1
|
Shao X, Wang H, Song X, Xu N, Cai L, Xu X. Elucidating the pattern of flavor evolution during the steaming process of fermented sausages in two dimensions: Strain fermentation and steaming time. Food Chem 2025; 480:143945. [PMID: 40154031 DOI: 10.1016/j.foodchem.2025.143945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 03/02/2025] [Accepted: 03/17/2025] [Indexed: 04/01/2025]
Abstract
This study elucidated the pattern of change in flavor during the steaming of fermented sausages, with a particular focus on the influence of two key factors: Strain fermentation and steaming time. The results indicated that the steaming procedure resulted in a notable loss of water, as well as protein and fat oxidation, in fermented sausages. Additionally, flavor compounds, predominantly aldehydes, esters, and Maillard reaction products, were produced in considerable quantities during the steaming of sausages. Notably, fermented sausages inoculated with LS starter (Lactiplantibacillus plantarum CQ 01107 and Staphylococcus simulans CD 207) exhibited lower levels of oxidation and higher contents of free amino acids and free fatty acids. Furthermore, the textural characteristics of LS sausages during steaming were found to be more favorable, as were the flavor compounds content and sensory scores. For 30-min steaming, LS sausages exhibited lower hardness and chewiness, accompanied by higher levels of esters, ketones and aldehydes, and better sensory scores. These findings demonstrate that starter culture selection (particularly LS strains) and 30-min steaming synergistically optimize flavor profiles, provides a scientific foundation for enhancing the flavor characteristics of fermented sausages throughout their journey from the factory production to the consumer's table.
Collapse
Affiliation(s)
- Xuefei Shao
- State Key Laboratory of Meat Quality Control and Cultured Meat Development; Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control; College of Food Science and Technology; Nanjing Agricultural University, Nanjing 210095, PR China
| | - Huhu Wang
- State Key Laboratory of Meat Quality Control and Cultured Meat Development; Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control; College of Food Science and Technology; Nanjing Agricultural University, Nanjing 210095, PR China
| | - Xiangyu Song
- State Key Laboratory of Meat Quality Control and Cultured Meat Development; Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control; College of Food Science and Technology; Nanjing Agricultural University, Nanjing 210095, PR China
| | - Na Xu
- State Key Laboratory of Meat Quality Control and Cultured Meat Development; Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control; College of Food Science and Technology; Nanjing Agricultural University, Nanjing 210095, PR China
| | - Linlin Cai
- State Key Laboratory of Meat Quality Control and Cultured Meat Development; Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control; College of Food Science and Technology; Nanjing Agricultural University, Nanjing 210095, PR China
| | - Xinglian Xu
- State Key Laboratory of Meat Quality Control and Cultured Meat Development; Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control; College of Food Science and Technology; Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
2
|
Wang D, Xu Z, Wang Y, Li Y, Zheng W, Chai Y, Wei G, Huang A. Identification and characterization of novel antioxidant peptides from Yunnan dry-cured beef: A combined in silico and in vitro study. Food Chem 2025; 477:143485. [PMID: 40010189 DOI: 10.1016/j.foodchem.2025.143485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/30/2025] [Accepted: 02/16/2025] [Indexed: 02/28/2025]
Abstract
Dry-cured meats are a good natural source of bioactive peptides. However, there is limited information on the composition and antioxidant activity of peptides in Yunnan dry-cured beef (YDB). This study aimed to identify novel antioxidant peptides from YDB using peptidomics, in silico analysis, and in vitro experimental validation while predicting their antioxidant mechanism through molecular docking. A total of 541 peptides were identified in YDB, with the predominant sources being creatine kinase (13.5 %), myosin (10.4 %), and actin (7.4 %). The novel antioxidant peptides VGSYEDPYH (VH9) and FGEAAPYLRK (FK10) demonstrated a high safety profile, with a hemolysis rate of less than 5 %. Notably, VH9 exhibited excellent ABTS radical scavenging activity (IC50 = 19.698 μM), DPPH radical scavenging activity (IC50 = 1500.825 μM), and protection against oxidative stress injury in HepG2 cells. Molecular docking studies revealed that hydrogen bonding and hydrophobic interactions were the primary forces driving the binding of VH9 to the active sites of ABTS, DPPH, Keap1, and myeloperoxidase (MPO). VH9 may protect cells from oxidative damage through radical scavenging, inhibition of reactive oxygen species (ROS) generation, and modulation of the Keap1-Nrf2 antioxidant pathway. Peptides derived from YDB exhibited strong antioxidant activity and showed potential for application as natural antioxidants.
Collapse
Affiliation(s)
- Daodian Wang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China; Sericulture and Apiculture Research Institute, Yunnan Academy of Agricultural Sciences, Mengzi 661101, Yunnan, China
| | - Ziqi Xu
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Yuzhu Wang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Yufang Li
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Wentao Zheng
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Yunmei Chai
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Guangqiang Wei
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China.
| | - Aixiang Huang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China.
| |
Collapse
|
3
|
Sun C, Liang Q, Zhao B, Zhang Y, Chen X. Analysis of the antioxidant properties of Lactiplantibacillus plantarum EA3 isolated from fermented yak milk based on whole genome sequencing. Food Res Int 2025; 209:116183. [PMID: 40253123 DOI: 10.1016/j.foodres.2025.116183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 01/25/2025] [Accepted: 03/11/2025] [Indexed: 04/21/2025]
Abstract
Lactiplantibacillus plantarum EA3 was isolated from traditional fermented yak milk in the Gannan Tibetan Autonomous Prefecture of Gansu Province, China. Whole-genome analysis revealed that the EA3 genome is 3.47 Mb in size, consisting of a circular chromosome and three plasmids. The circular chromosome measures 3,318,230 bp in length with a GC content of 44.48 %. Functional annotation identified at least ten regulatory pathways and 33 protein-coding genes associated with oxidative stress, whose abundance correlates with free radical scavenging rates and oxygen tolerance. Additionally, genes encoding ten acid-tolerant proteins, ten bile salt-tolerant proteins, 26 adhesive proteins, and 12 bacteriocin-related proteins were detected. In vitro experiments have confirmed that EA3 can withstand up to 4 mM H2O2. Both the cell suspension and fermentation supernatant of EA3 exhibited significant radical scavenging activity and reducing power, highlighting its robust antioxidant properties. EA3 demonstrated high survival rates under harsh conditions, including pH 2.5 (90.24 %) and 1.2 % bile salt, and displayed antibacterial activity against Salmonella and Staphylococcus aureus. The EA3 genome lacked virulence factors, and its sensitivity to antibiotics, absence of hemolytic activity, and inability to produce biogenic amines confirmed its safety. These findings suggest that Lactiplantibacillus plantarum EA3 possesses exceptional antioxidant properties, making it a promising candidate for functional food production.
Collapse
Affiliation(s)
- Can Sun
- College of Food Science and Engineering, Functional Dairy Products Engineering Laboratory of Gansu Province, Gansu Agricultural University, Lanzhou 730070, China
| | - Qi Liang
- College of Food Science and Engineering, Functional Dairy Products Engineering Laboratory of Gansu Province, Gansu Agricultural University, Lanzhou 730070, China.
| | - Baotang Zhao
- College of Food Science and Engineering, Functional Dairy Products Engineering Laboratory of Gansu Province, Gansu Agricultural University, Lanzhou 730070, China
| | - Yan Zhang
- College of Food Science and Engineering, Functional Dairy Products Engineering Laboratory of Gansu Province, Gansu Agricultural University, Lanzhou 730070, China
| | - Xuhui Chen
- College of Food Science and Engineering, Functional Dairy Products Engineering Laboratory of Gansu Province, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
4
|
Sun X, He Z, Yang L, Li H. Effect of cooking treatment on protein digestibility, peptide profile and potential bioactive peptides of beef tripe during in vitro gastrointestinal digestion. Food Chem 2025; 470:142720. [PMID: 39742595 DOI: 10.1016/j.foodchem.2024.142720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 11/29/2024] [Accepted: 12/29/2024] [Indexed: 01/03/2025]
Abstract
The purpose of this study was to understand the effects of cooking treatment on the protein hydrolysis of beef tripe and the release of potentially bioactive peptides using an in vitro gastrointestinal model. The results showed that digestion promoted the hydrolysis of proteins and release of free amino acids in beef tripe, but cooking treatment significantly reduced them. The sample of the cooked beef tripe after gastrointestinal digestion had the highest antioxidant activity. Peptidomic and in silico analyses of gastrointestinal digesta were performed to identify bioactive antioxidant peptide sequences. A total of 14 peptides were identified, which were confirmed with structural characteristics to exhibit antioxidation effects as well as a range of other biological functions, such as angiotensin I-converting enzyme (ACE) and dipeptidyl peptidase IV (DPP-IV) inhibitory activities. These findings indicate that beef tripe and its digestive products have health-promoting potential, which can be utilized in functional food as ingredients.
Collapse
Affiliation(s)
- Xuelian Sun
- College of Food Science, Southwest University, No.2 Tiansheng Road, Beibei District, Chongqing 400715, China
| | - Zhifei He
- College of Food Science, Southwest University, No.2 Tiansheng Road, Beibei District, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, No.2 Tiansheng Road, Beibei District, Chongqing 400715, China; Chongqing Engineering Research Center of Regional Food, No.2 Tiansheng Road, Beibei District, Chongqing 400715, China
| | - Li Yang
- College of Food Science, Southwest University, No.2 Tiansheng Road, Beibei District, Chongqing 400715, China
| | - Hongjun Li
- College of Food Science, Southwest University, No.2 Tiansheng Road, Beibei District, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, No.2 Tiansheng Road, Beibei District, Chongqing 400715, China; Chongqing Engineering Research Center of Regional Food, No.2 Tiansheng Road, Beibei District, Chongqing 400715, China.
