1
|
Wang S, Liu P, Zang Y, Wei J, Sun C, Li X, Zhao Y, Cao Y, Lu W, Fang Y. Amyloid fibrils from black kidney bean protein self-assemble into hydrogels: Impact of heating time on gel structure and rheological properties. Food Chem 2025; 476:143406. [PMID: 39965345 DOI: 10.1016/j.foodchem.2025.143406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 02/11/2025] [Accepted: 02/12/2025] [Indexed: 02/20/2025]
Abstract
Fibrillation of plant proteins is a promising approach to enhance their gel properties. In this study, black kidney bean protein isolate self-assembled into amyloid fibrils and subsequently formed hydrogels at a concentration of 2.0 wt% after thermal treatment at pH 2.0. Gel structure and rheological properties were modulated by regulating the acid-heat incubation time (0-72 h). With increased incubation time, the black kidney bean protein fibrils (BKPFs) transitioned through distinct states: sol state (8 h), gel state formed by fibril entanglement (12-20 h), and disrupted gel state by partial depolymerization of fibril aggregates (>24 h). Rheological analysis revealed that the gels at 16 h had maximum storage modulus (159.9 Pa). Small-angle X-ray scattering indicated that BKPFs highly aggregated (Rg = 49.49 nm) with a more compact mass fractal structure (Df = 2.0) at 16 h. Cryo-scanning electron microscopy images showed the formation of a homogeneous and dense three-dimensional gel network structure at 12 h.
Collapse
Affiliation(s)
- Shurui Wang
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Peixuan Liu
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yiyu Zang
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jiaoyue Wei
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Cuixia Sun
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Xiaoyang Li
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yiguo Zhao
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yiping Cao
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wei Lu
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yapeng Fang
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
2
|
Raynes JK, Mata J, Wilde KL, Carver JA, Kelly SM, Holt C. Structure of biomimetic casein micelles: Critical tests of the hydrophobic colloid and multivalent-binding models using recombinant deuterated and phosphorylated β-casein. J Struct Biol X 2024; 9:100096. [PMID: 38318529 PMCID: PMC10840362 DOI: 10.1016/j.yjsbx.2024.100096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/08/2024] [Accepted: 01/17/2024] [Indexed: 02/07/2024] Open
Abstract
Milk contains high concentrations of amyloidogenic casein proteins and is supersaturated with respect to crystalline calcium phosphates such as apatite. Nevertheless, the mammary gland normally remains unmineralized and free of amyloid. Unlike κ-casein, β- and αS-caseins are highly effective mineral chaperones that prevent ectopic and pathological calcification of the mammary gland. Milk invariably contains a mixture of two to five different caseins that act on each other as molecular chaperones. Instead of forming amyloid fibrils, several thousand caseins and hundreds of nanoclusters of amorphous calcium phosphate combine to form fuzzy complexes called casein micelles. To understand the biological functions of the casein micelle its structure needs to be understood better than at present. The location in micelles of the highly amyloidogenic κ-casein is disputed. In traditional hydrophobic colloid models, it, alone, forms a stabilizing surface coat that also determines the average size of the micelles. In the recent multivalent-binding model, κ-casein is present throughout the micelle, in intimate contact with the other caseins. To discriminate between these models, a range of biomimetic micelles was prepared using a fixed concentration of the mineral chaperone β-casein and nanoclusters of calcium phosphate, with variable concentrations of κ-casein. A biomimetic micelle was also prepared using a highly deuterated and in vivo phosphorylated recombinant β-casein with calcium phosphate and unlabelled κ-casein. Neutron and X-ray scattering experiments revealed that κ-casein is distributed throughout the micelle, in quantitative agreement with the multivalent-binding model but contrary to the hydrophobic colloid models.
