1
|
Kamilari E, Stanton C, Tsaltas D, Ross RP. Regional microbial content of fermented traditional and industrial East Mediterranean sausages from the islands of Cyprus and Mytilini. MICROBIOME RESEARCH REPORTS 2024; 4:3. [PMID: 40207283 PMCID: PMC11977371 DOI: 10.20517/mrr.2024.47] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/23/2024] [Accepted: 10/15/2024] [Indexed: 04/11/2025]
Abstract
Objective: To characterize the microbial biodiversity of fermented sausages from the East Mediterranean islands of Cyprus and Mytilini, and to identify differences between the microbial diversity of traditionally and industrially produced Cypriot sausages. Method: The microbial diversity of thirty sausages from Cyprus and Mytilini (traditionally and industrially produced) was analyzed using high throughput sequencing (HTS) (amplicon sequencing) of 16S rRNA gene and ITS loci fragments. By applying microbial signature detection and machine learning algorithms, we identified key microbes that distinguish traditionally produced sausages from those produced industrially. Focusing on selected microbial taxa and using interaction network analysis, we identified associations among the sausages' microbiota that may affect the shaping of the sausages' microbial consortia. Results: Cypriot and Mytilini sausages indicated increased relative representation of Lactobacillus and Leuconostoc. Cypriot sausages were distinguished by the presence of the fungi Debaryomyces hansenii and Candida spp., whereas Mytilini sausages by the bacteria Lactococcus and Streptococcus. Traditionally produced sausages from the Pitsilia region of Cyprus were differentiated by the presence of the species Lactobacillus helveticus, whereas industrially produced sausages were differentiated by the species Leuconostoc mesenteroides. Focusing mainly on Lactobacillus and Leuconostoc, negative associations with pathogenic bacteria, such as Salmonella, and spoilage fungi, such as Fusarium poae, were revealed. Conclusion: The present metataxonomic analysis provided insights into the microbial communities that characterize Cypriot and Mytilini sausages. The findings provide an indication that the microbial diversity might be applied as an additional marker of Cypriot sausages' authenticity.
Collapse
Affiliation(s)
- Eleni Kamilari
- APC Microbiome Ireland, University College Cork, Cork T12 YT20, Ireland
- School of Microbiology, University College Cork, Cork T12 K8AF, Ireland
| | - Catherine Stanton
- APC Microbiome Ireland, University College Cork, Cork T12 YT20, Ireland
- School of Microbiology, University College Cork, Cork T12 K8AF, Ireland
- Department of Biosciences, Teagasc Food Research Centre, Moorepark, Fermoy, Co., Cork P61 C996, Ireland
| | - Dimitrios Tsaltas
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Lemesos 3036, Cyprus
| | - R. Paul Ross
- APC Microbiome Ireland, University College Cork, Cork T12 YT20, Ireland
- School of Microbiology, University College Cork, Cork T12 K8AF, Ireland
| |
Collapse
|
2
|
Lemos Junior WJF, Marques Costa L, Alberto Guerra C, Sales de Oliveira V, Gava Barreto A, Alves de Oliveira F, de Paula BP, Esmerino EA, Corich V, Giacomini A, Guerra AF. Microbial landscape of cooked meat products: evaluating quality and safety in vacuum-packaged sausages using culture-dependent and culture-independent methods over 1 year in a sustainable food chain. Front Microbiol 2024; 15:1457819. [PMID: 39328911 PMCID: PMC11424441 DOI: 10.3389/fmicb.2024.1457819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 08/08/2024] [Indexed: 09/28/2024] Open
Abstract
Over the last few decades, advancements in process safety and quality methods have been significantly improved, yet new challenges continue to emerge in the sustainable food supply chain. This study aimed to investigate some physicochemical and microbiological parameters impacting meat products, particularly cooked sausages, within a sustainable supply chain, focusing on quality, spoilage populations, and syneresis formation under vacuum conditions. A comprehensive analysis was conducted on 355 samples collected over four seasons using high-throughput sequencing (16S/ITS) and microbiological and physicochemical [pH and water activity (aw)] assessments. The microbial growth predictor MicroLab_ShelfLife was employed, and multiple factor analysis (MFA) and agglomerative hierarchical clustering (AHC) were utilized to understand how these variables influence the microbiome resilience of these products. Lactic and acetic acids were correlated with the microbiome of the sausages and the liquid coating covering them using metagenomic analyses. The study highlighted that 52% of the evaluated meat industries in southeastern Brazil are implementing effective protocols for sustainable chain production. The results indicated that the durability of vacuum-packaged cooked sausages was primarily influenced by storage temperature (RV coefficient of 0.906), initial microbial load (0.755), and aw (0.624). Average microbial counts were 4.30 log cfu/g (initial), 4.61 (7°C/4 days), 4.90 (7°C/8 days), 6.06 (36°C/4 days), and 6.79 (36°C/8 days). Seasonal durability analysis revealed that winter had the highest average durability of 45.58 days, while summer had the lowest at 26.33 days. Yeast populations, including Trichosporon sp. and Candida sp., were identified as key genera influencing spoilage dynamics. In addition, Bacillus species emerged as dominant spoilage microorganisms, highlighting the need for new critical controls. This study demonstrates the impact of metagenomic approaches, including ITS and 16S amplicon sequencing, in revealing microbial community dynamics, storage temperature, and aw, which are essential for developing targeted interventions to enhance food safety and quality sustainably.
