into three parts: a short background introduction, reflections on current research findings and achievements, and future directions and implications on food design. Physical, physiological, and psychological principles are the main concerns of discussion for each topic. The last part of the review shares views on the research challenges and outlooks of future FOP research. It is hoped that the review not only helps readers comprehend what has been achieved in the past decade but also, more importantly, identify where the knowledge gaps are and in which direction the FOP research will go.
Collapse
Affiliation(s)
- Yue He
- Laboratory of Food Oral Processing, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, China;
| | - Xinmiao Wang
- Laboratory of Food Oral Processing, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, China;
| | - Jianshe Chen
- Laboratory of Food Oral Processing, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, China;
| |
Collapse
|
24
|
Zhang A, Cui H, Hayat K, Zhang Q, Zhang X, Ho CT. Accelerated Dissipation of Free and Immobilized Water Facilitating the Intramolecular Dehydration of N-Xylosamine and Conversion Improvement of the Amadori Rearrangement Product of Aspartic Acid-Xylose Reaction. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:14662-14670. [PMID: 34807609 DOI: 10.1021/acs.jafc.1c05827] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Compared to the method of aqueous Maillard reaction at atmospheric pressure tandem vacuum concentration, a coupling dehydration method combining spray drying and vacuum drying was used to increase aspartic acid-xylose conversion to the Amadori rearrangement product (ARP). The water activity and moisture states were found as effective indicators to characterize the degree of dehydration of Maillard reaction intermediates and efficient formation of ARP. During the vacuum drying process, the water activity of the product powder decreased significantly. Because the formation of ARP was accompanied by intramolecular dehydration, combining spray drying and vacuum drying increased the proportion of bound water in the vacuum-dried product. Free water was easily dissipated via dehydration, which then converted the immobilized water continuously to free water, and the decreased immobilized water further converted the bound water to immobilized water. The reduction in bound water contributed to the intramolecular dehydration of N-substituted d-xylosamine, which would further be transformed to be the ARP through an intramolecular rearrangement. The yield of ARP was increased from 1.68 to 21.53% after spray drying. The ARP yield was substantially increased up to 77.9% by subsequent vacuum drying.
Collapse
Affiliation(s)
- Ao Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China
| | - Heping Cui
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China
| | - Khizar Hayat
- Department of Kinesiology, Nutrition, and Health, Miami University, Oxford, Ohio 45056, United States
| | - Qiang Zhang
- Anhui Province Key Laboratory of Functional Compound Seasoning, Anhui Qiangwang Flavouring Food Company, Limited, No. 1 Shengli Road, Jieshou, Anhui 236500, China
| | - Xiaoming Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, New Jersey 08901, United States
| |
Collapse
|
25
|
Key Aspects of Amadori Rearrangement Products as Future Food Additives. Molecules 2021; 26:molecules26144314. [PMID: 34299589 PMCID: PMC8303902 DOI: 10.3390/molecules26144314] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/11/2021] [Accepted: 07/15/2021] [Indexed: 11/17/2022] Open
Abstract
Flavor is one of the most important factors in attracting consumers and maximizing food quality, and the Maillard reaction (MR) is highly-involved in flavor formation. However, Maillard reaction products have a big drawback in their relatively low stability in thermal treatment and storage. Amadori rearrangement products (ARPs), MR intermediates, can alternatively act as potential flavor additives for their better stability and fresh flavor formation ability. This review aims to elucidate key aspects of ARPs’ future application as flavorings. The development of current analytical technologies enables the precise characterization of ARPs, while advanced preparation methods such as synthesis, separation and drying processes can increase the yield of ARPs to up to 95%. The stability of ARPs is influenced by their chemical nature, pH value, temperature, water activity and food matrix. ARPs are associated with umami and kokumi taste enhancing effects, and the flavor formation is related to amino acids/peptides of the ARPs. Peptide-ARPs can generate peptide-specific flavors, such as: 1,6-dimethy-2(1H)-pyrazinone, 1,5-dimethy-2(1H)-pyrazinone, and 1,5,6-trimethy-2(1H)-pyrazinone. However, further research on systematic stability and toxicology are needed.
Collapse
|