Collapse
Affiliation(s)
- Jared K. Raynes
- CSIRO Agriculture & Food, 671 Sneydes Road, Werribee, VIC 3031, Australia
- All G Foods, Waterloo, NSW 2006, Australia
| | - Jitendra Mata
- Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW 2234, Australia
- School of Chemistry, University of New South Wales, Sydney 2052, Australia
| | - Karyn L. Wilde
- National Deuteration Facility, Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW 2234, Australia
| | - John A. Carver
- Research School of Chemistry, The Australian National University, Acton, ACT 2601, Australia
| | - Sharon M. Kelly
- School of Molecular Biosciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Carl Holt
- School of Molecular Biosciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| |
Collapse
|
3
|
Ren J, Liao M, Li K, Chen F, Hu X, Ma L, Ji J. The aggregation of casein micelles induced by Ca 2+ during in vitro digestion: effects on the release of loaded anthocyanins. Food Funct 2024; 15:503-515. [PMID: 38164698 DOI: 10.1039/d3fo03684g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Colloidal calcium phosphate (CCP) confers a modifiable structure to micellar casein (MC), which endows it with potential advantages as a delivery carrier. However, it is difficult to achieve multipattern release of the core material in the intestine with MC as a single wall. In this study, we prepared an anthocyanin-casein-based delivery system utilizing MC with different freezing degrees as the wall material with the objective of achieving the controlled release of anthocyanin as the model core in the intestine. The results showed that freezing could significantly reduce the CCP level up to 50%. Static in vitro simulated digestion with the addition of exogenous Ca2+ showed that the designed delivery system exhibited low anthocyanin release (15%-35%) in the gastric tract. The pattern of release in the intestine depended on the CCP dissociation degree. High and low dissociation degrees corresponded to slow release (from 15% to 65% within 2 h) and burst release (from 35% to 90% within 5 min), respectively. WAXS/SAXS analysis revealed that exogenous serum Ca2+ inherent in simulated gastric fluid and endogenous serum Ca2+ induced by CCP dissociation was synergistically involved in the reconstitution of CCP-mediated nanoclusters and large aggregates. The freezing degree of MC determined the endogenous serum Ca2+ level, which influenced the gastric aggregation behavior of wall MC and ultimately led to a fairly different gastrointestinal release behavior of anthocyanins.
Collapse
Affiliation(s)
- Jinbo Ren
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, China Agricultural University, Key Lab of Fruit and Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing 100083, China.
- Xinghua Industrial Research Centre for Food Science and Human Health, China Agricultural University, Xinghua 225700, China.
| | - Minjie Liao
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, China Agricultural University, Key Lab of Fruit and Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing 100083, China.
| | - Kaixin Li
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, China Agricultural University, Key Lab of Fruit and Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing 100083, China.
| | - Fang Chen
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, China Agricultural University, Key Lab of Fruit and Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing 100083, China.
| | - Xiaosong Hu
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, China Agricultural University, Key Lab of Fruit and Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing 100083, China.
- Xinghua Industrial Research Centre for Food Science and Human Health, China Agricultural University, Xinghua 225700, China.
| | - Lingjun Ma
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, China Agricultural University, Key Lab of Fruit and Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing 100083, China.
- Xinghua Industrial Research Centre for Food Science and Human Health, China Agricultural University, Xinghua 225700, China.
| | - Junfu Ji
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, China Agricultural University, Key Lab of Fruit and Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing 100083, China.
- Xinghua Industrial Research Centre for Food Science and Human Health, China Agricultural University, Xinghua 225700, China.
| |
Collapse
|
4
|
Peng L, Ren J, Chen F, Hu X, Miao S, Ma L, Ji J. Gastric aggregation of micellar casein powders induced by high hydrostatic pressure: Effect of serum Ca 2+ level. Food Res Int 2023; 174:113558. [PMID: 37986436 DOI: 10.1016/j.foodres.2023.113558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 09/30/2023] [Accepted: 10/02/2023] [Indexed: 11/22/2023]
Abstract
Micellar casein (MC) has a unique gastric colloidal behavior in response to Ca2+ cross-linking, and its aggregation properties are closely related to pepsin and gastric acid. In this study, MC with different levels of colloidal calcium phosphate (CCP) was obtained by high hydrostatic pressure (HHP) at different pressures, followed by spray drying to obtain the powders. Different amounts of calcium chloride (exogenous Ca2+) were added to MC powders prior to in vitro simulated digestion to investigate the effect of exogenous serum Ca2+ levels on the aggregation behavior and the structure change of curds generated in gastric tract. The results revealed that HHP induced the emergence of more Ca2+-binding sites, thus Ca2+ was more likely to bind to MC matrix with low CCP levels. Meanwhile, high serum Ca2+ level provided more opportunities to form aggregates. The Highest pressure (500 MPa) with the highest Ca2+ level (5 mM) caused the lowest solubility aggregates, which were only 30% at the end of gastric digestion (120 min), half of the control sample (0 MPa with 0.15 mM Ca2+). The results of wide-angle X-ray scattering / small-angle X-ray scattering suggested that both pepsin and gastric acid-induced aggregation via Ca2+ as a bridge. For pepsin, Ca2+ cross-linked between para-κ-casein; For gastric acid, Ca2+ recombined phosphorylation sites and caused cross-linking of casein subunits.