Collapse
Affiliation(s)
| | | | | | | | - Angela Gava Barreto
- Centro Federal de Educação Tecnológica Celso Suckow da Fonseca (CEFET/RJ), Valença, Rio de Janeiro, Brazil
| | - Fabiano Alves de Oliveira
- Centro Federal de Educação Tecnológica Celso Suckow da Fonseca (CEFET/RJ), Valença, Rio de Janeiro, Brazil
| | - Breno Pereira de Paula
- Centro Federal de Educação Tecnológica Celso Suckow da Fonseca (CEFET/RJ), Valença, Rio de Janeiro, Brazil
| | - Erick Almeida Esmerino
- Universidade Federal Rural do Rio de Janeiro (UFRRJ), Seropédica, Rio de Janeiro, Brazil
| | - Viviana Corich
- Department of Agronomy Food Natural Resources Animals and Environment (DAFNAE), University of Padova, Legnaro, Padua, Italy
- Department of Land, Environment, Agriculture and Forestry—TeSAF Legnaro, Padova, Italy
| | - Alessio Giacomini
- Department of Agronomy Food Natural Resources Animals and Environment (DAFNAE), University of Padova, Legnaro, Padua, Italy
| | - André Fioravante Guerra
- Centro Federal de Educação Tecnológica Celso Suckow da Fonseca (CEFET/RJ), Valença, Rio de Janeiro, Brazil
| |
Collapse
|
3
|
Nguyen TBH, Foulongne-Oriol M, Jany JL, le Floch G, Picot A. New insights into mycotoxin risk management through fungal population genetics and genomics. Crit Rev Microbiol 2024:1-22. [PMID: 39188135 DOI: 10.1080/1040841x.2024.2392179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 05/08/2024] [Accepted: 08/09/2024] [Indexed: 08/28/2024]
Abstract
Mycotoxin contamination of food and feed is a major global concern. Chronic or acute dietary exposure to contaminated food and feed can negatively affect both human and animal health. Contamination occurs through plant infection by toxigenic fungi, primarily Aspergillus and Fusarium spp., either before or after harvest. Despite the application of various management strategies, controlling these pathogens remains a major challenge primarily because of their ability to adapt to environmental changes and selection pressures. Understanding the genetic structure of plant pathogen populations is pivotal for gaining new insights into their biology and epidemiology, as well as for understanding the mechanisms behind their adaptability. Such deeper understanding is crucial for developing effective and preemptive management strategies tailored to the evolving nature of pathogenic populations. This review focuses on the population-level variations within the two most economically significant toxigenic fungal genera according to space, host, and pathogenicity. Outcomes in terms of migration patterns, gene flow within populations, mating abilities, and the potential for host jumps are examined. We also discuss effective yet often underutilized applications of population genetics and genomics to address practical challenges in the epidemiology and disease control of toxigenic fungi.
Collapse
Affiliation(s)
- Toan Bao Hung Nguyen
- Univ Brest, INRAE, Laboratoire Universitaire de Biodiversité et Écologie Microbienne, Plouzané, France
| | | | - Jean-Luc Jany
- Univ Brest, INRAE, Laboratoire Universitaire de Biodiversité et Écologie Microbienne, Plouzané, France
| | - Gaétan le Floch
- Univ Brest, INRAE, Laboratoire Universitaire de Biodiversité et Écologie Microbienne, Plouzané, France
| | - Adeline Picot
- Univ Brest, INRAE, Laboratoire Universitaire de Biodiversité et Écologie Microbienne, Plouzané, France
| |
Collapse
|
4
|
Woldemariam KY, Wang Z, Cai M, Li M, Jiang W, Hu Z, Li J, Tang W, Jiao Y, Liu Y, Zheng Q, Wang J. Lipid Hydrolysis, Oxidation, and Fatty Acid Formation Pathway Mapping of Synergistically Fermented Sausage and Characterization of Lipid Mediating Genes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:17536-17548. [PMID: 39073353 DOI: 10.1021/acs.jafc.4c05295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Starter cultures play a significant role in lipid hydrolysis, prevention of lipid oxidation, and synthesis of fatty acid in fermented sausage, enhancing product quality. In this study, five synergistic bacterial strains were used, including Pediococcus pentosaceus (B-3), Latilactobacillus sakei DLS-24 (D-24), Latilactobacillus acidophilus DLS-29 (D-29), Lactiplantibacillus pentosus (B-1), and Lactiplantibacillus plantarum (B-2). Sausage B1B3D24 gave the highest free fatty acid with 39.45 g/100 g at 45-Day. Based on 2-thiobarbituric acid reactive substance, B2B3 contains 112.68 MDA/kg. Lipoxygenase activity displays the lowest in B1B3D24 with 0.095 μmol/min·mg followed by B2B3 with 0.145 μmol/min·mg. B1B3D24 contains 11.35 g/kg of monounsaturated fatty acid with the highest content in eicosenoic acid (C20:1) and palmitoleic acid (C16:1). The fatty acid synthesis pathway in B1B3D24 contains an active positive interaction with PUFA to increase the isotopomers of ω-3 and ω-6 fatty acids. In addition, lipid mediating genes in B1B3D24 show the highest counts in fatty-acid synthase, carbonyl reductase 4, 3-oxoacyl-[acyl-carrier-protein] synthase III, hydroxysteroid 17-beta dehydrogenase 8, and acetyl-CoA carboxylase.
