1
|
Boostani S, Sarabandi K, Tarhan O, Rezaei A, Assadpour E, Rostamabadi H, Falsafi SR, Tan C, Zhang F, Jafari SM. Multiple Pickering emulsions stabilized by food-grade particles as innovative delivery systems for bioactive compounds. Adv Colloid Interface Sci 2024; 328:103174. [PMID: 38728772 DOI: 10.1016/j.cis.2024.103174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/21/2024] [Accepted: 04/30/2024] [Indexed: 05/12/2024]
Abstract
The most common carrier for encapsulation of bioactive components is still simple emulsion. Recently, bio-based novel emulsion systems such as multiple emulsions (MEs) and Pickering emulsions (PEs) have been introduced as innovative colloidal delivery systems for encapsulation and controlled release of bioactive compounds. Multiple PEs (MPEs), which carries both benefit of MEs and PEs could be fabricated by relatively scalable and simple operations. In comparison with costly synthetic surfactants and inorganic particles which are widely used for stabilization of both MEs and PEs, MPEs stabilized by food-grade particles, while having health-promoting aspects, are able to host the "clean label" and "green label" attributes. Nevertheless, in achieving qualified techno-functional attributes and encapsulation properties, the selection of suitable materials is a crucial step in the construction of such complex systems. Current review takes a cue from both MEs and PEs emulsification techniques to grant a robust background for designing various MPEs. Herein, various fabrication methods of MEs and PEs are described comprehensively in a physical viewpoint in order to find key conception of successful formulation of MPEs. This review also highlights the link between the underlying aspects and exemplified specimens of evidence which grant insights into the rational design of MPEs through food-based ingredients to introduces MPEs as novel colloidal/functional materials. Their utilization for encapsulation of bioactive compounds is discussed as well. In the last part, instability behavior of MPEs under various conditions will be discussed. In sum, this review aims to gain researchers who work with food-based components, basics of innovative design of MPEs.
Collapse
Affiliation(s)
- Sareh Boostani
- Shiraz Pharmaceutical Products Technology Incubator, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Khashayar Sarabandi
- Department of Food Chemistry, Research Institute of Food Science and Technology (RIFST), Mashhad, Iran
| | - Ozgur Tarhan
- Food Engineering Department, Engineering Faculty, Uşak University, 1 Eylul Campus, Uşak 64100, Türkiye
| | - Atefe Rezaei
- Department of Food Science and Technology, School of Nutrition and Food Science, Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Elham Assadpour
- Food Industry Research Co., Gorgan, Iran; Food and Bio-Nanotech International Research Center (Fabiano), Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Hadis Rostamabadi
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| | - Seid Reza Falsafi
- Isfahan Endocrine and Metabolism Research Center, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| | - Chen Tan
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education. China-Canada Joint Lab of Food Nutrition and Health (Beijing), School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Fuyuan Zhang
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China.
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran; Halal Research Center of IRI, Iran Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran.
| |
Collapse
|
2
|
Melchior S, Carini E, Gigliotti M, Ciuffarin F, Marino M, Innocente N, Nicoli MC, Calligaris S. Unraveling the role of probiotics in affecting the structure of monoglyceride gelled emulsions: A low-field 1H NMR study. Curr Res Food Sci 2024; 8:100724. [PMID: 38617093 PMCID: PMC11015334 DOI: 10.1016/j.crfs.2024.100724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/19/2024] [Accepted: 03/25/2024] [Indexed: 04/16/2024] Open
Abstract
The capacity of monoglyceride (MG) gelled emulsions (MEs) in protecting probiotic cells of Lacticaseibacillus rhamnosus against stresses suffered during food processing, storage, and human digestion has been recently demonstrated. These findings open new perspectives on the possible participation of probiotics in the stabilization of emulsion structure. To unravel this aspect, rheological analysis and Low-Field 1H NMR investigations were performed on MEs having different aqueous phases (water or skimmed milk) and stored for increasing time (1 and 14 days) at 4 °C. Loaded and unloaded samples were considered. Results highlighted that probiotics initially hindered the ability of MG to self-assemble in the multiphase environment, interacting in some way with MG crystalline lamellar structure, as confirmed by rheological and 1H NMR analysis. During storage, an increase of proton compartmentation was observed in loaded MEs indicating the role of probiotics in stabilizing MG structure at a molecular level. Such a result was more evident when the system was composed of milk, suggesting that the presence of milk-native components (i.e., lactose, proteins, and minerals) favored the cell-structure interactions. Such preliminary results could open new perspectives in considering probiotic cells as having an active role in the stabilization of food structure.