Collapse
Affiliation(s)
- Lu Peng
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, China Agricultural University, Key Lab of Fruit and Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Jinbo Ren
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, China Agricultural University, Key Lab of Fruit and Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing 100083, China; Xinghua Industrial Research Centre for Food Science and Human Health, China Agricultural University, Xinghua 225700, China
| | - Fang Chen
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, China Agricultural University, Key Lab of Fruit and Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Xiaosong Hu
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, China Agricultural University, Key Lab of Fruit and Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing 100083, China; Xinghua Industrial Research Centre for Food Science and Human Health, China Agricultural University, Xinghua 225700, China
| | - Song Miao
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
| | - Lingjun Ma
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, China Agricultural University, Key Lab of Fruit and Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing 100083, China; Xinghua Industrial Research Centre for Food Science and Human Health, China Agricultural University, Xinghua 225700, China.
| | - Junfu Ji
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, China Agricultural University, Key Lab of Fruit and Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing 100083, China; Xinghua Industrial Research Centre for Food Science and Human Health, China Agricultural University, Xinghua 225700, China.
| |
Collapse
|
5
|
Mohammad-Beigi H, Wijaya W, Madsen M, Hayashi Y, Li R, Maria Rovers TA, Jæger TC, Buell AK, Hougaard AB, Kirkensgaard JJ, Westh P, Ipsen R, Svensson B. Association of caseins with β-lactoglobulin influenced by temperature and calcium ions: A multi-parameter analysis. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
6
|
Sun Y, Li X, Chen R, Liu F, Wei S. Recent advances in structural characterization of biomacromolecules in foods via small-angle X-ray scattering. Front Nutr 2022; 9:1039762. [PMID: 36466419 PMCID: PMC9714470 DOI: 10.3389/fnut.2022.1039762] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 11/03/2022] [Indexed: 08/04/2023] Open
Abstract
Small-angle X-ray scattering (SAXS) is a method for examining the solution structure, oligomeric state, conformational changes, and flexibility of biomacromolecules at a scale ranging from a few Angstroms to hundreds of nanometers. Wide time scales ranging from real time (milliseconds) to minutes can be also covered by SAXS. With many advantages, SAXS has been extensively used, it is widely used in the structural characterization of biomacromolecules in food science and technology. However, the application of SAXS in charactering the structure of food biomacromolecules has not been reviewed so far. In the current review, the principle, theoretical calculations and modeling programs are summarized, technical advances in the experimental setups and corresponding applications of in situ capabilities: combination of chromatography, time-resolved, temperature, pressure, flow-through are elaborated. Recent applications of SAXS for monitoring structural properties of biomacromolecules in food including protein, carbohydrate and lipid are also highlighted, and limitations and prospects for developing SAXS based on facility upgraded and artificial intelligence to study the structural properties of biomacromolecules are finally discussed. Future research should focus on extending machine time, simplifying SAXS data treatment, optimizing modeling methods in order to achieve an integrated structural biology based on SAXS as a practical tool for investigating the structure-function relationship of biomacromolecules in food industry.
Collapse
Affiliation(s)
- Yang Sun
- College of Vocational and Technical Education, Yunnan Normal University, Kunming, China
| | - Xiujuan Li
- Pharmaceutical Department, The Affiliated Taian City Central Hospital of Qingdao University, Taian, China
| | - Ruixin Chen
- College of Vocational and Technical Education, Yunnan Normal University, Kunming, China
| | - Fei Liu
- College of Vocational and Technical Education, Yunnan Normal University, Kunming, China
| | - Song Wei
- Tumor Precise Intervention and Translational Medicine Laboratory, The Affiliated Taian City Central Hospital of Qingdao University, Taian, China
| |
Collapse
|
7
|
Du Z, Xu N, Yang Y, Li G, Tai Z, Li N, Sun Y. Study on internal structure of casein micelles in reconstituted skim milk powder. Int J Biol Macromol 2022; 224:437-452. [DOI: 10.1016/j.ijbiomac.2022.10.135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 10/09/2022] [Accepted: 10/15/2022] [Indexed: 11/05/2022]
|
8
|
Chavez T, Roberts EJ, Zwart PH, Hexemer A. A comparison of deep-learning-based inpainting techniques for experimental X-ray scattering. J Appl Crystallogr 2022; 55:1277-1288. [PMID: 36249508 PMCID: PMC9533742 DOI: 10.1107/s1600576722007105] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 07/10/2022] [Indexed: 11/10/2022] Open
Abstract
The implementation is proposed of image inpainting techniques for the reconstruction of gaps in experimental X-ray scattering data. The proposed methods use deep learning neural network architectures, such as convolutional autoencoders, tunable U-Nets, partial convolution neural networks and mixed-scale dense networks, to reconstruct the missing information in experimental scattering images. In particular, the recovered pixel intensities are evaluated against their corresponding ground-truth values using the mean absolute error and the correlation coefficient metrics. The results demonstrate that the proposed methods achieve better performance than traditional inpainting algorithms such as biharmonic functions. Overall, tunable U-Net and mixed-scale dense network architectures achieved the best reconstruction performance among all the tested algorithms, with correlation coefficient scores greater than 0.9980.