Collapse
Affiliation(s)
- Kalekristos Yohannes Woldemariam
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing Technology and Business University (BTBU), 11 Fucheng Road, Beijing 100048, China
- DeLiSi Technology Center for Postdoctoral Research Work Station, Shandong Dingke Testing Technology Co. Ltd, Delisi Technology Center, DeLiSi Group Co. Ltd., Changcheng Town, Zhucheng, Weifang, Shandong 262216, China
| | - Zhengkai Wang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing Technology and Business University (BTBU), 11 Fucheng Road, Beijing 100048, China
| | - Min Cai
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing Technology and Business University (BTBU), 11 Fucheng Road, Beijing 100048, China
| | - Min Li
- DeLiSi Technology Center for Postdoctoral Research Work Station, Shandong Dingke Testing Technology Co. Ltd, Delisi Technology Center, DeLiSi Group Co. Ltd., Changcheng Town, Zhucheng, Weifang, Shandong 262216, China
| | - Wenxiang Jiang
- DeLiSi Technology Center for Postdoctoral Research Work Station, Shandong Dingke Testing Technology Co. Ltd, Delisi Technology Center, DeLiSi Group Co. Ltd., Changcheng Town, Zhucheng, Weifang, Shandong 262216, China
| | - Zhichaw Hu
- DeLiSi Technology Center for Postdoctoral Research Work Station, Shandong Dingke Testing Technology Co. Ltd, Delisi Technology Center, DeLiSi Group Co. Ltd., Changcheng Town, Zhucheng, Weifang, Shandong 262216, China
| | - Jinjuan Li
- DeLiSi Technology Center for Postdoctoral Research Work Station, Shandong Dingke Testing Technology Co. Ltd, Delisi Technology Center, DeLiSi Group Co. Ltd., Changcheng Town, Zhucheng, Weifang, Shandong 262216, China
| | - Wensheng Tang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing Technology and Business University (BTBU), 11 Fucheng Road, Beijing 100048, China
| | - Yushan Jiao
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing Technology and Business University (BTBU), 11 Fucheng Road, Beijing 100048, China
| | - Yingli Liu
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing Technology and Business University (BTBU), 11 Fucheng Road, Beijing 100048, China
| | - Qiankun Zheng
- DeLiSi Technology Center for Postdoctoral Research Work Station, Shandong Dingke Testing Technology Co. Ltd, Delisi Technology Center, DeLiSi Group Co. Ltd., Changcheng Town, Zhucheng, Weifang, Shandong 262216, China
| | - Jing Wang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing Technology and Business University (BTBU), 11 Fucheng Road, Beijing 100048, China
| |
Collapse
|
5
|
Xian S, Li Y, Liu X, Shen G, Zhou M, Li M, Hou X, Li S, Luo Q, Zhang Z, Chen A. Impact of microorganisms on key processes of organic acid metabolism during the occurrence and disappearance of paocai pellicle. J Food Sci 2024; 89:5047-5064. [PMID: 38922911 DOI: 10.1111/1750-3841.17178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 05/30/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024]
Abstract
In vegetable fermentation, pellicle is a common quality deterioration phenomenon. This study investigates the characteristics of glucose, organic acids, amino acids, and biogenic amines during the pellicle occurrence and disappearance of paocai. The results revealed a slight increase in pH of the fermentation system after pellicle occurred, and glucose was the main carbohydrate that microbial activity primary relied on. The microorganisms responsible for pellicle formation consumed organic acids in brine, but the lactic acid in paocai gradually increased and exceeded 25 mg/g. The appearance of pellicle caused a decrease in total free amino acids from 200.390 mg/100 g to 172.079 when pellicle occurred, whereas its impact on biogenic amines was not apparent. Through Kyoto Encyclopedia of Genes and Genomes pathway enrichment of metagenomics sequencing data, screening, and sorting of the key enzymes involved in organic acid metabolism, it was observed that the composition and species of the key microorganisms capable of metabolizing organic acids were more abundant before the appearance of pellicle. When pellicle occurred, lactic acid may be metabolized by Lactobacillus plantarum; in contrast, Lactobacillus and Pichia were associated with citric acid metabolism, and Lactobacillus, Pichia, Saccharomycodes, and Kazachstania were linked to malic acid metabolism. Moreover, Prevotella, Kazachstania, Lactobacillus, Vibrio, and Siphonobacter were implicated in succinic acid metabolism. Additionally, the production of tartaric acid and oxalic acid in paocai and brine resulted from abiotic effects. This knowledge offers a theoretical basis for precise control of paocai fermentation process. PRACTICAL APPLICATION: Our study revealed the specific situation of the metabolites produced by the microorganisms during the pollution and recovery process of pellicle in paocai fermentation, especially the effect of pellicle on the key process of organic acid metabolism. These research results provided theoretical basis for precise control of paocai fermentation.
Collapse
Affiliation(s)
- Shuang Xian
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Yanlan Li
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Xingyan Liu
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Guanghui Shen
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Man Zhou
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Meiliang Li
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Xiaoyan Hou
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Shanshan Li
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Qingying Luo
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Zhiqing Zhang
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Anjun Chen
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| |
Collapse
|
6
|
Fernández‐Trapote E, Oliveira M, Cobo‐Díaz JF, Alvarez‐Ordóñez A. The resistome of the food chain: A One Health perspective. Microb Biotechnol 2024; 17:e14530. [PMID: 39017204 PMCID: PMC11253703 DOI: 10.1111/1751-7915.14530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/04/2024] [Indexed: 07/18/2024] Open
Abstract
Antimicrobial resistance (AMR) represents a significant global health problem which challenges Sustainable Development Goal 3 of the United Nations, with growing concerns about the possibility of AMR transmission through the food chain. The indiscriminate use of antimicrobials for the treatment of food production animals and for agricultural crop improvement, in addition to the direct discharge of livestock farm residues to sewage and the use of animal manure in agriculture, are among the factors that can facilitate the selection and transmission of AMR throughout the food chain. The study of food microbiomes has been boosted by the advent of next-generation sequencing techniques, which have enabled gaining in-depth understanding of the diversity of antimicrobial resistance genes present in food and associated environments (the so-called resistome). The aim of this review is to provide an accurate and comprehensive overview of the knowledge currently available on the resistome of the most frequently consumed foods worldwide, from a One Health perspective. To this end, the different metagenomic studies which have been conducted to characterize the resistome of foods are compiled and critically discussed.