Collapse
Affiliation(s)
- Sofia Melchior
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via Sondrio 2/a, Udine, Italy
| | - Eleonora Carini
- Department of Food and Drug, University of Parma, Parco Area delle Scienze, 47/A, Parma, Italy
| | - Marcello Gigliotti
- Department of Food and Drug, University of Parma, Parco Area delle Scienze, 47/A, Parma, Italy
| | - Francesco Ciuffarin
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via Sondrio 2/a, Udine, Italy
| | - Marilena Marino
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via Sondrio 2/a, Udine, Italy
| | - Nadia Innocente
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via Sondrio 2/a, Udine, Italy
| | - Maria Cristina Nicoli
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via Sondrio 2/a, Udine, Italy
| | - Sonia Calligaris
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via Sondrio 2/a, Udine, Italy
| |
Collapse
|
3
|
Abbasi S, Rafati A, Hosseini SMH, Roohinejad S, Hashemi S, Hashemi Gahruie H, Rashidinejad A. The internal aqueous phase gelation improves the viability of probiotic cells in a double water/oil/water emulsion system. Food Sci Nutr 2023; 11:5978-5988. [PMID: 37823133 PMCID: PMC10563674 DOI: 10.1002/fsn3.3532] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/08/2023] [Accepted: 06/16/2023] [Indexed: 10/13/2023] Open
Abstract
This research studied the viability of probiotic bacterium Lactobacillus plantarum (L. plantarum) encapsulated in the internal aqueous phase (W 1) of a water-in-oil-in-water (W 1/O/W 2) emulsion system, with the help of gelation and different gelling agents. Additionally, the physicochemical, rheological, and microstructural properties of the fabricated emulsion systems were assessed over time under the effect of W 1 gelation. The average droplet size and zeta potential of the control system and the systems fabricated using gelatin, alginate, tragacanth gum, and carrageenan were 14.7, 12.0, 5.1, 6.4, and 7.3 μm and - 21.1, -34.1, -46.2, -38.3, and -34.7 mV, respectively. The results showed a significant increase in the physical stability of the system and encapsulation efficiency of L. plantarum after the W 1 gelation. The internal phase gelation significantly increased the viability of bacteria against heat and acidic pH, with tragacanth gum being the best gelling agent for increasing the viability of L. plantarum (28.05% and 16.74%, respectively). Apparent viscosity and rheological properties of emulsions were significantly increased after the W 1 gelation, particularly in those jellified with alginate. Overall, L. plantarum encapsulation in W 1/O/W 2 emulsion, followed by the W 1 gelation using tragacanth gum as the gelling agent, could increase both stability and viability of this probiotic bacteria.
Collapse
Affiliation(s)
- Shahrokh Abbasi
- Food Science and Technology DepartmentIslamic Azad UniversitySarvestanIran
| | - Alireza Rafati
- Food Science and Technology DepartmentIslamic Azad UniversitySarvestanIran
| | | | - Shahin Roohinejad
- Burn and Wound Healing Research CenterShiraz University of Medical SciencesShirazIran
| | - Seyedeh‐Sara Hashemi
- Burn and Wound Healing Research CenterShiraz University of Medical SciencesShirazIran
| | - Hadi Hashemi Gahruie
- Department of Food Science and Technology, School of AgricultureShiraz UniversityShirazIran
| | | |
Collapse
|
4
|
Liu Y, Yu W, Wang Q, Cao Z, Li J. Artificially engineered bacteria to treat gastrointestinal disease and cancer. Drug Discov Today 2023; 28:103667. [PMID: 37302541 DOI: 10.1016/j.drudis.2023.103667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/26/2023] [Accepted: 06/06/2023] [Indexed: 06/13/2023]
Abstract
Therapeutics based on living organisms provide a roadmap for next-generation biomedicine. Bacteria have an essential role in the development, regulation, and treatment of gastrointestinal disease and cancer through similar mechanisms. However, primitive bacteria lack the stability to overcome complex drug delivery barriers, and their multifunctionality in reinforcing both conventional and emerging therapeutics is limited. Artificially engineered bacteria (ArtBac) with modified surfaces and genetic functions show promise for tackling these problems. Herein, we discuss recent applications of ArtBac as living biomedicine for the treatment of gastrointestinal diseases and tumors. Future perspectives are given to guide the rational design of ArtBac toward safe multifunctional medicine.
Collapse
Affiliation(s)
- Yong Liu
- School of Science, Hainan University, Haikou 570228, China
| | - Wenqin Yu
- School of Life Sciences, Hainan University, Haikou 570228, China
| | - Qian Wang
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China.
| | - Zhenping Cao
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| | - Juanjuan Li
- School of Life Sciences, Hainan University, Haikou 570228, China.
| |
Collapse
|
5
|
Jiang X, Martens HJ, Shekarforoush E, Muhammed MK, Whitehead KA, Arneborg N, Risbo J. Multi-species colloidosomes by surface-modified lactic acid bacteria with enhanced aggregation properties. J Colloid Interface Sci 2022; 622:503-514. [DOI: 10.1016/j.jcis.2022.04.136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 04/11/2022] [Accepted: 04/23/2022] [Indexed: 10/18/2022]
|