| |
Collapse
|
5
|
Zhao B, Wang Y, Wang S, Mu G, Wu X. Mechanism analysis of the differences in relieving constipation in a Balb/c constipation model mouse fed human milk probiotics or fermented milk. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:2594-2606. [PMID: 39563650 DOI: 10.1002/jsfa.14032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/27/2024] [Accepted: 11/01/2024] [Indexed: 11/21/2024]
Abstract
BACKGROUND Consumers require fermented milk that possesses constipation-relieving functions. To cater to the 'natural and additive-free' consumption habit, this study is dedicated to developing probiotic fermented milk with constipation-relief effects. Previously, we isolated two Lactobacillus strains, Lactobacillus MWLp-12 and Lactobacillus MWLf-4, from breast milk. This study evaluated the efficacy of these strains and their fermented milk in alleviating constipation in a Balb/c mouse model of constipation. The evaluation criteria included fecal water content, time for first black feces expulsion and propulsion rate of the small intestine. The mechanisms of constipation relief were investigated using gastrointestinal regulatory peptides, colonic tissue pathology, short-chain fatty acid levels and gut microbiota analyses. RESULTS Fecal water content, time for first black feces expulsion and small intestine propulsion rate indicated that both MWLp-12 and MWLf-4, as well as their fermented milk, could alleviate constipation in mice. Fermented milk exhibited superior effectiveness for relieving constipation compared to that of the strains alone. The results related to gastrointestinal regulatory peptides and short-chain fatty acids suggest that the mechanisms of constipation relief by the strains and their fermented milk may involve increased levels of 5-hydroxytryptamine and substance P in the mouse serum, higher concentrations of short-chain fatty acids in the intestines and decreased vasoactive intestinal peptide levels in the serum. CONCLUSION MWLp-12, MWLf-4 and fermented milk relieve constipation in mice. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Baoyuan Zhao
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Yajuan Wang
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Shengyuan Wang
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
- Science Center for Future Foods, Jiangnan University, Wuxi, China
| | - Guangqing Mu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Xiaomeng Wu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| |
Collapse
|
6
|
Yang Y, Shi X, Zhang J, Xiao H, Li C. Molecular mechanisms underlying the beneficial effects of fermented yoghurt prepared by nano-exopolysaccharide-producing Lactiplantibacillus plantarum LCC-605 based on untargeted metabolomic analysis. Food Chem 2025; 465:142068. [PMID: 39577262 DOI: 10.1016/j.foodchem.2024.142068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/27/2024] [Accepted: 11/13/2024] [Indexed: 11/24/2024]
Abstract
Following our previous discovery that Lactiplantibacillus plantarum LCC-605 secreted spherical exopolysaccharide nanoparticles (EPS-605 NPs), which may contribute to the quality, function, and stability of the fermented yoghurt. We thus prepared the fermented skim milk with strain LCC-605 (Y-605) and investigated the functions and metabolic changes of Y-605. Y-605 showed excellent antioxidant activities with DPPH, ABTS+, and hydroxyl scavenging ability of 90.6 ± 0.1 %, 96.1 ± 0.2 %, and 99.3 ± 0.4 %, respectively, and cholesterol-lowering ability up to 39.9 %. After storage for 7 days, the bacterial count reached 10.9 log CFU/mL. EPS production significantly improved the water holding capacity (71.7 ± 0.5 %), and the texture of the yoghurt. Untargeted metabolomic analysis further revealed significant metabolomic differences between skim milk and Y-605, validating the beneficial mechanism of Y-605. This study develops a novel probiotic for producing functional yoghurts and provides the basis for understanding the beneficial mechanism of Y-605.
Collapse
Affiliation(s)
- Ying Yang
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Xiaotong Shi
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Junze Zhang
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton, New Brunswick, E3B 5A3, Canada
| | - Chengcheng Li
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; Yunnan Yunke Characteristic Plant Extraction Laboratory Co. Ltd., Kunming 650106, China.
| |
Collapse
|
7
|
Wu D, Li H, Wang X, Chen R, Gong D, Long D, Huang X, Tang Z, Zhang Y. Screening and Whole-Genome Analysis of Probiotic Lactic Acid Bacteria with Potential Antioxidants from Yak Milk and Dairy Products in the Qinghai-Tibet Plateau. Antioxidants (Basel) 2025; 14:173. [PMID: 40002360 PMCID: PMC11851503 DOI: 10.3390/antiox14020173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 01/23/2025] [Accepted: 01/28/2025] [Indexed: 02/27/2025] Open
Abstract
This study aimed to isolate lactic acid bacteria (LAB) with strong antioxidant activity and potential probiotic properties from yak milk and dairy products in the Qinghai-Tibet Plateau. Initial screening of the isolates was performed using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging assay and a hydrogen peroxide tolerance test. Subsequently, the antioxidant capacity of the isolates was assessed through five distinct assays: 2,2'-azino-bis (3-ethylbenzthiazoline)-6-sulfonic acid (ABTS) radical scavenging ability, superoxide anion radical scavenging ability, hydroxyl radical scavenging ability, a DPPH scavenging assay, and a reducing activity assay. The strains with the stronger antioxidant potential were then further evaluated for their probiotic properties. Whole-genome sequencing was conducted on Lactobacillus plantarum QL01. Among 1205 isolates, 9 strains exhibited potential antioxidant capabilities. Following probiotic property evaluation, QL01 was identified as a safe candidate due to its strong growth, strong adhesion ability, and resilience to acidic, bile, and simulated gastrointestinal conditions. Genome analysis revealed that most of QL01's genes were involved in carbohydrate metabolism. Further examination of antibiotic resistance and virulence factors confirmed its safety, meanwhile genes linked to adhesion and stress responses underscored its probiotic potential. In conclusion, QL01, a strong antioxidant strain, was successfully isolated, and its probiotic potential was confirmed through comprehensive in vitro and genomic analyses.
Collapse
Affiliation(s)
- Diyan Wu
- School of Public Health, Lanzhou University, Lanzhou 730000, China; (D.W.); (H.L.); (X.W.); (R.C.); (D.G.); (D.L.); (X.H.)
| | - Haichuan Li
- School of Public Health, Lanzhou University, Lanzhou 730000, China; (D.W.); (H.L.); (X.W.); (R.C.); (D.G.); (D.L.); (X.H.)
| | - Xuan Wang
- School of Public Health, Lanzhou University, Lanzhou 730000, China; (D.W.); (H.L.); (X.W.); (R.C.); (D.G.); (D.L.); (X.H.)
| | - Runtong Chen
- School of Public Health, Lanzhou University, Lanzhou 730000, China; (D.W.); (H.L.); (X.W.); (R.C.); (D.G.); (D.L.); (X.H.)
| | - Di Gong
- School of Public Health, Lanzhou University, Lanzhou 730000, China; (D.W.); (H.L.); (X.W.); (R.C.); (D.G.); (D.L.); (X.H.)
| | - Danfeng Long
- School of Public Health, Lanzhou University, Lanzhou 730000, China; (D.W.); (H.L.); (X.W.); (R.C.); (D.G.); (D.L.); (X.H.)
| | - Xiaodan Huang
- School of Public Health, Lanzhou University, Lanzhou 730000, China; (D.W.); (H.L.); (X.W.); (R.C.); (D.G.); (D.L.); (X.H.)
| | - Zhenchuang Tang
- Institute of Food and Nutrition Development, Ministry of Agriculture and Rural Affairs, Beijing 100000, China
| | - Ying Zhang
- School of Public Health, Lanzhou University, Lanzhou 730000, China; (D.W.); (H.L.); (X.W.); (R.C.); (D.G.); (D.L.); (X.H.)
| |
Collapse
|
8
|
Sheikhi S, Esfandiari Z, Rostamabadi H, Noori SMA, Sabahi S, Nasab MS. Microbial safety and chemical characteristics of sausage coated by chitosan and postbiotics obtained from Lactobacillus bulgaricus during cold storage. Sci Rep 2025; 15:358. [PMID: 39747907 PMCID: PMC11696564 DOI: 10.1038/s41598-024-82810-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 12/09/2024] [Indexed: 01/04/2025] Open
Abstract
This study investigated the antioxidant and antimicrobial properties, as well as the volatile compounds, of Lactobacillus bulgaricus (L. bulgaricus) postbiotics (at concentration of 150 and 300 mg/L) and their combination with chitosan coatings (0.5% and 1%) on sausage quality (with 100 ppm nitrite) during 40 days of cold storage. The results were compared to a control group, as well as to sausages containing commercial formulation (120 ppm) and reduced (100 ppm) levels of nitrite. To further assess the antimicrobial effects, it also inoculated E. coli and Staphylococcus aureus into the sausages in order to examine how the postbiotics and chitosan coatings impacted the growth of these foodborne pathogens during the 40-day cold storage period. The reults indicated that those containing 300 mg/L postbiotic and 1% chitosan generally met the desired condition for pH, moisture, fat, and total volatile base-nitrogen. These samples also showed the strongest inhibition of mesophilic and psychrophilic bacteria, mold and yeast. Notably, no E. coli or S. aureus were detected in any of the samples, indicating that the postbiotic and chitosan combination effectively inhibited the growth of these pathogens in sausages. The findings suggest that using chitosan coatings and L. bulgaricus postbiotic can enhance the quality of sausages, ultimately lowering the risk of contamination by harmful bacteria and improving overall food safety.
Collapse
Affiliation(s)
- Shahab Sheikhi
- Nutrition and Food Security Research Center, Department of Food Science and Technology, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Zahra Esfandiari
- Nutrition and Food Security Research Center, Department of Food Science and Technology, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Hadis Rostamabadi
- Nutrition and Food Security Research Center, Department of Food Science and Technology, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Seyyed Mohammad Ali Noori
- Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Nutrition, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Sahar Sabahi
- Department of Nutrition, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mehdi Shiri Nasab
- Department of Nutrition, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
9
|
Mani-López E, Hernández-Figueroa RH, López-Malo A, Morales-Camacho JI. Viability and functional impact of probiotic and starter cultures in salami-type fermented meat products. Front Chem 2024; 12:1507370. [PMID: 39665001 PMCID: PMC11632533 DOI: 10.3389/fchem.2024.1507370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 11/11/2024] [Indexed: 12/13/2024] Open
Abstract
Salami, a well-known fermented meat product, is made from selected ground meat mixed with curing agents and spices. This work aimed to determine the viability of Lactiplantibacillus plantarum (as a starter), Lactobacillus acidophilus (probiotic microorganism), and their mixture during the fermentation and ripening of a salami-type product, evaluate the microbiological and physicochemical changes and assess the sensory acceptability of the final product. L. acidophilus has not been sufficiently explored as a probiotic in fermented meats, especially in terms of its effects on fermentation and sensory qualities. Salami-type products were formulated and fermented for 48 h at 32°C, and then ripening took place at 8°C for 13 days. pH, titratable acidity, Lactobacillus counts, and contaminating microbiota were analyzed during the process. Sensory evaluation was analyzed in the final products. The salami-type formulation served as an effective medium for growing microorganisms, with the populations of starter and probiotic cultures exceeding 108 CFU/g after fermentation and ripening for 15 days. The pH of the end products was ∼5.1, titratable acidity ∼2.5%, and aw ∼0.83. During fermentation and ripening, a significant reduction in total mesophilic aerobic bacteria (>7 logs), coliforms, and Staphylococcus aureus (>8-fold reductions) were observed. The sensory evaluation results indicate that the product's attributes are not influenced by the type of bacteria used, as no significant difference was found (p > 0.05). The results show that L. acidophilus, Lactiplantibacillus plantarum, or their mixture can be used as a starter culture in fermented meat products. Using L. acidophilus, whether alone or in combination, is a viable option that preserves the characteristics of the fermented product and may enhance the benefits of probiotic consumption.
Collapse
Affiliation(s)
| | | | | | - Jocksan I. Morales-Camacho
- Chemical, Food and Environmental Engineering Department, Universidad de las Américas Puebla, Cholula, Mexico
| |
Collapse
|
10
|
Łepecka A, Szymański P, Okoń A. Indigenous Lactic Acid Bacteria as Antioxidant Agents in the Production of Organic Raw Fermented Sausages. Antioxidants (Basel) 2024; 13:1305. [PMID: 39594447 PMCID: PMC11591360 DOI: 10.3390/antiox13111305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 10/02/2024] [Accepted: 10/25/2024] [Indexed: 11/28/2024] Open
Abstract
The study aimed to assess the impact of lactic acid bacteria (LAB) strains on the antioxidant, physico-chemical properties, and microbiological quality of fermented sausages. Five treatments of raw sausages were prepared: two controls without LAB addition (C, P), and three samples with LAB addition (SCH1, BAL6, KL14). Fatty acid composition, cholesterol content, physico-chemical, microbiological tests, and antioxidant assays, were performed at time 0 and after 1 and 2 months of storage. A significantly higher ability to scavenge free radicals of DPPH (2,2-diphenyl-1-picrylhydrazyl) was found in sausages with all LAB strains. In the case of the ABTS (2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)) test, it was noted that KL14 treatment had higher antioxidant activity. The main fatty acids in sausages were monounsaturated and saturated. A significantly lower cholesterol content was observed in sausages with the addition of LAB. Sausages with LAB strains differed significantly in pH value. Water activity decreased significantly during storage. After 2 months of storage, the sausages with BAL6 and KL14 strains were characterized by significantly lower redox potential and a lower TBARS (thiobarbituric acid reactive substances) index. It was found that P sausages had the darkest color. SCH1, BAL6, and KL14 strains were also capable of producing red color. The total number of microorganisms in the sausages was high, which is mainly due to the high LAB content and yeast and mold counts. No spoilage or pathogenic microflora were detected. Indigenous LAB strains have the potential to improve the quality and safety of fermented meat products.