Collapse
Affiliation(s)
| | - Marcia Oliveira
- Department of Food Hygiene and TechnologyUniversidad de LeónLeónSpain
| | - José F. Cobo‐Díaz
- Department of Food Hygiene and TechnologyUniversidad de LeónLeónSpain
| | - Avelino Alvarez‐Ordóñez
- Department of Food Hygiene and TechnologyUniversidad de LeónLeónSpain
- Institute of Food Science and TechnologyUniversidad de LeónLeónSpain
| |
Collapse
|
7
|
Fernandes N, Faria AS, Carvalho L, Choupina A, Rodrigues C, Gonzales-Barron U, Cadavez V. Genetic Identification and Technological Potential of Indigenous Lactic Acid Bacteria Isolated from Alheira, a Traditional Portuguese Sausage. Foods 2024; 13:598. [PMID: 38397575 PMCID: PMC10888191 DOI: 10.3390/foods13040598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 02/07/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024] Open
Abstract
Alheira is a naturally fermented meat sausage traditionally made in the Portuguese region of Trás-os-Montes. Lactic acid bacteria (LAB) are the dominant microorganisms in alheira and can endow it with various technological properties. This study aimed (1) to characterize technological features and in vitro antimicrobial activity of LAB isolated from alheira, and (2) to reveal associations between such phenotypic characteristics and the isolates species identified through amplification and sequencing of the 16S ribosomal gene. Sixty-two LAB isolates were identified and Enterococcus (E.) faecium corresponded to 32.3% of isolates, followed by Leuconostoc (L.) mesenteroides (19.4%) and Latilactobacillus (Lb.) sakei (17.7%), aligning with previous research on traditional Portuguese fermented meat sausages. The phenotypic analysis of LAB isolates indicated diverse acidification capacities, proteolytic activities, and inhibitory effects against foodborne pathogens Listeria (L.) monocytogenes, Salmonella (S.) Typhimurium and Staphylococcus (S.) aureus. Overall, lactobacilli displayed high inhibition activity against the pathogens S. aureus, L. monocytogenes, and S. Typhimurium. Although the mechanisms for the inhibition of pathogen growth need to be further elucidated, these findings enhance our understanding of LAB diversity and functionality in alheira sausages, contributing to product safety and quality.
Collapse
Affiliation(s)
- Nathália Fernandes
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (N.F.); (A.S.F.); (L.C.); (A.C.); (C.R.); (U.G.-B.)
- Laboratório para a Sustentabilidade e Tecnologia em Regiões de Montanha, Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Ana Sofia Faria
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (N.F.); (A.S.F.); (L.C.); (A.C.); (C.R.); (U.G.-B.)
- Laboratório para a Sustentabilidade e Tecnologia em Regiões de Montanha, Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Laís Carvalho
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (N.F.); (A.S.F.); (L.C.); (A.C.); (C.R.); (U.G.-B.)
- Laboratório para a Sustentabilidade e Tecnologia em Regiões de Montanha, Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Altino Choupina
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (N.F.); (A.S.F.); (L.C.); (A.C.); (C.R.); (U.G.-B.)
- Laboratório para a Sustentabilidade e Tecnologia em Regiões de Montanha, Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Carina Rodrigues
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (N.F.); (A.S.F.); (L.C.); (A.C.); (C.R.); (U.G.-B.)
- Laboratório para a Sustentabilidade e Tecnologia em Regiões de Montanha, Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Ursula Gonzales-Barron
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (N.F.); (A.S.F.); (L.C.); (A.C.); (C.R.); (U.G.-B.)
- Laboratório para a Sustentabilidade e Tecnologia em Regiões de Montanha, Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Vasco Cadavez
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (N.F.); (A.S.F.); (L.C.); (A.C.); (C.R.); (U.G.-B.)
- Laboratório para a Sustentabilidade e Tecnologia em Regiões de Montanha, Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| |
Collapse
|
8
|
Zhang D, Yang P, Liu K, Wu L, Li G, Zhang H, Ma X, Rong L, Li R. The effective of bacterial community dynamics driven by different starter cultures on the flavor development of Chinese fermented sausages. Food Chem X 2023; 19:100838. [PMID: 37780305 PMCID: PMC10534179 DOI: 10.1016/j.fochx.2023.100838] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 08/06/2023] [Accepted: 08/11/2023] [Indexed: 10/03/2023] Open
Abstract
This study aimed to understand the community successions driven by different starters and their effects on the flavor development of Chinese fermented sausages. The results showed that the bacterial genus (67.6%) and pH (32.4%) were the key factors influencing the volatile profile. Inoculated the starters composed of Pediococcus and staphylococci maintained the stable community succession patterns dominated by staphylococci (samples T and S). Although the highly acidic environment (pH < 5.2) caused the community to exhibit a fluctuation in succession pattern, the inoculation of Latilactobacillus paracasei (sample Y) maintained microbial diversity and was conducive to the accumulation of aldehydes and esters. In sample P, inoculated the starter with Latilactobacillus and Staphylococcus also maintained microbial diversity, the moderately acidic environment (pH > 5.4) resulted in a stable succession pattern of the microbial community, and it was not conducive to the accumulation of aldehydes, alcohols and esters.
Collapse
Affiliation(s)
- Di Zhang
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi’an, Shaanxi 710021, China
- College of Food Science and Technology, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning 121013, China
| | - Peng Yang
- College of Food Science and Technology, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning 121013, China
| | - Kaihao Liu
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi’an, Shaanxi 710021, China
- College of Food Science and Technology, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning 121013, China
| | - Liu Wu
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi’an, Shaanxi 710021, China
- College of Food Science and Technology, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning 121013, China
| | - Guoliang Li
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi’an, Shaanxi 710021, China
| | - Huan Zhang
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi’an, Shaanxi 710021, China
| | - Xiaozhong Ma
- Jinzi Ham Co., Ltd., No. 1000, Jinfan Street, Industrial Park, Jinhua, Zhejiang 321016, China
| | - Liangyan Rong
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi’an, Shaanxi 710021, China
| | - Ruren Li
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi’an, Shaanxi 710021, China
| |
Collapse
|
9
|
García-López JD, Barbieri F, Baños A, Madero JMG, Gardini F, Montanari C, Tabanelli G. Use of two autochthonous bacteriocinogenic strains as starter cultures in the production of salchichónes, a type of Spanish fermented sausages. Curr Res Food Sci 2023; 7:100615. [PMID: 37881335 PMCID: PMC10594565 DOI: 10.1016/j.crfs.2023.100615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/05/2023] [Accepted: 10/08/2023] [Indexed: 10/27/2023] Open
Abstract
In this work, two autochthonous LAB strains (Lactiplantibacillus paraplantarum BPF2 and Pediococcus acidilactici ST6), isolated from spontaneously fermented sausages produced in Spain, were tested to produce Spanish fermented sausages (salchichón) in pilot plants, due to their promising technological and anti-listerial activity. These products were compared with a sample obtained with a commercial starter (RAP) and a spontaneously fermented control sample. Physico-chemical parameters, microbial counts, metagenomic analysis, biogenic amines content and organoleptic profile of the obtained samples were studied to assess the performances of the native starters. In fact, traditional and artisanal products obtained through spontaneous fermentations can represent an important biodiversity reservoir of strains to be exploited as new potential starter cultures, to improve the safety, quality and local differentiation of traditional products. The data underlined that ST6 strain resulted in a final lower percentage if compared with the other LAB used as starter cultures. The use of starters reduced the BA concentration observed in the sausages obtained with spontaneous fermentation and the BPF2 and ST6 strains were able to decrease the level of products rancidity. Moreover, a challenge test against L. monocytogenes were performed. The data confirmed the effectiveness in the inhibition of L. monocytogenes by the two bacteriocinogenic strains tested, with respect to RAP and control samples, highlighting their ability to produce bacteriocins in real food systems. This work demonstrated the promising application in meat industry of these autochthonous strains as starter cultures to improve sensory differentiation and recognizability of typical fermented sausages.