Collapse
Affiliation(s)
- Anna Łepecka
- Department of Meat and Fat Technology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology—State Research Institute, 02-532 Warsaw, Poland; (P.S.); (A.O.)
| | | | | |
Collapse
|
11
|
Huo Y, Zhang D, Wang X, Xu G, Dai M, Zhang S. Biofunctional attributes and storage study of milk fermented by Enterococcus italicus. Int J Food Microbiol 2024; 423:110844. [PMID: 39068860 DOI: 10.1016/j.ijfoodmicro.2024.110844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 07/17/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
Lactic acid bacteria are probiotics in the intestines and have been widely used as natural antioxidants in the food industry. In this study, Enterococcus italicus FM5 with strong antioxidant ability was isolated from fresh milk. The safety evaluation showed that E. italicus FM5 was sensitive to ampicillin, chloramphenicol, erythromycin, vancomycin, rifampicin, and tetracycline, and was not hemolytic. Meanwhile, the whole genome information and biofunctional attributes of this strain were determined and analyzed. Subsequently, E. italicus FM5 was co-cultured with traditional yogurt starters (Streptococcus thermophilus and Lactobacillus bulgaricus) to make fermented milk. The results showed that the addition of E. italicus FM5 could improve the oxygen free radical scavenging ability of the fermented milk, and the scavenging rates of DPPH, ABTS, OH-, and O2- radicals reaching up to 95.54 %, 88.35 %, 93.65 %, and 60.29 %, respectively. Furthermore, the addition of E. italicus FM5 reduced the curd time and improved the water holding capacity of the fermented milk. Besides, the growth of Lb. bulgaricus was significantly promoted when co-cultured with E. italicus FM5, thus the survival cells were increased compared with the traditional fermentation processes. Therefore, this study emphasized the potential to manufacture fermented milk by the co-cultivation of E. italicus with traditional yogurt starters.
Collapse
Affiliation(s)
- Yingxin Huo
- College of Life Science, Shandong Normal University, Jinan 250358, China
| | - Daolei Zhang
- Department of Bioengineering, Shandong Polytechnic, Jinan 250104, China
| | - Xiaona Wang
- Shandong Freda Biotech Co., Ltd, Jinan 250101, China
| | - Guangyao Xu
- College of Life Science, Shandong Normal University, Jinan 250358, China
| | - Meixue Dai
- College of Life Science, Shandong Normal University, Jinan 250358, China
| | - Susu Zhang
- College of Life Science, Shandong Normal University, Jinan 250358, China.
| |
Collapse
|
12
|
Liu N, Hu Y, Wu M, Qin L, Bao A, Qin W, Miao S. The quality characteristics and microbial communities of three components in traditional split-fermented red sour soup. Food Sci Nutr 2024; 12:7287-7305. [PMID: 39479708 PMCID: PMC11521710 DOI: 10.1002/fsn3.4317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/06/2024] [Accepted: 06/24/2024] [Indexed: 11/02/2024] Open
Abstract
Red sour soup is a Guizhou specialty condiment made by the natural fermentation of tomatoes and chili. In this study, three components (tomato acid, chili acid, and tomato and chili mixed acid) of split-fermented red sour soup were explored to compare the quality characteristics and microbial communities in the middle and late fermentation stages. The titratable acidity of mixed acids was lower than that of tomato acid and chili acid in the middle stage, but it was significantly increased in the late stage. The cell viability of lactic acid bacteria was mostly higher than that of yeasts during the whole fermentation. Also significantly increased in the late stage of fermentation were sensory scores and the signal intensity of sour substances. However, the signal intensity of both bitter and salty substances decreased, and the total amount of free amino acids was reduced. In addition, the antioxidant capacity of the samples and the dominant microorganisms were different between the two fermentation stages, Lactobacillus and Kazachstania were the key common genus of the different components of split-fermented red sour soup. It is anticipated that this study would provide us an insight into the quality characteristics and microbial communities of split-fermented red sour soup.
Collapse
Affiliation(s)
- Na Liu
- School of Liquor and Food EngineeringGuizhou UniversityGuiyangChina
| | - Yue Hu
- School of Liquor and Food EngineeringGuizhou UniversityGuiyangChina
- Chongqing Jiangjin Grain Reserves Co., LtdChongqingChina
| | - Mingxia Wu
- School of Liquor and Food EngineeringGuizhou UniversityGuiyangChina
| | - Likang Qin
- School of Liquor and Food EngineeringGuizhou UniversityGuiyangChina
| | - Aiming Bao
- Guizhou Nanshanpo Food Processing Co., LtdAnshunChina
| | - Weijun Qin
- Guizhou Nanshanpo Food Processing Co., LtdAnshunChina
| | - Song Miao
- Teagasc Food Research Centre, MooreparkFermoy, Co.CorkIreland
| |
Collapse
|
13
|
Li Y, Li S, Zhao X, Shi C, Chai Y, Huang A, Shi Y. Novel insights into whey protein among Yak, Yellow Cattle, and Cattle-Yak milk. Food Chem X 2024; 22:101384. [PMID: 38681228 PMCID: PMC11046070 DOI: 10.1016/j.fochx.2024.101384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 05/01/2024] Open
Abstract
This study identified characteristic whey proteins from Zhongdian Yak (ZY), Diqing Yellow Cattle (DYC), and Cattle Yak (CY), revealing insights into their potential functions and released peptides. A total of 118 whey proteins were quantified in milk obtained from the three breeds of cattle, including seven characteristic proteins (IGL@ protein, 40S ribosomal protein S9, calreticulin, etc.) in CY milk and two characteristic proteins (RNA helicase and uncharacterized protein (A0A3Q1LFQ2)) in ZY milk. These characteristic proteins are involved in the phagosome and Fc gamma R-mediated phagocytosis pathways, exhibiting immunoprotective activities, verified through molecular docking. Furthermore, the molecular docking results showed five whey proteins (IGL@ protein, rho GDP-dissociation inhibitor 1, small monomeric GTPase, action-like protein 3, and adenylyl cyclase-associated protein) interacted with TLR4 through multiple hydrogen and hydrophobic bonds. Therefore, these proteins may exert immunomodulatory functions by inhibiting TLR4. Meanwhile, whey proteins produced bioactive peptides, such as antioxidant peptides and ACE inhibitory peptides after simulated gastrointestinal digestion (SGID). The whey proteins and bioactive peptides from CY exhibited more types and activities than the ZY and DYC whey proteins. This study provides a theoretical basis for promoting formula milk powder production.
Collapse
Affiliation(s)
- Yufang Li
- College of Food Science & Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Shijun Li
- College of Food Science & Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Xingwen Zhao
- College of Food Engineering, Dali Vocational and Technical College of Agriculture and Forestry, Dali 671003, China
| | - Chongying Shi
- College of Food Science & Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Yunmei Chai
- College of Food Science & Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Aixiang Huang
- College of Food Science & Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Yanan Shi
- College of Food Science & Technology, Yunnan Agricultural University, Kunming 650201, China
| |
Collapse
|
14
|
Jin DX, Jia CY, Yang B, Wu YH, Chen L, Liu R, Wu MG, Yu H, Ge QF. The ameliorative mechanism of Lactiplantibacillus plantarum NJAU-01 against D-galactose induced oxidative stress: a hepatic proteomics and gut microbiota analysis. Food Funct 2024; 15:6174-6188. [PMID: 38770619 DOI: 10.1039/d4fo00406j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Probiotic intervention is an effective strategy to alleviate oxidative stress-related diseases. Our previous studies found that Lactiplantibacillus plantarum NJAU-01 (NJAU-01) exhibited antioxidant effects in a D-galactose (D-gal)-induced aging mouse model. However, the underlying mechanism remains to be unveiled. This study was aimed to investigate the ameliorative effect and mechanism of NJAU-01 against oxidative stress induced by D-gal. The results showed that NJAU-01 could reverse the tendency of a slow body weight gain induced by D-gal. NJAU-01 relieved hepatic oxidative stress via increasing the hepatic total antioxidant capacity and antioxidant enzyme activities including superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) and catalase (CAT). Moreover, the malondialdehyde (MDA) level was reversed after NJAU-01 supplementation. The proteomic results showed that there were 201 differentially expressed proteins (DEPs) between NJAU-01 and D-gal groups. NJAU-01 regulated the expressions of glutathione S-transferase Mu 5 (Gstm5), glutathione S-transferase P2 (Gstp2) and NADH dehydrogenase 1α subcomplex subunit 7 (Ndufa7) related to oxidative stress, and autophagy protein 5 (Atg5) and plasma alpha-L-fucosidase (Fuca2) involved in autophagy, etc. 16S rDNA sequencing results showed that NJAU-01 supplementation could regulate the gut microbiota dysbiosis induced by D-gal via increasing the relative abundances of the phylum Firmicutes and the genus Lactobacillus and reducing the relative abundances of the phylum Bacteroidetes and the genera Lachnospiraceae_NK4A136_group as well as Prevotellaceae_UCG-001, etc.. Spearman correlation analysis results showed that the altered gut microbiota composition had a significant correlation with antioxidant enzyme activities and the DEPs related to oxidative stress. Overall, NJAU-01 alleviated hepatic oxidative stress induced by D-gal via manipulating the gut microbiota composition and hepatic protein expression profile.
Collapse
Affiliation(s)
- Du-Xin Jin
- School of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, P. R. China.
| | - Chao-Yang Jia
- School of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, P. R. China.
| | - Bo Yang
- School of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, P. R. China.
| | - Yue-Hao Wu
- School of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, P. R. China.
| | - Lei Chen
- School of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, P. R. China.
| | - Rui Liu
- School of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, P. R. China.
| | - Man-Gang Wu
- School of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, P. R. China.
| | - Hai Yu
- School of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, P. R. China.
| | - Qing-Feng Ge
- School of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, P. R. China.
| |
Collapse
|
15
|
Cheng C, Zhang Y, Zhang L, Guo J, Xu S, Gao P, Fan K, He Y, Gong Y, Zhong G, Su S, Liu Z. Succession of tissue microbial community during oat developmental. Heliyon 2024; 10:e30276. [PMID: 38711667 PMCID: PMC11070799 DOI: 10.1016/j.heliyon.2024.e30276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 04/19/2024] [Accepted: 04/23/2024] [Indexed: 05/08/2024] Open
Abstract
Investigating oat tissue microflora during its different developmental stages is necessary for understanding its growth and anti-disease mechanism. In this study, 16S rDNA and ITS (Internally Transcribed Spacer) high-throughput sequencing technology were used to explore the microflora diversity of oat tissue. Twenty-seven samples of leaves, stems, and roots from three developmental stages, namely the seedling stage (SS), jointing stage (JS), and maturity stage (MS), underwent sequencing analysis. The analysis showed that 6480 operational taxonomic units (OTUs) were identified in the examined samples, of which 1698 were fungal and 4782 were bacterial. Furthermore, 126 OTUs were shared by fungi, mainly Ascomycota, Basidiomycota, and Mucoromycota at the phylum level, and 39 OTUs were shared by bacteria, mainly Actinobacteriota and Proteobacteria at the phylum level. The microbial diversity of oat tissue in the three developmental stages showed differences, and the α-diversity of the bacteria and β-diversity of the bacteria and fungi in the roots were higher than those of the stems and leaves. Among the bacteria species, Thiiopseudomonas, Rikenellaceae RC9 gut group, and Brevibacterium were predominant in the leaves, MND1 was predominant in the roots, and Lactobacillus was predominant in the stems. Moreover, Brevibacterium maintained a stable state at all growth stages. In the fungal species, Phomatospora was dominant in the leaves, Kondoa was dominant in the roots, and Pyrenophora was dominant in the stems. All species with a high abundance were related to the growth process of oats and antagonistic bacteria. Furthermore, connection modules were denser in bacterial than in fungal populations. The samples were treated with superoxide dismutase and peroxidase. There were 42 strains associated with SOD (Superoxide dismutase), 60 strains associated with POD (Peroxidase), and 38 strains in total, which much higher than fungi. The network analysis showed that bacteria might have more dense connection modules than fungi, The number of bacterial connections to enzymes were much higher than that of fungi. Furthermore, these results provide a basis for further mechanistic research.
Collapse
Affiliation(s)
- Chao Cheng
- School of Life Science and Technology, Jining Normal University, Jining, China
- Institute of Biotechnology R&D and Application, Jining Normal University, Jining, China
- Ulanqab Key Laboratory of Biological Economic Function and Stress Resistance, Jining, China
| | - Yahong Zhang
- School of Life Science and Technology, Jining Normal University, Jining, China
- Institute of Biotechnology R&D and Application, Jining Normal University, Jining, China
- Ulanqab Key Laboratory of Biological Economic Function and Stress Resistance, Jining, China
| | | | - Jianjun Guo
- Jinyu Baoling Biological Drugs Co., LTD, Hohhot, China
| | - Songhe Xu
- School of Life Science and Technology, Jining Normal University, Jining, China
- Institute of Biotechnology R&D and Application, Jining Normal University, Jining, China
- Ulanqab Key Laboratory of Biological Economic Function and Stress Resistance, Jining, China
| | - Pengfei Gao
- Vocational and Technical College of Ulanqab, Jining, China
| | - Kongxi Fan
- Inner Mongolia Agricultural University, Hohhot, China
| | - Yiwei He
- School of Life Science and Technology, Jining Normal University, Jining, China
- Institute of Biotechnology R&D and Application, Jining Normal University, Jining, China
- Ulanqab Key Laboratory of Biological Economic Function and Stress Resistance, Jining, China
| | - Yanchun Gong
- Agriculture and Animal Husbandry Technology Promotion Center of Inner Mongolia, Hohhot, China
| | - Gang Zhong
- Agriculture and Animal Husbandry Technology Promotion Center of Inner Mongolia, Hohhot, China
| | - Shaofeng Su
- Inner Mongolia Academy of Agriculture and Husbandry Science, Hohhot, China
- Key Laboratory of Black Soil Protection and Utilization, Ministry of Agriculture and Rural Affairs, Hohhot, China
| | - Zhiguo Liu
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
16
|
Zhang X, Zheng Y, Liu Z, Su M, Wu Z, Zhang H, Zhang C, Xu X. Insights into characteristic metabolites and potential bioactive peptides profiles of fresh cheese fermented with three novel probiotics based metabolomics and peptidomics. Food Chem X 2024; 21:101147. [PMID: 38312486 PMCID: PMC10837474 DOI: 10.1016/j.fochx.2024.101147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/14/2024] [Accepted: 01/16/2024] [Indexed: 02/06/2024] Open
Abstract
The metabolite and peptide profiles of fresh cheese fermented by three novel probiotics, Lacticaseibacillus rhamnosus B6, Limosylactobacillus fermentum B44 and Lacticaseibacillus rhamnosus KF7, were investigated using LC-MS/MS-based metabolomics and peptidomics. The multivariate analysis revealed significant differences in metabolite composition between the probiotic fresh cheese and the control sample. The differential metabolites were primarily lipids and lipid-like molecules and organic oxygen compounds, which were associated with fatty acid and carbohydrate-related pathways. Among three probiotics, L. rhamnosus KF7 showed the highest effectiveness in sucrose decomposition. 147 potential bioactive peptides, mainly derived from casein, were identified in probiotic fresh cheese. Furthermore, 112 bioactive peptides were significantly up-regulated in probiotic fresh cheese. Molecular docking analysis indicated that two short peptides (LVYPFPGPIP and YPQRDMPIQ) in the B44 and KF7 groups exhibited low estimated binding energy values (-9.9 and -6.9 kcal/mol) with ACE. These findings provide a theoretical basis for developing novel probiotic-enriched fresh cheese.
Collapse
Affiliation(s)
- Xin Zhang
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai, China
| | - Yuanrong Zheng
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai, China
| | - Zhenmin Liu
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai, China
| | - Miya Su
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai, China
| | - Zhengjun Wu
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai, China
| | - Huanchang Zhang
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai, China
| | - Chi Zhang
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai, China
| | - Xingmin Xu
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai, China
| |
Collapse
|
17
|
Saud S, Xiaojuan T, Fahad S. The consequences of fermentation metabolism on the qualitative qualities and biological activity of fermented fruit and vegetable juices. Food Chem X 2024; 21:101209. [PMID: 38384684 PMCID: PMC10878862 DOI: 10.1016/j.fochx.2024.101209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/26/2024] [Accepted: 02/05/2024] [Indexed: 02/23/2024] Open
Abstract
Fermentation of fruit and vegetable juices with probiotics is a novel nutritional approach with potential health benefits. Lactic acid fermentation-based biotransformation results in changes in the profile and nature of bioactive compounds and improves the organoleptic properties, shelf life and bioavailability of vitamins and minerals in the fermented juices. This process has been shown to enrich the phenolic profile and bioactivity components of the juices, resulting in a new type of functional food with improved health benefits. Fruits and vegetables are the ideal substrate for microbial growth, and fruit and vegetable juice will produce rich nutrients and a variety of functional activities after fermentation, so that the high-quality utilization of fruits and vegetables is realized, and the future fermented fruit and vegetable juice products have a wide application market. This paper explores the typical fermentation methods for fruit and vegetable juices, investigates the bioactive components, functional activities, and the influence of fermentation on enhancing the quality of fruit and vegetable juices. The insights derived from this study carry significant implications for guiding the development of fermented fruit and vegetable juice industry.
Collapse
Affiliation(s)
- Shah Saud
- College of Life Science, Linyi University, Linyi, Shandong 276000, China
| | - Tang Xiaojuan
- College of Life Science, Linyi University, Linyi, Shandong 276000, China
| | - Shah Fahad
- Department of Agronomy, Abdul Wali Khan University Mardan, Mardan, Pakistan
- Department of Natural Sciences, Lebanese American University, Byblos, Lebanon
| |
Collapse
|
18
|
Wang D, Wei G, Yang Y, Zou Y, Li X, Shi Y, Huang A. Identification and molecular mechanism of novel bifunctional peptides from Duroc × (Landrace × Yorkshire) pig dry-cured ham: A peptidomics and in silico analysis. Food Res Int 2024; 180:114066. [PMID: 38395557 DOI: 10.1016/j.foodres.2024.114066] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/12/2024] [Accepted: 01/25/2024] [Indexed: 02/25/2024]
Abstract
Duroc × (Landrace × Yorkshire) pigs are popular in the Chinese market because of their rapid growth, leanness, and economic value. Despite their widespread use in dry-cured ham processing, there is a lack of research on the bioactive peptides of Duroc × (Landrace × Yorkshire) pig ham (DLYH). This study aimed to investigate the presence of peptides with antioxidant and α-glucosidase inhibitory activities in DLYH using peptidomics and in silico analysis. A total of 453 peptides were identified from DLYH, originating mainly from myosin, actin, and the EF-hand domain-containing protein. Notably, two peptides, YDEAGPSIVH (YH10) and FAGDDAPRAVF (FF11), emerged as novel bioactive peptides with antioxidant and α-glucosidase inhibitory activities. Among these peptides, YH10 exhibited a high DPPH radical scavenging activity (IC50 = 1.93 mM), ABTS radical scavenging activity (IC50 = 0.10 mM), α-glucosidase inhibitory activity (IC50 = 2.13 mM), and good gastrointestinal tolerance. Molecular docking analysis showed that YH10 was bound to the ABTS and DPPH radicals and the active site of α-glucosidase (3A4A) primarily through hydrogen bonding and hydrophobic interactions. Furthermore, molecular dynamics (MD) simulation indicated that the YH10-3A4A complexes maintained stable and compact conformations. In conclusion, our findings indicated that peptide YH10 derived from DLYH possesses bifunctional properties of α-glucosidase inhibition and antioxidant activity, which could be beneficial for maintaining ham quality and promoting human health.
Collapse
Affiliation(s)
- Daodian Wang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Guangqiang Wei
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Yanying Yang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Yanling Zou
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Xiang Li
- Yunnan Dong Heng Economic and Trade Group Co., Ltd., Qujing 655000, Yunnan, China
| | - Yanan Shi
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China.
| | - Aixiang Huang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China.
| |
Collapse
|
19
|
Gupta N, El-Gawaad NSA, Mallasiy LO, Gupta H, Yadav VK, Alghamdi S, Qusty NF. Microbial dysbiosis and the aging process: a review on the potential age-deceleration role of Lactiplantibacillus plantarum. Front Microbiol 2024; 15:1260793. [PMID: 38440135 PMCID: PMC10909992 DOI: 10.3389/fmicb.2024.1260793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 02/01/2024] [Indexed: 03/06/2024] Open
Abstract
Gut microbiota dysbiosis has been a serious risk factor for several gastric and systemic diseases. Recently, gut microbiota's role in aging was discussed. Available preclinical evidence suggests that the probiotic bacteria Lactiplantibacillus plantarums (LP) may influence the aging process via modulation of the gut microbiota. The present review summarized compelling evidence of LP's potential effect on aging hallmarks such as oxidative stress, inflammation, DNA methylation, and mitochondrial dysfunction. LP gavage modulates gut microbiota and improves overall endurance in aging animal models. LP cell constituents exert considerable antioxidant potential which may reduce ROS levels directly. In addition, restored gut microbiota facilitate a healthy intestinal milieu and accelerate multi-channel communication via signaling factors such as SCFA and GABA. Signaling factors further activate specific transcription factor Nrf2 in order to reduce oxidative damage. Nrf2 regulates cellular defense systems involving anti-inflammatory cytokines, MMPs, and protective enzymes against MAPKs. We concluded that LP supplementation may be an effective approach to managing aging and associated health risks.