Collapse
Affiliation(s)
| | - Federica Barbieri
- Department of Agricultural and Food Sciences, University of Bologna, 47521, Cesena, Italy
| | - Alberto Baños
- Department of Microbiology, DOMCA S.A.U, 18620, Alhendín, Spain
| | | | - Fausto Gardini
- Department of Agricultural and Food Sciences, University of Bologna, 47521, Cesena, Italy
| | - Chiara Montanari
- Department of Agricultural and Food Sciences, University of Bologna, 47521, Cesena, Italy
| | - Giulia Tabanelli
- Interdepartmental Center for Industrial Agri-Food Research, University of Bologna, 47521, Cesena, Italy
- Department of Agricultural and Food Sciences, University of Bologna, 40127, Bologna, Italy
| |
Collapse
|
10
|
Ferrocino I, Rantsiou K, McClure R, Kostic T, de Souza RSC, Lange L, FitzGerald J, Kriaa A, Cotter P, Maguin E, Schelkle B, Schloter M, Berg G, Sessitsch A, Cocolin L. The need for an integrated multi-OMICs approach in microbiome science in the food system. Compr Rev Food Sci Food Saf 2023; 22:1082-1103. [PMID: 36636774 DOI: 10.1111/1541-4337.13103] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 12/05/2022] [Accepted: 12/19/2022] [Indexed: 01/14/2023]
Abstract
Microbiome science as an interdisciplinary research field has evolved rapidly over the past two decades, becoming a popular topic not only in the scientific community and among the general public, but also in the food industry due to the growing demand for microbiome-based technologies that provide added-value solutions. Microbiome research has expanded in the context of food systems, strongly driven by methodological advances in different -omics fields that leverage our understanding of microbial diversity and function. However, managing and integrating different complex -omics layers are still challenging. Within the Coordinated Support Action MicrobiomeSupport (https://www.microbiomesupport.eu/), a project supported by the European Commission, the workshop "Metagenomics, Metaproteomics and Metabolomics: the need for data integration in microbiome research" gathered 70 participants from different microbiome research fields relevant to food systems, to discuss challenges in microbiome research and to promote a switch from microbiome-based descriptive studies to functional studies, elucidating the biology and interactive roles of microbiomes in food systems. A combination of technologies is proposed. This will reduce the biases resulting from each individual technology and result in a more comprehensive view of the biological system as a whole. Although combinations of different datasets are still rare, advanced bioinformatics tools and artificial intelligence approaches can contribute to understanding, prediction, and management of the microbiome, thereby providing the basis for the improvement of food quality and safety.
Collapse
Affiliation(s)
- Ilario Ferrocino
- Department of Agriculture, Forest and Food Science, University of Turin, Grugliasco, Italy
| | - Kalliopi Rantsiou
- Department of Agriculture, Forest and Food Science, University of Turin, Grugliasco, Italy
| | - Ryan McClure
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Tanja Kostic
- AIT Austrian Institute of Technology GmbH, Bioresources Unit, Tulln, Austria
| | - Rafael Soares Correa de Souza
- Genomics for Climate Change Research Center (GCCRC), Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Lene Lange
- BioEconomy, Research & Advisory, Valby, Denmark
| | - Jamie FitzGerald
- Teagasc Food Research Centre, Moorepark, Fermoy, County Cork, Ireland
| | - Aicha Kriaa
- MICALIS, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Paul Cotter
- Teagasc Food Research Centre, Moorepark, Fermoy, County Cork, Ireland
| | - Emmanuelle Maguin
- MICALIS, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | | | | | - Gabriele Berg
- Institute of Environmental Biotechnology, Graz University of Technology, Graz, Austria
| | - Angela Sessitsch
- AIT Austrian Institute of Technology GmbH, Bioresources Unit, Tulln, Austria
| | - Luca Cocolin
- Department of Agriculture, Forest and Food Science, University of Turin, Grugliasco, Italy
| | | |
Collapse
|
11
|
Shi H, An F, Lin H, Li M, Wu J, Wu R. Advances in fermented foods revealed by multi-omics: A new direction toward precisely clarifying the roles of microorganisms. Front Microbiol 2022; 13:1044820. [PMID: 36590428 PMCID: PMC9794733 DOI: 10.3389/fmicb.2022.1044820] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 11/23/2022] [Indexed: 12/15/2022] Open
Abstract
Fermented foods generally comprise a complex micro-ecosystem with beneficial microbiota, functional products, and special flavors and qualities that are welcomed globally. Single-omics analysis allows for a comprehensive characterization of the main microbial factors influencing the function, flavor, and quality of fermented foods. However, the species, relative abundance, viability, growth patterns, and metabolic processes of microorganisms vary with changes in processing and environmental conditions during fermentation. Furthermore, the mechanisms underlying the complex interaction among microorganisms are still difficult to completely understand and analyze. Recently, multi-omics analysis and the integration of multiple types of omics data allowed researchers to more comprehensively explore microbial communities and understand the precise relationship between fermented foods and their functions, flavors, and qualities. Multi-omics approaches might help clarify the mechanisms underpinning the fermentation processes, metabolites, and functional components of these communities. This review clarified the recent advances in the roles of microorganisms in fermented foods based on multi-omics data. Current research achievements may allow for the precise control of the whole industrial processing technology of fermented foods, meeting consumers' expectations of healthy products.