Collapse
Affiliation(s)
- Nishant Gupta
- Medical Research and Development, River Engineering, Noida, India
| | - N. S. Abd El-Gawaad
- Department of Physics, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| | - L. O. Mallasiy
- Department of Home Economics, Faculty of Science and Arts in Tihama, King Khalid University, Muhayil, Saudi Arabia
| | | | | | - Saad Alghamdi
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, University of Umm Al-Qura University, Makkah, Saudi Arabia
| | - Naeem F. Qusty
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, University of Umm Al-Qura University, Makkah, Saudi Arabia
| |
Collapse
|
20
|
Jeong S, Jung JH, Jung KW, Ryu S, Lim S. From microbes to molecules: a review of microbial-driven antioxidant peptide generation. World J Microbiol Biotechnol 2023; 40:29. [PMID: 38057638 DOI: 10.1007/s11274-023-03826-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 11/01/2023] [Indexed: 12/08/2023]
Abstract
Oxidative stress, arising from excess reactive oxygen species (ROS) or insufficient antioxidant defenses, can damage cellular components, such as lipids, proteins, and nucleic acids, resulting in cellular dysfunction. The relationship between oxidative stress and various health disorders has prompted investigations into potent antioxidants that counteract ROS's detrimental impacts. In this context, antioxidant peptides, composed of two to twenty amino acids, have emerged as a unique group of antioxidants and have found applications in food, nutraceuticals, and pharmaceuticals. Antioxidant peptides are sourced from natural ingredients, mainly proteins derived from foods like milk, eggs, meat, fish, and plants. These peptides can be freed from their precursor proteins through enzymatic hydrolysis, fermentation, or gastrointestinal digestion. Previously published studies focused on the origin and production methods of antioxidant peptides, describing their structure-activity relationship and the mechanisms of food-derived antioxidant peptides. Yet, the role of microorganisms hasn't been sufficiently explored, even though the production of antioxidant peptides frequently employs a variety of microorganisms, such as bacteria, fungi, and yeasts, which are recognized for producing specific proteases. This review aims to provide a comprehensive overview of microorganisms and their proteases participating in enzymatic hydrolysis and microbial fermentation to produce antioxidant peptides. This review also covers endogenous peptides originating from microorganisms. The information obtained from this review might guide the discovery of novel organisms adept at generating antioxidant peptides.
Collapse
Affiliation(s)
- Soyoung Jeong
- Radiation Biotechnology Division, Korea Atomic Energy Research Institute, Jeongeup, 56212, Republic of Korea
- Department of Food and Animal Biotechnology, Seoul National University, Seoul, 08826, Republic of Korea
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jong-Hyun Jung
- Radiation Biotechnology Division, Korea Atomic Energy Research Institute, Jeongeup, 56212, Republic of Korea
| | - Kwang-Woo Jung
- Radiation Biotechnology Division, Korea Atomic Energy Research Institute, Jeongeup, 56212, Republic of Korea
| | - Sangryeol Ryu
- Department of Food and Animal Biotechnology, Seoul National University, Seoul, 08826, Republic of Korea
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sangyong Lim
- Radiation Biotechnology Division, Korea Atomic Energy Research Institute, Jeongeup, 56212, Republic of Korea.
- Department of Radiation Science, University of Science and Technology, Daejeon, 34113, Republic of Korea.
| |
Collapse
|
21
|
Tian H, Ma Z, Yang H, Wang Y, Ren H, Zhao P, Fan W, Tian Y, Wang Y, Wang R. Fermentation of Persimmon Leaves Extract by Lactiplantibacillus plantarum and Saccharomyces cerevisiae. Mol Biotechnol 2023:10.1007/s12033-023-00859-z. [PMID: 37713067 DOI: 10.1007/s12033-023-00859-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 08/14/2023] [Indexed: 09/16/2023]
Abstract
Persimmon leaves usually as agricultural and forestry waste were fermented by Lactiplantibacillus plantarum and Saccharomyces cerevisiae. Growth and metabolic performances of L. plantarum and S. cerevisiae, as well as the effect of fermentation on the antioxidant abilities of the extract was investigated, including the content of flavonoids, 2,2-Diphenyl-1-picrylhydrazyl (DPPH) and hydroxyl radical clearance rates. Growth of L. plantarum was limited, even though the acid production was sustainable, while S. cerevisiae was more suitable to inhabit in the persimmon leaves extract. A symbiotic relationship was observed between the two microbes, reflected in aspects of growth of S. cerevisiae, pH reduction, and ethanol production. The DPPH radical clearance rates of all groups decreased at the early period, and increased later. The co-culture group reached the second highest value of DPPH radical clearance rate only next to the single group of L. plantarum at 9 h. All groups showed an overall downward trend of the hydroxyl radical clearance rates during the 9 h-fermentation. These findings highlight the promising industrial application of fermentation of the plant-based materials with Lactiplantibacillus and Saccharomyces species to improve the biological properties.
Collapse
Affiliation(s)
- Hui Tian
- School of Life Sciences and Engineering, Lanzhou University of Technology, Lanzhou, 730050, Gansu, People's Republic of China
| | - Zhuo Ma
- School of Life Sciences and Engineering, Lanzhou University of Technology, Lanzhou, 730050, Gansu, People's Republic of China
| | - Hui Yang
- School of Life Sciences and Engineering, Lanzhou University of Technology, Lanzhou, 730050, Gansu, People's Republic of China
| | - Yan Wang
- School of Life Sciences and Engineering, Lanzhou University of Technology, Lanzhou, 730050, Gansu, People's Republic of China
| | - Haiwei Ren
- School of Life Sciences and Engineering, Lanzhou University of Technology, Lanzhou, 730050, Gansu, People's Republic of China.
| | - Ping Zhao
- School of Life Sciences and Engineering, Lanzhou University of Technology, Lanzhou, 730050, Gansu, People's Republic of China
| | - Wenguang Fan
- School of Life Sciences and Engineering, Lanzhou University of Technology, Lanzhou, 730050, Gansu, People's Republic of China.
| | - Yaqin Tian
- School of Life Sciences and Engineering, Lanzhou University of Technology, Lanzhou, 730050, Gansu, People's Republic of China
| | - Yonggang Wang
- School of Life Sciences and Engineering, Lanzhou University of Technology, Lanzhou, 730050, Gansu, People's Republic of China
| | - Ruiyun Wang
- Gansu Qimu Dairy Co., Ltd (Jiuquan Iron and Steel Group), Jiayuguan, 735100, Gansu, People's Republic of China
| |
Collapse
|
22
|
Wang T, Wei G, Chen F, Ma Q, Huang A. Integrated metabolomics and peptidomics to delineate characteristic metabolites in milk fermented with novel Lactiplantibacillus plantarum L3. Food Chem X 2023; 18:100732. [PMID: 37397209 PMCID: PMC10314206 DOI: 10.1016/j.fochx.2023.100732] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/25/2023] [Accepted: 05/28/2023] [Indexed: 07/04/2023] Open
Abstract
A novel wild-type Lactiplantibacillus plantarum (L. plantarum) L3 with good fermentation characteristics and protein degradation capacity was isolated from raw milk samples. In this study, the metabolites in milk fermented with L. plantarum L3 were investigated by metabolomic and peptidomics analyses. The metabolomics results revealed that the metabolites in milk fermented with L. plantarum L3 were Thr-Pro, Val-Lys, l-creatine, pyridoxine, and muramic acid, which improved the taste and nutritional qualities of the milk. Moreover, the water-soluble peptides derived from L3 fermented milk exhibited high antioxidant properties and angiotensin I-converting enzyme inhibitory (ACEI) activities. Additionally, 152 peptides were found using liquid chromatography-mass spectrometry (LC-MS/MS). Furthermore, endogenous enzymes secreted by L. plantarum L3 cleaved β- and α-casein to release six ACEI peptides (ACEIPs), nineteen antioxidant peptides (AOPs), and five antimicrobial peptides (AMPS). Overall, these findings could be valuable in improving the quality of fermented milk.
Collapse
Affiliation(s)
- Teng Wang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Guangqiang Wei
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Faqiang Chen
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Qingwen Ma
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
- Yunnan Normal University, Kunming 650092, Yunnan, China
| | - Aixiang Huang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| |
Collapse
|
23
|
Rezgui R, Walia R, Sharma J, Sidhu D, Alshagadali K, Ray Chaudhuri S, Saeed A, Dey P. Chemically Defined Lactobacillus plantarum Cell-Free Metabolites Demonstrate Cytoprotection in HepG2 Cells through Nrf2-Dependent Mechanism. Antioxidants (Basel) 2023; 12:930. [PMID: 37107305 PMCID: PMC10136174 DOI: 10.3390/antiox12040930] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/06/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Centering around the concept that metabolites from the gut commensals can exert metabolic health benefits along the gut-liver axis, we tested whether the cell-free global metabolome of probiotic bacteria can exert hepatoprotective benefits against H2O2-induced oxidative stress. Cell-free global metabolites of Lactobacillus plantarum (LPM) were isolated and untargeted metabolomics was performed. The free radical scavenging potentials of LPM were measured. The cytoprotective effects of LPM were tested on HepG2 cells. A total of 66 diverse metabolites were identified in LPM, among which saturated fatty acids, amino acids and dicarboxylic acids were highly enriched. LPM attenuated cell damage, lipid peroxidation and the levels of intracellular cytoprotective enzymes in H2O2-treated cells. LPM also attenuated H2O2-induced increased expressions of TNF-α and IL-6. However, the cytoprotective effects of LPM were diminished in cells that were pretreated with a pharmacological inhibitor of Nrf2. Our data collectively indicate that LPM can significantly attenuate oxidative damage to HepG2 cells. However, the cytoprotective effects of LPM likely depend on an Nrf2-dependent mechanism.
Collapse
Affiliation(s)
- Raja Rezgui
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Hail, Hail 55473, Saudi Arabia
- Medical and Diagnostic Research Centre, University of Hail, Hail 55473, Saudi Arabia
| | - Ruhi Walia
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala 147004, Punjab, India
| | - Jyoti Sharma
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala 147004, Punjab, India
| | - Dwinder Sidhu
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala 147004, Punjab, India
| | - Khalid Alshagadali
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Hail, Hail 55473, Saudi Arabia
- Medical and Diagnostic Research Centre, University of Hail, Hail 55473, Saudi Arabia
| | - Saumya Ray Chaudhuri
- Council of Scientific and Industrial Research (CSIR), Institute of Microbial Technology, Chandigarh 160036, India
| | - Amir Saeed
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Hail, Hail 55473, Saudi Arabia
- Medical and Diagnostic Research Centre, University of Hail, Hail 55473, Saudi Arabia
- Department of Medical Microbiology, Faculty of Medical Laboratory Sciences, University of Medical Sciences & Technology, Khartoum 12810, Sudan
| | - Priyankar Dey
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala 147004, Punjab, India
| |
Collapse
|
24
|
An J, Zhang Y, Zhao Z, Huan R, Yi H, Wang H, Luan C, Feng S, Huang H, Li S, Wang D, Zhai Z, Hao Y. Molecular Organization and Functional Analysis of a Novel Plasmid-Borne cps Gene Cluster from Lactiplantibacillus plantarum YC41. Microbiol Spectr 2023; 11:e0415022. [PMID: 36877018 PMCID: PMC10100969 DOI: 10.1128/spectrum.04150-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 02/03/2023] [Indexed: 03/07/2023] Open
Abstract
Capsular polysaccharide (CPS) can tightly attach to bacterial surfaces and plays a critical role in protecting microorganisms from environmental stresses. However, the molecular and functional properties of some plasmid-borne cps gene clusters are poorly understood. In this study, comparative genomics of the draft genomes of 21 Lactiplantibacillus plantarum strains revealed that the specific gene cluster for CPS biosynthesis was observed only in the 8 strains with a ropy phenotype. Furthermore, the complete genomes showed that the specific gene cluster cpsYC41 was located on the novel plasmid pYC41 in L. plantarum YC41. In silico analysis confirmed that the cpsYC41 gene cluster contained the dTDP-rhamnose precursor biosynthesis operon, the repeating-unit biosynthesis operon, and the wzx gene. The insertional inactivation of the rmlA and cpsC genes abolished the ropy phenotype and reduced the CPS yields by 93.79% and 96.62%, respectively, in L. plantarum YC41 mutants. These results revealed that the cpsYC41 gene cluster was responsible for CPS biosynthesis. Moreover, the survival rates of the YC41-rmlA- and YC41-cpsC- mutants under acid, NaCl, and H2O2 stresses were decreased by 56.47 to 93.67% compared to that of the control strain. Furthermore, the specific cps gene cluster was also confirmed to play a vital role in CPS biosynthesis in L. plantarum MC2, PG1, and YD2. These findings enhance our understanding of the genetic organization and gene functions of plasmid-borne cps gene clusters in L. plantarum. IMPORTANCE Capsular polysaccharide is well known to protect bacteria against various environmental stresses. The gene cluster for CPS biosynthesis is typically organized in the chromosome in bacteria. It is worth noting that complete genome sequencing showed that a novel plasmid pYC41-borne cpsYC41 gene cluster was identified in L. plantarum YC41. The cpsYC41 gene cluster included the dTDP-rhamnose precursor biosynthesis operon, the repeating-unit biosynthesis operon, and the wzx gene, which was verified by the significantly decreased CPS yield and the absent ropy phenotype in the corresponding mutants. The cpsYC41 gene cluster plays an important role in bacterial survival under environmental stress, and the mutants had decreased fitness under stress conditions. The vital role of this specific cps gene cluster in CPS biosynthesis was also confirmed in other CPS-producing L. plantarum strains. These results advanced a better understanding of the molecular mechanisms of plasmid-borne cps gene clusters and the protective functionality of CPS.
Collapse
Affiliation(s)
- Jieran An
- Key Laboratory of Functional Dairy, Co-constructed by the Ministry of Education and Beijing Municipality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Yuchen Zhang
- Key Laboratory of Functional Dairy, Co-constructed by the Ministry of Education and Beijing Municipality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Zhaoer Zhao
- Key Laboratory of Functional Dairy, Co-constructed by the Ministry of Education and Beijing Municipality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Ran Huan
- Key Laboratory of Functional Dairy, Co-constructed by the Ministry of Education and Beijing Municipality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Huaxi Yi
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Hui Wang
- Key Laboratory of Functional Dairy, Co-constructed by the Ministry of Education and Beijing Municipality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Chunguang Luan
- China National Research Institute of Food and Fermentation Industries, Beijing, China
| | | | | | - Shanwen Li
- Qinghai Huzhu Barley Wine Co. Ltd., Haining, China
| | - Deliang Wang
- China National Research Institute of Food and Fermentation Industries, Beijing, China
| | - Zhengyuan Zhai
- Key Laboratory of Functional Dairy, Co-constructed by the Ministry of Education and Beijing Municipality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Yanling Hao
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China
| |
Collapse
|
25
|
Sun F, Wang H, Liu Q, Xia X, Chen Q, Kong B. Proteolysis and quality characteristics of Harbin dry sausages caused by the addition of Staphylococcus xylosus protease. Food Chem 2023; 404:134692. [DOI: 10.1016/j.foodchem.2022.134692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 10/15/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022]
|
26
|
Zhang Y, Lu Y, Chen F. Relationship between physicochemical properties and microbial structural distribution of Chinese-style and Salami fermented sausages. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
27
|
Bioactive peptides derived from fermented foods: Preparation and biological activities. J Funct Foods 2023. [DOI: 10.1016/j.jff.2023.105422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
|
28
|
Hu P, Ali U, Aziz T, Wang L, Zhao J, Nabi G, Sameeh MY, Yu Y, Zhu Y. Investigating the effect on biogenic amines, nitrite, and N-nitrosamine degradation in cultured sausage ripening through inoculation of Staphylococcus xylosus and lactic acid bacteria. Front Microbiol 2023; 14:1156413. [PMID: 36970674 PMCID: PMC10033708 DOI: 10.3389/fmicb.2023.1156413] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 02/20/2023] [Indexed: 03/29/2023] Open
Abstract
Introduction Microbial inoculants can reinvent the value and edible security of cultured sausages. Various studies have demonstrated that starter cultures made up of Lactic acid bacteria (LAB) and Staphylococcus xylosus (known as L-S) isolated from traditional fermented foods were used in fermented sausage manufacturing. Methods This study evaluated the impact of the mixed inoculation cultures on limiting biogenic amines, nitrite depletion, N-nitrosamine reduction, and quality metrics. Inoculation of sausages with the commercial starter culture (SBM-52) was evaluated for comparison. Results and discussion Results showed that the L-S strains could rapidly decrease the water activity (Aw) and pH of fermented sausages. The ability of the L-S strains to delay lipid oxidation was equivalent to the SBM-52 strains. The non-protein nitrogen (NPN) contents of L-S-inoculated sausages (0.31%) were higher than that of SBM-52-inoculated sausages (0.28%). After the ripening process, the nitrite residues in the L-S sausages were 1.47 mg/kg lower than in the SBM-52 sausages. Compared to the SBM-52 sausages, there was a 4.88 mg/kg reduction in the biogenic amines' concentrations in L-S sausage, especially for histamine and phenylethylamine concentrations. The N-nitrosamine accumulations of the L-S sausages (3.40 ug/kg) were lower than that of the SBM-52 sausages (3.70 ug/kg), and the NDPhA accumulations of the L-S sausages were 0.64 ug/kg lower than that of the SBM-52 sausages. Due to their significant contributions to nitrite depletion, biogenic amine reduction, and N-nitrosamine depletion in fermented sausages, the L-S strains have the potential to serve as an initial inoculant in the process of manufacturing fermented sausages.
Collapse
Affiliation(s)
- Panpan Hu
- Department of Life Science, Lyuliang University, Lishi, Shanxi, China
| | - Urooj Ali
- Department of Biotechnology, Quaid e Azam University, Islamabad, Pakistan
| | - Tariq Aziz
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Li Wang
- Department of Life Science, Lyuliang University, Lishi, Shanxi, China
| | - Jianying Zhao
- Department of Life Science, Lyuliang University, Lishi, Shanxi, China
| | - Ghulam Nabi
- Institute of Nature Conservation, Polish Academy of Sciences, Krakow, Poland
| | - Manal Y. Sameeh
- Department of Chemistry, Faculty of Applied Sciences, Al-Leith University College, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Yanqin Yu
- Department of Life Science, Lyuliang University, Lishi, Shanxi, China
- *Correspondence: Yanqin Yu, ; Yingchun Zhu,
| | - Yingchun Zhu
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi, China
- *Correspondence: Yanqin Yu, ; Yingchun Zhu,
| |
Collapse
|
29
|
Li S, Tang S, Mo R, Li J, Chen L. Effects of NaCl curing and subsequent fermentation with Lactobacillus sakei or Lactobacillus plantarum on protein hydrolysis and oxidation in yak jerky. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2022.114298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
30
|
Yang L, Yan X, Liu T, Kang L, Sun Y, Gao X, Zhao X, Duan Y. Effects of cranberry powder on the diversity of microbial communities and quality characteristics of fermented sausage. Front Nutr 2023; 10:1123627. [PMID: 37113289 PMCID: PMC10126671 DOI: 10.3389/fnut.2023.1123627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 03/16/2023] [Indexed: 04/29/2023] Open
Abstract
Fermented sausage is popular with many consumers because of its distinctive flavor, but the safety of it has attracted widespread attention. At present, nitrite is widely used in fermented meat products because of its ideal color and bacteriostatic effect, but nitrite can be transformed into nitrosamines, which cause strong carcinogenic effects. Therefore, it is urgent to actively explore safe and efficient nitrite substitutes. In this study, cranberry powder was selected as a natural substitute for nitrite during the production of fermented sausage due to its unique antioxidant and bacteriostatic properties. The results showed that adding an appropriate amount of cranberry powder (5 g/kg) promoted a better color of the fermented sausage and promoted the accumulation of aromatic compounds. Furthermore, Pediococcus and Staphylococcus became the dominant species, accounting for more than 90% in all samples. According to the Pearson correlation analysis, Staphylococcus and Pediococcus had positive effects on the quality characteristics of fermented sausage products. This study provided the latest information on the application of cranberry powder as a natural substitute for nitrite in the process of manufacturing fermented sausage, and it also introduced an advanced solution to improve the quality characteristics and safety of fermented sausage products during processing.
Collapse
Affiliation(s)
- Le Yang
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, China
- Integrative Research Base of Beef and Lamb Processing Technology, Hohhot, China
| | - Xinlei Yan
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, China
| | - Ting Liu
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, China
- Integrative Research Base of Beef and Lamb Processing Technology, Hohhot, China
| | - Letian Kang
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, China
- Integrative Research Base of Beef and Lamb Processing Technology, Hohhot, China
| | - Yufei Sun
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, China
| | - Xingyu Gao
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, China
- Integrative Research Base of Beef and Lamb Processing Technology, Hohhot, China
| | - Xin Zhao
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, China
- Integrative Research Base of Beef and Lamb Processing Technology, Hohhot, China
| | - Yan Duan
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, China
- Integrative Research Base of Beef and Lamb Processing Technology, Hohhot, China
- *Correspondence: Yan Duan,
| |
Collapse
|
31
|
Bioaccessibility and Microencapsulation of Lactobacillus sp. to Enhance Nham Protein Hydrolysates in Thai Fermented Sausage. Foods 2022; 11:foods11233846. [PMID: 36496654 PMCID: PMC9736178 DOI: 10.3390/foods11233846] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 10/31/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
The development of functional food products is increasingly gaining lots of interest and popularity among stakeholders. The aim of this study was to evaluate the bioaccessibility of three Lactobacillus sp. starter cultures, including Lacticaseibacillus casei KKU-KK1, Lactiplantibacillus pentosus KKU-KK2, and Lactobacillus acidophilus KKU-KK3, in order to enhance the performance of the probiotic potential of Nham protein hydrolysates in Thai fermented sausage using microencapsulation technology. Probiotic microcapsules were created from a novel wall material made up of a combination of glutinous rice flour and inulin through a freeze-drying process. Accordingly, the results of three formulations of Nham probiotic and spontaneous fermentation (control) characterized by their physicochemical and microbiological characteristics displayed a correlation between an increase in the amount of total acidity, the population of lactic acid bacteria, and the generated TCA-soluble peptides, while the pH and total soluble protein gradually decreased under proteolysis during the fermentation time. The fractionation of Nham protein hydrolysates (NPHs) was prepared using a microwave extraction process: NPH-nham1, NPH-nham2, and NPH-nham3 (10 mg/mL with fermentation time 114 h), exhibited the highest DPPH radical-scavenging activity and FRAP-reducing power capacity as well, compared to NPH-nhamcontrol at p < 0.05. Moreover, those NPHs peptides showed dose-dependent inhibiting of selected pathogenic bacteria (E. coli TISTR 073, S. aureus TISTR 029, and Ent. aerogenes TISTR 1540). Anti-microbial properties of NPHs peptides against gram-negative bacteria were higher than against gram-positive bacteria. In conclusion, the bioaccessibility of NPHs peptides was significantly enhanced by micro-encapsulation and showed a potential bioactive characteristic for developing into a probiotic agent.