Collapse
Affiliation(s)
- Haisu Shi
- College of Food Science, Shenyang Agricultural University, Shenyang, China,Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang Agricultural University, Shenyang, China,Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang Agricultural University, Shenyang, China
| | - Feiyu An
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Hao Lin
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Mo Li
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Junrui Wu
- College of Food Science, Shenyang Agricultural University, Shenyang, China,Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang Agricultural University, Shenyang, China,Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang Agricultural University, Shenyang, China,Junrui Wu,
| | - Rina Wu
- College of Food Science, Shenyang Agricultural University, Shenyang, China,Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang Agricultural University, Shenyang, China,Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang Agricultural University, Shenyang, China,*Correspondence: Rina Wu,
| |
Collapse
|
12
|
Xia Y, Luo H, Wu Z, Zhang W. Microbial diversity in jiuqu and its fermentation features: saccharification, alcohol fermentation and flavors generation. Appl Microbiol Biotechnol 2022; 107:25-41. [DOI: 10.1007/s00253-022-12291-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 12/12/2022]
|
13
|
Autochthonous starter culture selection for Salame Piemonte PGI production. Food Res Int 2022; 162:112007. [DOI: 10.1016/j.foodres.2022.112007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 09/25/2022] [Accepted: 09/27/2022] [Indexed: 11/21/2022]
|
14
|
Van der Veken D, Leroy F. Prospects for the applicability of coagulase-negative cocci in fermented-meat products using omics approaches. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2022.100918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
15
|
Jiang L, Chen Y, Deng L, Liu F, Wang T, Shi X, Wang B. Bacterial community diversity and its potential contributions to the flavor components of traditional smoked horsemeat sausage in Xinjiang, China. Front Microbiol 2022; 13:942932. [PMID: 35966695 PMCID: PMC9365192 DOI: 10.3389/fmicb.2022.942932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/05/2022] [Indexed: 11/13/2022] Open
Abstract
Smoked horsemeat sausage is a famous fermented traditional food in Xinjiang, China. However, the microbial diversity and its potential contributions to the flavor components of smoked horsemeat sausage are unclear. In this study, the microbial community and flavor components of smoked horsemeat sausage from six regions of Xinjiang were measured by using amplicon sequencing and headspace solid-phase microextraction combined with gas chromatography–mass spectrometry (HS-SPME-GC–MS) technology, respectively. Relations among microbial communities, flavor components and environmental factors were subsequently predicted based on redundancy analysis (RDA) and Monte Carlo permutation tests. Although smoked horsemeat sausage samples from different regions possessed distinct microbial communities, lactic acid bacteria (LAB) were identified as the dominant consortium in smoked horsemeat sausage. Lactobacillus, Vagococcus, Lactococcus, and Carnobacterium were detected at high abundance in different sausages. The moisture content, nitrite content, and pH of the sausage might be important factors influencing the dominant bacterial community, according to the RDA. Among the dominant consortia, the eight core bacterial genera showed considerable correlations with the formation of sixteen volatile compounds in smoked horsemeat sausage based on multivariate statistical analysis. For example, the levels of Leuconostoc and Lactobacillus were positively correlated with those of 1-hexadecanol, hexyl acetate, 2-methyl-phenol, 1-pentanol, d-limonene, and 2-heptanone, and the levels of Leuconostoc, Lactobacillus, and Weissella were negatively correlated with those of 1-octanol, acetic acid, octanal, heptanal, and 1-hexanol. This study will provide a theoretical basis for understanding the microbial metabolic modes of Xinjiang smoked horsemeat sausages.
Collapse
Affiliation(s)
- Lei Jiang
- College of Life and Geographical Sciences, Kashi University, Kashi, China
| | - Yu Chen
- Food College, Shihezi University, Shihezi, China
- College of Enology, Northwest A&F University, Yangling, China
| | - Li Deng
- Food College, Shihezi University, Shihezi, China
| | - Fei Liu
- College of Life and Geographical Sciences, Kashi University, Kashi, China
| | - Tengbin Wang
- Xinjiang Academy of Analysis and Testing, Wulumuqi, China
| | - Xuewei Shi
- Food College, Shihezi University, Shihezi, China
- Xuewei Shi,
| | - Bin Wang
- Food College, Shihezi University, Shihezi, China
- *Correspondence: Bin Wang,
| |
Collapse
|
16
|
Olmo R, Wetzels SU, Armanhi JSL, Arruda P, Berg G, Cernava T, Cotter PD, Araujo SC, de Souza RSC, Ferrocino I, Frisvad JC, Georgalaki M, Hansen HH, Kazou M, Kiran GS, Kostic T, Krauss-Etschmann S, Kriaa A, Lange L, Maguin E, Mitter B, Nielsen MO, Olivares M, Quijada NM, Romaní-Pérez M, Sanz Y, Schloter M, Schmitt-Kopplin P, Seaton SC, Selvin J, Sessitsch A, Wang M, Zwirzitz B, Selberherr E, Wagner M. Microbiome Research as an Effective Driver of Success Stories in Agrifood Systems – A Selection of Case Studies. Front Microbiol 2022; 13:834622. [PMID: 35903477 PMCID: PMC9315449 DOI: 10.3389/fmicb.2022.834622] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 05/24/2022] [Indexed: 12/14/2022] Open
Abstract
Increasing knowledge of the microbiome has led to significant advancements in the agrifood system. Case studies based on microbiome applications have been reported worldwide and, in this review, we have selected 14 success stories that showcase the importance of microbiome research in advancing the agrifood system. The selected case studies describe products, methodologies, applications, tools, and processes that created an economic and societal impact. Additionally, they cover a broad range of fields within the agrifood chain: the management of diseases and putative pathogens; the use of microorganism as soil fertilizers and plant strengtheners; the investigation of the microbial dynamics occurring during food fermentation; the presence of microorganisms and/or genes associated with hazards for animal and human health (e.g., mycotoxins, spoilage agents, or pathogens) in feeds, foods, and their processing environments; applications to improve HACCP systems; and the identification of novel probiotics and prebiotics to improve the animal gut microbiome or to prevent chronic non-communicable diseases in humans (e.g., obesity complications). The microbiomes of soil, plants, and animals are pivotal for ensuring human and environmental health and this review highlights the impact that microbiome applications have with this regard.