Collapse
|
32
|
Mu Y, Zhang C, Li T, Jin FJ, Sung YJ, Oh HM, Lee HG, Jin L. Development and Applications of CRISPR/Cas9-Based Genome Editing in Lactobacillus. Int J Mol Sci 2022; 23:12852. [PMID: 36361647 PMCID: PMC9656040 DOI: 10.3390/ijms232112852] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/19/2022] [Accepted: 10/21/2022] [Indexed: 09/25/2023] Open
Abstract
Lactobacillus, a genus of lactic acid bacteria, plays a crucial function in food production preservation, and probiotics. It is particularly important to develop new Lactobacillus strains with superior performance by gene editing. Currently, the identification of its functional genes and the mining of excellent functional genes mainly rely on the traditional gene homologous recombination technology. CRISPR/Cas9-based genome editing is a rapidly developing technology in recent years. It has been widely applied in mammalian cells, plants, yeast, and other eukaryotes, but less in prokaryotes, especially Lactobacillus. Compared with the traditional strain improvement methods, CRISPR/Cas9-based genome editing can greatly improve the accuracy of Lactobacillus target sites and achieve traceless genome modification. The strains obtained by this technology may even be more efficient than the traditional random mutation methods. This review examines the application and current issues of CRISPR/Cas9-based genome editing in Lactobacillus, as well as the development trend of CRISPR/Cas9-based genome editing in Lactobacillus. In addition, the fundamental mechanisms of CRISPR/Cas9-based genome editing are also presented and summarized.
Collapse
Affiliation(s)
- Yulin Mu
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Chengxiao Zhang
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Taihua Li
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Feng-Jie Jin
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Yun-Ju Sung
- BioNanotechnology Research Centre, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon 34141, Korea
| | - Hee-Mock Oh
- Cell Factory Research Centre, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon 34141, Korea
| | - Hyung-Gwan Lee
- Cell Factory Research Centre, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon 34141, Korea
| | - Long Jin
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
33
|
Screening of a Novel Lactiplantibacillus plantarum MMB-05 and Lacticaseibacillus casei Fermented Sandwich Seaweed Scraps: Chemical Composition, In Vitro Antioxidant, and Volatile Compounds Analysis by GC-IMS. Foods 2022; 11:foods11182875. [PMID: 36141001 PMCID: PMC9498330 DOI: 10.3390/foods11182875] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/10/2022] [Accepted: 09/13/2022] [Indexed: 12/01/2022] Open
Abstract
Lactic acid fermentation is a promising method for developing sandwich seaweed scraps. The objectives of this study were to investigate the effect of fermentation with Lactiplantibacillus plantarum MMB-05, Lactiplantibacillus casei FJAT-7928, mixed bacteria (1:1, v/v) and control on the physicochemical indexes, in vitro antioxidant activity, and volatile compounds of Porphyra yezoensis sauce. Sensory evaluation was also performed. The results indicated that all lactic acid bacteria strains grew well in P. yezoensis sauce after 72 h of fermentation, with the viable cell counts of L. plantarum MMB-05 exceeding 10.0 log CFU/mL, the total phenolic content increasing by 16.54%, and the lactic acid content increasing from 0 to 44.38 ± 0.11 mg/mL. Moreover, the metabolism of these strains significantly increased the content of umami, sweet and sour free amino acids in P. yezoensis sauce. The total antioxidant capacity of L. plantarum MMB-05, L. casei FJAT-7928, mix and control groups increased by 594.59%, 386.49%, 410.27%, and 287.62%, respectively. Gas chromatography-ion mobility spectrometry (GC-IMS) analysis suggested that aldehydes and ketones accounted for the largest proportion, and the relative contents of acids and alcohols in P. yezoensis sauce increased significantly after lactic acid bacteria fermentation. In addition, the analysis of dynamic principal component analysis (PCA) and fingerprinting showed that the volatile components of the four treatment methods could be significantly distinguished. Overall, the L. plantarum MMB-05 could be recommended as an appropriate starter for fermentation of sandwich seaweed scraps, which provides a fundamental knowledge for the utilization of sandwiched seaweed scraps.
Collapse
|
34
|
Peptidomics insights into the interplay between the pre-digestion effect of mixed starters and the digestive pattern of sausage proteins. Food Res Int 2022; 162:111963. [DOI: 10.1016/j.foodres.2022.111963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 09/14/2022] [Accepted: 09/18/2022] [Indexed: 11/20/2022]
|
35
|
The Mechanisms of the Potential Probiotic Lactiplantibacillus plantarum against Cardiovascular Disease and the Recent Developments in its Fermented Foods. Foods 2022; 11:foods11172549. [PMID: 36076735 PMCID: PMC9455256 DOI: 10.3390/foods11172549] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/12/2022] [Accepted: 08/18/2022] [Indexed: 11/17/2022] Open
Abstract
Cardiovascular disease (CVD) has become the leading cause of death worldwide. Many recent studies have pointed out that Lactiplantibacillus plantarum (Lb. plantarum) has great potential in reducing the risk of CVD. Lb. plantarum is a kind of lactic acid bacteria (LAB) widely distributed in fermented food and the human intestinal tract, some strains of which have important effects on human health and the potential to be developed into probiotics. In this review, we summarize the mechanism of potential probiotic strains of Lb. plantarum against CVD. It could regulate the body’s metabolism at the molecular, cellular, and population levels, thereby lowering blood glucose and blood lipids, regulating blood pressure, and ultimately reducing the incidence of CVD. Furthermore, since Lb. plantarum is widely utilized in food industry, we highlight some of the most important new developments in fermented food for combating CVD; providing an insight into these fermented foods can assist scientists in improving the quality of these foods as well as alleviating patients’ CVD symptoms. We hope that in the future functional foods fermented by Lb. plantarum can be developed and incorporated into the daily diet to assist medication in alleviating CVD to some extent, and maintaining good health.
Collapse
|
36
|
The Changes Occurring in Proteins during Processing and Storage of Fermented Meat Products and Their Regulation by Lactic Acid Bacteria. Foods 2022; 11:foods11162427. [PMID: 36010427 PMCID: PMC9407609 DOI: 10.3390/foods11162427] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/08/2022] [Accepted: 08/11/2022] [Indexed: 11/16/2022] Open
Abstract
Protein, which is the main component of meat, is degraded and oxidized during meat fermentation. During fermentation, macromolecular proteins are degraded into small peptides and free amino acids, and oxidation leads to amino acid side chain modification, molecular crosslinking polymerization, and peptide chain cleavage. At different metabolic levels, these reactions may affect the protein structure and the color, tenderness, flavor, and edible value of fermented meat products. Lactic acid bacteria are currently a research hotspot for application in the fermented meat industry. Its growth metabolism and derivative metabolites formed during the fermentation of meat products regulate protein degradation and oxidation to a certain extent and improve product quality. Therefore, this paper mainly reviews the changes occurring in proteins in fermented meat products and their effects on the quality of the products. Referring to studies on the effects of lactic acid bacteria on protein degradation and oxidation from all over the world, this review aims to provide a relevant reference for improving the quality of fermented meat products.
Collapse
|
37
|
Insights into in vitro digestion properties and peptide profiling of Chinese rubing PDO cheese prepared using different acidification technology. Food Res Int 2022; 158:111564. [DOI: 10.1016/j.foodres.2022.111564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/16/2022] [Accepted: 06/21/2022] [Indexed: 11/20/2022]
|
38
|
Wang H, Xu J, Liu Q, Xia X, Sun F, Kong B. Effect of the protease from Staphylococcus carnosus on the proteolysis, quality characteristics, and flavor development of Harbin dry sausage. Meat Sci 2022; 189:108827. [PMID: 35429823 DOI: 10.1016/j.meatsci.2022.108827] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 04/07/2022] [Accepted: 04/08/2022] [Indexed: 01/20/2023]
Abstract
The effect of the addition of different levels of S. carnosus protease (0, 0.15, 0.30, 0.45 and 0.60 g/kg raw meat) on the proteolysis, quality characteristics, and flavor development of Harbin dry sausage was investigated. The results showed that the S. carnosus protease addition to Harbin dry sausage effectively promoted the degradation of meat proteins into peptides and free amino acids, thus resulting in tenderization and inhibiting fat oxidation. Moreover, the S. carnosus protease addition could promote the development of key flavor compounds such as some ketones, acids and esters. Sausage with S. carnosus protease levels of 0.45 g/kg exhibited the most attractive sensory attributes. Molecular docking showed that the S. carnosus protease can interact with myosin heavy chains. In summary, the S. carnosus protease addition can improve quality characteristics and flavor profile of Harbin dry sausage.
Collapse
Affiliation(s)
- Hui Wang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Jianhang Xu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Qian Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Xiufang Xia
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Fangda Sun
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Baohua Kong
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| |
Collapse
|
39
|
Tian Y, Wang Y, Zhang N, Xiao M, Zhang J, Xing X, Zhang Y, Fan Y, Li X, Nan B, Wang Y, Liu J. Antioxidant Mechanism of Lactiplantibacillus plantarum KM1 Under H2O2 Stress by Proteomics Analysis. Front Microbiol 2022; 13:897387. [PMID: 35832808 PMCID: PMC9271951 DOI: 10.3389/fmicb.2022.897387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 05/26/2022] [Indexed: 11/13/2022] Open
Abstract
Lactiplantibacillus plantarum KM1 was screened from natural fermented products, which had probiotic properties and antioxidant function. The survival rate of L. plantarum KM1 was 78.26% at 5 mM H2O2. In this study, the antioxidant mechanism of L. plantarum KM1 was deeply analyzed by using the proteomics method. The results demonstrated that a total of 112 differentially expressed proteins (DEPs) were screened, of which, 31 DEPs were upregulated and 81 were downregulated. The Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis indicated that DEPs participated in various metabolic pathways such as pyruvate metabolism, carbon metabolism, trichloroacetic acid cycle, amino acid metabolism, and microbial metabolism in diverse environments. These metabolic pathways were related to oxidative stress caused by H2O2 in L. plantarum KM1. Therefore, the antioxidant mechanism of L. plantarum KM1 under H2O2 stress provided a theoretical basis for its use as a potential natural antioxidant.
Collapse
Affiliation(s)
- Yuan Tian
- College of Food Science, Jilin Agricultural University, Changchun, China
- Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, China
| | - Yu Wang
- College of Food Science, Jilin Agricultural University, Changchun, China
- Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, China
| | - Nan Zhang
- College of Food Science, Jilin Agricultural University, Changchun, China
- Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, China
| | - Minmin Xiao
- College of Food Science, Jilin Agricultural University, Changchun, China
- Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, China
| | - Jing Zhang
- College of Food Science, Jilin Agricultural University, Changchun, China
- Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, China
| | - Xinyue Xing
- College of Food Science, Jilin Agricultural University, Changchun, China
- Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, China
| | - Yue Zhang
- College of Food Science, Jilin Agricultural University, Changchun, China
- Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, China
| | - Yuling Fan
- College of Food Science, Jilin Agricultural University, Changchun, China
- Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, China
| | - Xia Li
- College of Food Science, Jilin Agricultural University, Changchun, China
- Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, China
- Xia Li
| | - Bo Nan
- College of Food Science, Jilin Agricultural University, Changchun, China
- Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, China
| | - Yuhua Wang
- College of Food Science, Jilin Agricultural University, Changchun, China
- Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, China
- National Processing Laboratory for Soybean Industry and Technology, Changchun, China
- National Engineering Laboratory for Wheat and Corn Deep Processing, Changchun, China
- *Correspondence: Yuhua Wang
| | - Jingsheng Liu
- College of Food Science, Jilin Agricultural University, Changchun, China
- Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, China
- National Engineering Laboratory for Wheat and Corn Deep Processing, Changchun, China
- Jingsheng Liu
| |
Collapse
|
40
|
Lv J, Lin X, Wang W, Xu W, Li C, Ji C, Liang H, Li S, Zhang S, Zhu B. Effects of papain,
Lactiplantibacillus plantarum
1‐24‐LJ and their combinations on bacterial community changes and flavour improvement in
Suanzhayu
, a Chinese traditional fish. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jing Lv
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, School of Food Science and Technology Dalian Polytechnic University Dalian 116034 China
- College of Food and Bioengineering Zhengzhou University of Light Industry Zhengzhou 450001 China
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control Zhengzhou 450001 China
- Collaborative Innovation Center of Food Production and Safety Zhengzhou 450001 China
| | - Xinping Lin
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, School of Food Science and Technology Dalian Polytechnic University Dalian 116034 China
| | - Wenqing Wang
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, School of Food Science and Technology Dalian Polytechnic University Dalian 116034 China
| | - Wenhuan Xu
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, School of Food Science and Technology Dalian Polytechnic University Dalian 116034 China
| | - Caichan Li
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, School of Food Science and Technology Dalian Polytechnic University Dalian 116034 China
| | - Chaofan Ji
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, School of Food Science and Technology Dalian Polytechnic University Dalian 116034 China
| | - Huipeng Liang
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, School of Food Science and Technology Dalian Polytechnic University Dalian 116034 China
| | - Shengjie Li
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, School of Food Science and Technology Dalian Polytechnic University Dalian 116034 China
| | - Sufang Zhang
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, School of Food Science and Technology Dalian Polytechnic University Dalian 116034 China
| | - Beiwei Zhu
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, School of Food Science and Technology Dalian Polytechnic University Dalian 116034 China
| |
Collapse
|
41
|
NAUREEN ZAKIRA, BONETTI GABRIELE, MEDORI MARIACHIARA, AQUILANTI BARBARA, VELLUTI VALERIA, MATERA GIUSEPPINA, IACONELLI AMERIGO, BERTELLI MATTEO. Foods of the Mediterranean diet: lacto-fermented food, the food pyramid and food combinations. JOURNAL OF PREVENTIVE MEDICINE AND HYGIENE 2022; 63:E28-E35. [PMID: 36479486 PMCID: PMC9710393 DOI: 10.15167/2421-4248/jpmh2022.63.2s3.2744] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The Mediterranean diet proved to be one of the healthiest diets in the word. It has several beneficial effects and it prevents many non-communicable diseases, such as cancer, cardiovascular diseases, and obesity. Before being a culinary regime, the Mediterranean diet is characterized by specific cultural heritages and traditions, also influencing the lifestyle of the populations. The Mediterranean diet follows the so-called food pyramid, comprising several food combinations. Indeed, it is mainly composed by vegetables, fish and dairy products, while red meat and sweets are poorly consumed. Processed foods are mainly avoided, apart from lacto-fermented ones, the first processed foods consumed by humans. Food fermentation by microorganisms not only improves the functionality of bioactive metabolites, but also increases the shelf life and organoleptic properties of the food. Lactic acid bacteria play a vital role in transforming the food constituents, thereby enhancing their nutritional and functional properties. In addition, these foods introduce beneficial bacteria into gut microbiota, thus maintaining a healthy gut microbiome and corresponding gut-brain axis, thus providing an overall improvement in health and a reduced risk of non-communicable diseases and metabolic disorders. This review will focus on the Mediterranean diet, on its characterising food pyramid and food combinations, and on lacto-fermented foods, one of the components of the Mediterranean diet with the most beneficial effects.
Collapse
Affiliation(s)
| | | | | | - BARBARA AQUILANTI
- UOSD Medicina Bariatrica, Fondazione Policlinico Agostino Gemelli IRCCS, Rome, Italy
| | - VALERIA VELLUTI
- UOSD Medicina Bariatrica, Fondazione Policlinico Agostino Gemelli IRCCS, Rome, Italy
| | - GIUSEPPINA MATERA
- UOSD Medicina Bariatrica, Fondazione Policlinico Agostino Gemelli IRCCS, Rome, Italy
| | - AMERIGO IACONELLI
- UOSD Medicina Bariatrica, Fondazione Policlinico Agostino Gemelli IRCCS, Rome, Italy
| | - MATTEO BERTELLI
- MAGI EUREGIO, Bolzano, Italy
- MAGI’S LAB, Rovereto (TN), Italy
- MAGISNAT, Peachtree Corners (GA), USA
| |
Collapse
|
42
|
Unraveling the difference in flavor characteristics of dry sausages inoculated with different autochthonous lactic acid bacteria. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101778] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
43
|
Liu Y, Yang Y, Li B, Lan Q, Zhao X, Wang Y, Pei H, Huang X, Deng L, Li J, Li Q, Chen S, He L, Liu A, Ao X, Liu S, Zou L, Yang Y. Effects of lipids with different oxidation levels on protein degradation and biogenic amines formation in Sichuan-style sausages. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113344] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
44
|
Effects of Pleurotus ostreatus on Physicochemical Properties and Residual Nitrite of the Pork Sausage. COATINGS 2022. [DOI: 10.3390/coatings12040484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In this work, a novel sausage incorporated with the Pleurotus ostreatus (PO) puree was successfully developed to reduce the residual nitrite and lipid oxidation during refrigerated storage (4 ± 1 °C) for 20 days. Five recipes with the supplement proportion of 0 wt.%, 10 wt.%, 20 wt.%, 30 wt.%, and 40 wt.% PO were produced and their physicochemical properties, nitrite residue, and sensory characteristics were measured. The results show that the content of moisture and all the essential amino acids (especially lysine and leucine) and the non-essential amino acids (especially aspartic and glutamic), lightness, springiness, and water holding capacity of the sausages were increased. However, the content of protein, fat, ash, pH, redness, hardness, gumminess, and chewiness of the sausages was decreased. For the sensory evaluation, the sausage with 20 wt.% PO had better sensory performance including flavor, aroma, and acceptability compared with other experimental groups and the control group. Moreover, the sausages with PO reduced the residual nitrite and inhibited lipid oxidation during storage. All of these results indicate that adding PO puree into pork sausage is a realizable and effective way to obtain nutritional and healthy pork sausages.
Collapse
|
45
|
Effect of collagen casing on the quality characteristics of fermented sausage. PLoS One 2022; 17:e0263389. [PMID: 35113961 PMCID: PMC8812867 DOI: 10.1371/journal.pone.0263389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 01/18/2022] [Indexed: 11/29/2022] Open
Abstract
Objective Fermented sausage is popular all over the world for its rich nutrition and unique flavor. Sausage casing is one of the key factors affecting the quality of fermented sausage. However, there is little information involved in this field. Methods In this study, collagen casings were used as a wrapping material, and natural casings (pig casings) were used as a control. The effects of the two types of casings on biogenic amine content and other quality characteristics of fermented sausage were analyzed with increasing the storage time. Results The results showed that with storage time increasing, the hardness and gumminess of fermented sausage in collagen casing (CC) group were higher than those in pig casing (PC) group (P<0.05), while the elasticity in CC group was lower than that in PC group (P<0.05). In the processing and storage period, there was no significant difference in the type and content of flavor substances between the two groups. More importantly, the contents of tryptamine, putrescine, cadaverine, histamine, tyramine and phenyethylamine in fermented sausage of CC group were lower than those in PC group (P<0.05). Conclusion In conclusion, this study revealed that CC could improve the quality characteristics of fermented sausage and reduce the content of biogenic amines in fermented sausage, which provides a theoretical basis for the choice of casings in industrial production in the future.
Collapse
|
46
|
Nasri R, Abdelhedi O, Nasri M, Jridi M. Fermented protein hydrolysates: biological activities and applications. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2021.11.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
47
|
Shao Y, Kang Q, Zhu J, Zhao C, Hao L, Huang J, Lu J, Jia S, Yi J. Antioxidant properties and digestion behaviors of polysaccharides from Chinese yam fermented by Saccharomyces boulardii. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112752] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
48
|
Munekata PES, Pateiro M, Tomasevic I, Domínguez R, da Silva Barretto AC, Santos EM, Lorenzo JM. Functional fermented meat products with probiotics-A review. J Appl Microbiol 2021; 133:91-103. [PMID: 34689391 DOI: 10.1111/jam.15337] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/24/2021] [Accepted: 10/16/2021] [Indexed: 01/03/2023]
Abstract
Fermentation has been an important strategy in the preservation of foods. The use of starter cultures with probiotic activity has gained the attention of researchers to produce functional fermented meat products. This review aims to overview the main strengths, weakness, opportunities and threats of fermented meat products with probiotics. Fermented meat products can be considered as a relevant matrix for the delivery of probiotics with potential health benefits. Moreover, fermented meat products produced by traditional methods are sources of probiotics that can be explored in the production of functional meat products. However, some barriers are limit the progression with these products: the complex selection process to obtain new and tailored probiotic strains, the current perception of healthiness associated with meat and meat products, and the limited application of probiotic to fermented sausages. Promising opportunities to improve the value of functional fermented meat products have been developed by exploring new meat products as functional fermented foods, improving the protection of probiotics with microencapsulation and improving the quality of meat product (reducing nitrate and nitrate salts, adding dietary fibre, and exploring the inherent antioxidant and cardioprotective activity of meat products). Attention to potential threats is also indicated such as the unclear future changes in meat and meat products consumption due to changes in consumer preferences and the presence of competitors (dairy, fruit and vegetable-based products, for instance) in more advanced stages of development and commercialization. SIGNIFICANCE AND IMPACT OF STUDY: This review provides an overview of the Strengths, Weakness, Opportunities and Threats related to the development of functional fermented meat products with probiotics. Internal and external factors that explain the current scenario and strategies to advance the production are highlighted.
Collapse
Affiliation(s)
- Paulo E S Munekata
- Centro Tecnológico de la Carne de Galicia, Parque Tecnológico de Galicia, Ourense, Spain
| | - Mirian Pateiro
- Centro Tecnológico de la Carne de Galicia, Parque Tecnológico de Galicia, Ourense, Spain
| | - Igor Tomasevic
- Faculty of Agriculture, University of Belgrade, Belgrade, Serbia
| | - Rubén Domínguez
- Centro Tecnológico de la Carne de Galicia, Parque Tecnológico de Galicia, Ourense, Spain
| | - Andrea C da Silva Barretto
- Department of Food Technology and Engineering, UNESP-São Paulo State University, Sao Jose do Rio Preto, Brazil
| | - Eva M Santos
- Área Académica de Química, Mineral de la Reforma, Universidad Autónoma del Estado de Hidalgo, Pachuca, Mexico
| | - José M Lorenzo
- Centro Tecnológico de la Carne de Galicia, Parque Tecnológico de Galicia, Ourense, Spain.,Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidad de Vigo, Ourense, Spain
| |
Collapse
|