Collapse
Affiliation(s)
- Rocío Olmo
- FFoQSI GmbH - Austrian Competence Centre for Feed and Food Quality, Safety and Innovation, Tulln, Austria
- Unit of Food Microbiology, Institute of Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
- *Correspondence: Rocío Olmo,
| | - Stefanie Urimare Wetzels
- FFoQSI GmbH - Austrian Competence Centre for Feed and Food Quality, Safety and Innovation, Tulln, Austria
- Unit of Food Microbiology, Institute of Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| | - Jaderson Silveira Leite Armanhi
- Symbiomics Microbiome Solutions, Florianópolis, Brazil
- Genomics for Climate Change Research Center, Universidade Estadual de Campinas, Campinas, Brazil
| | - Paulo Arruda
- Genomics for Climate Change Research Center, Universidade Estadual de Campinas, Campinas, Brazil
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Campinas, Brazil
- Departamento de Genética e Evolução, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, Brazil
| | - Gabriele Berg
- Institute of Environmental Biotechnology, Graz University of Technology, Graz, Austria
- Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Potsdam, Germany
- Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Tomislav Cernava
- Institute of Environmental Biotechnology, Graz University of Technology, Graz, Austria
| | - Paul D. Cotter
- Food Bioscience, Teagasc Food Research Centre Moorepark, Fermoy, Ireland
- APC Microbiome Ireland and VistaMilk, Cork, Ireland
| | - Solon Cordeiro Araujo
- SCA, Consultoria em Microbiologia Agrícola, Campinas, Brazil
- Brazil National Association of Inoculant Producers and Importers (ANPII), Campinas, Brazil
| | - Rafael Soares Correa de Souza
- Symbiomics Microbiome Solutions, Florianópolis, Brazil
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Campinas, Brazil
| | - Ilario Ferrocino
- Department of Agricultural, Forest and Food Science, University of Torino, Torino, Italy
| | - Jens C. Frisvad
- Department of Biotechnology and Bioengineering, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Marina Georgalaki
- Laboratory of Dairy Research, Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens, Greece
| | - Hanne Helene Hansen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Maria Kazou
- Laboratory of Dairy Research, Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens, Greece
| | | | - Tanja Kostic
- Bioresources Unit, Center for Health & Bioresources, AIT Austrian Institute of Technology GmbH, Tulln, Austria
| | - Susanne Krauss-Etschmann
- Research Center Borstel, Leibniz Lung Center, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Borstel, Germany
- Institute for Experimental Medicine, Christian Albrechts University, Kiel, Germany
| | - Aicha Kriaa
- Microbiota Interaction With Human and Animal Team (MIHA), Micalis Institute, Université Paris-Saclay, INRAE, AgroParisTech, Jouy-en-Josas, France
| | - Lene Lange
- BioEconomy, Research & Advisory, Copenhagen, Denmark
| | - Emmanuelle Maguin
- Microbiota Interaction With Human and Animal Team (MIHA), Micalis Institute, Université Paris-Saclay, INRAE, AgroParisTech, Jouy-en-Josas, France
| | - Birgit Mitter
- Bioresources Unit, Center for Health & Bioresources, AIT Austrian Institute of Technology GmbH, Tulln, Austria
| | - Mette Olaf Nielsen
- Department of Animal Science, Faculty of Technical Sciences, Aarhus University, Tjele, Denmark
| | - Marta Olivares
- Microbial Ecology, Nutrition and Health Research Unit, Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia, Spain
| | - Narciso Martín Quijada
- FFoQSI GmbH - Austrian Competence Centre for Feed and Food Quality, Safety and Innovation, Tulln, Austria
- Unit of Food Microbiology, Institute of Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| | - Marina Romaní-Pérez
- Microbial Ecology, Nutrition and Health Research Unit, Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia, Spain
| | - Yolanda Sanz
- Microbial Ecology, Nutrition and Health Research Unit, Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia, Spain
| | - Michael Schloter
- Research Unit Comparative Microbiome Analysis, Helmholtz Center Munich, Neuherberg, Germany
| | | | | | - Joseph Selvin
- School of Life Sciences, Pondicherry University, Puducherry, India
| | - Angela Sessitsch
- Bioresources Unit, Center for Health & Bioresources, AIT Austrian Institute of Technology GmbH, Tulln, Austria
| | - Mengcen Wang
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, China
| | - Benjamin Zwirzitz
- Institute of Food Science, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Evelyne Selberherr
- Unit of Food Microbiology, Institute of Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| | - Martin Wagner
- FFoQSI GmbH - Austrian Competence Centre for Feed and Food Quality, Safety and Innovation, Tulln, Austria
- Unit of Food Microbiology, Institute of Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| |
Collapse
|
17
|
Ferrocino I, Rantsiou K, Cocolin L. Microbiome and -omics application in food industry. Int J Food Microbiol 2022; 377:109781. [DOI: 10.1016/j.ijfoodmicro.2022.109781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 05/31/2022] [Accepted: 06/03/2022] [Indexed: 11/30/2022]
|
18
|
The Application of Artificial Intelligence Technology in the Asset Management of Start-Ups in the Context of Deep Learning. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022; 2022:1756470. [PMID: 35571688 PMCID: PMC9098275 DOI: 10.1155/2022/1756470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/07/2022] [Accepted: 04/21/2022] [Indexed: 11/17/2022]
Abstract
With the coninuous improvement and development of artificial intelligence (AI) technology, this technology has been used in the asset management of companies. To improve the asset management level of Chinese start-ups, firstly, back-propagation neural network (BPNN) has been studied in depth, and an evaluation system of the company’s asset quality has been established. Secondly, the BPNN is integrated with the evaluation indicators of asset quality, and an evaluation model of asset quality based on BPNN is constructed. Next, start-up A is taken as the experimental object; the evaluation score of the asset quality of A company is input into the model, which proves that there is still a certain gap between the asset management level of start-ups and mature companies. Finally, to find out the problems of the company’s asset quality, the traditional financial analysis method is used to carry out a specific microanalysis of the evaluation indicators of its asset quality. In view of the existing problems, suggestions are put forward for prudent investment, improve inventory operation efficiency, increase investment in R&D and innovation, improve the quality of sales outlets, and increase the proportion of high-quality intangible assets. The asset quality evaluation system for start-ups established here includes 19 evaluation indicators. The BPNN-based asset quality evaluation model selects 5 mature companies in the same industry as sample companies. The scores of the evaluation indicators of asset quality of the 5 sample companies in the past three years are normalized and input into the model. The model contains 19 nodes of the input layer, 39 nodes of the hidden layer, and 1 node of the output layer. The target error rate is 0.001, the learning rate is 0.1, the number of training times is 1000, and the training function is the trainlm function. This research has a certain reference for the application of AI technology in the asset management of start-ups.
Collapse
|
19
|
Fu H, Pan L, Wang J, Zhao J, Guo X, Chen J, Lu S, Dong J, Wang Q. Sensory Properties and Main Differential Metabolites Influencing the Taste Quality of Dry-Cured Beef during Processing. Foods 2022; 11:foods11040531. [PMID: 35206008 PMCID: PMC8870990 DOI: 10.3390/foods11040531] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/07/2022] [Accepted: 02/09/2022] [Indexed: 02/05/2023] Open
Abstract
This study adopted widely targeted high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) metabolomics and multivariate data analysis methods to evaluate the correlation between changes in metabolites and their taste formation in dry-cured beef during processing. The physicochemical profile changed significantly in the maturity period (RG), especially due to the continuous hydrolysis and oxidation of proteins. The sensory characteristic of dry-cured beef was highest in saltiness, umami, overall taste, and after-taste in RG. Overall, 400 metabolites were mainly identified, including amino acids, peptides, organic acids, and their derivatives, nucleotides, and their metabolites, as well as carbohydrates. Cysteine and succinic acid were significantly up-regulated during the process of dry-curing beef compared to the control group (CG). Moreover, glutamine and glutathione were significantly down-regulated in the fermentation period (FG) and in RG. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis revealed that glyoxylate and dicarboxylate metabolism, glutathione metabolism, alanine, aspartate, and glutamate metabolism, arginine biosynthesis, taurine, and hypotaurine metabolism were the main metabolic pathways influencing the taste of dry-cured beef during processing. Results of correlation analysis revealed that umami is positively correlated with salty, L-cysteine, L-arginine, inosine, creatinine, and succinic acid. Our study results provide a better understanding of the changes in taste substances and will contribute to quality evaluation of dry-cured beef.
Collapse
Affiliation(s)
- Huihui Fu
- Laboratory of Meat Processing and Quality Control, College of Food Science and Technology, Shihezi Univesity, Shihezi 832000, China; (H.F.); (L.P.); (J.W.); (J.Z.); (X.G.); (J.C.); (S.L.); (J.D.)
- College of Cooking and Catering Management, Xinjiang Vocational University, Urumqi 830013, China
| | - Li Pan
- Laboratory of Meat Processing and Quality Control, College of Food Science and Technology, Shihezi Univesity, Shihezi 832000, China; (H.F.); (L.P.); (J.W.); (J.Z.); (X.G.); (J.C.); (S.L.); (J.D.)
| | - Jingyun Wang
- Laboratory of Meat Processing and Quality Control, College of Food Science and Technology, Shihezi Univesity, Shihezi 832000, China; (H.F.); (L.P.); (J.W.); (J.Z.); (X.G.); (J.C.); (S.L.); (J.D.)
| | - Jixing Zhao
- Laboratory of Meat Processing and Quality Control, College of Food Science and Technology, Shihezi Univesity, Shihezi 832000, China; (H.F.); (L.P.); (J.W.); (J.Z.); (X.G.); (J.C.); (S.L.); (J.D.)
| | - Xin Guo
- Laboratory of Meat Processing and Quality Control, College of Food Science and Technology, Shihezi Univesity, Shihezi 832000, China; (H.F.); (L.P.); (J.W.); (J.Z.); (X.G.); (J.C.); (S.L.); (J.D.)
| | - Jingya Chen
- Laboratory of Meat Processing and Quality Control, College of Food Science and Technology, Shihezi Univesity, Shihezi 832000, China; (H.F.); (L.P.); (J.W.); (J.Z.); (X.G.); (J.C.); (S.L.); (J.D.)
| | - Shiling Lu
- Laboratory of Meat Processing and Quality Control, College of Food Science and Technology, Shihezi Univesity, Shihezi 832000, China; (H.F.); (L.P.); (J.W.); (J.Z.); (X.G.); (J.C.); (S.L.); (J.D.)
| | - Juan Dong
- Laboratory of Meat Processing and Quality Control, College of Food Science and Technology, Shihezi Univesity, Shihezi 832000, China; (H.F.); (L.P.); (J.W.); (J.Z.); (X.G.); (J.C.); (S.L.); (J.D.)
| | - Qingling Wang
- Laboratory of Meat Processing and Quality Control, College of Food Science and Technology, Shihezi Univesity, Shihezi 832000, China; (H.F.); (L.P.); (J.W.); (J.Z.); (X.G.); (J.C.); (S.L.); (J.D.)
- Correspondence: ; Tel.: +86-0993-2058735; Fax: +86-0993-2057399
| |
Collapse
|