Collapse
Affiliation(s)
- Tanny Chavez
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Eric J. Roberts
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Center for Advanced Mathematics for Energy Research Applications, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Petrus H. Zwart
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Center for Advanced Mathematics for Energy Research Applications, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Berkeley Synchrotron Infrared Structural Biology Program, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Alexander Hexemer
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Center for Advanced Mathematics for Energy Research Applications, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| |
Collapse
|
9
|
Gharbi N, Marciniak A, Doyen A. Factors affecting the modification of bovine milk proteins in high hydrostatic pressure processing: An updated review. Compr Rev Food Sci Food Saf 2022; 21:4274-4293. [PMID: 35904187 DOI: 10.1111/1541-4337.13012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 06/17/2022] [Accepted: 07/03/2022] [Indexed: 01/28/2023]
Abstract
High hydrostatic pressure (HHP) treatment induces structural changes in bovine milk proteins depending on factors such as the temperature, pH, concentration, decompression rate, cycling, composition of the medium and pressure level and duration. An in-depth understanding of the impact of these factors is important for controlling HHP-induced modification of milk proteins and the interactions within or between them, which can be applied to prevent undesired aggregation, gelation, and precipitation during HHP processing or to obtain specific milk protein modifications to attain specific protein properties. In this regard, understanding the influences of these factors can provide insight into the modulation and optimization of HHP conditions to attain specific milk protein structures. In recent years, there has been a great research attention on HHP-induced changes in milk proteins influenced by factors such as pH, temperature, concentration, cycling, decompression condition, and medium composition. Hence, to provide insight into how these factors control milk protein structures under HHP treatment and to understand if their effects depend on HHP parameters and environmental conditions, this review discusses recent findings on how various factors (pH, temperature, cycling, decompression rate, medium composition, and concentration) affect HHP-induced bovine milk protein modification. Practical Application: The information provided in this review will be very useful to anticipate the challenges related to the formulation and development of pressure-treated milk and dairy products.
Collapse
Affiliation(s)
- Negar Gharbi
- Departement of Food Sciences, Institute of Nutrition and Functional Foods (INAF) and Dairy Science and Technology Research Centre (STELA), Laval University, Quebec City, Canada
| | - Alice Marciniak
- Department of Food Science, University of Guelph, Guelph, Canada
| | - Alain Doyen
- Departement of Food Sciences, Institute of Nutrition and Functional Foods (INAF) and Dairy Science and Technology Research Centre (STELA), Laval University, Quebec City, Canada
| |
Collapse
|
10
|
Horvath A, Fuxreiter M, Vendruscolo M, Holt C, Carver JA. Are casein micelles extracellular condensates formed by liquid-liquid phase separation? FEBS Lett 2022; 596:2072-2085. [PMID: 35815989 DOI: 10.1002/1873-3468.14449] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 06/27/2022] [Indexed: 11/05/2022]
Abstract
Casein micelles are extracellular polydisperse assemblies of unstructured casein proteins. Caseins are the major component of milk. Within casein micelles, casein molecules are stabilised by binding to calcium phosphate nanoclusters and, by acting as molecular chaperones, through multivalent interactions. In light of such interactions, we discuss whether casein micelles can be considered as extracellular condensates formed by liquid-liquid phase separation. We analyse the sequence, structure and interactions of caseins in comparison to proteins forming intracellular condensates. Furthermore, we review the similarities between caseins and small heat-shock proteins whose chaperone activity is linked to phase separation of proteins. By bringing these observations together, we describe a regulatory mechanism for protein condensates, as exemplified by casein micelles.
Collapse
Affiliation(s)
- Attila Horvath
- John Curtin School of Medical Research, The Australian National University, Acton, ACT, 2601, Australia
| | - Monika Fuxreiter
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi, 58/B 35131, Padova, Italy
| | - Michele Vendruscolo
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom
| | - Carl Holt
- Institute of Molecular, Cell and Systems Biology, University of Glasgow, Glasgow, G12 8QQ, United Kingdom
| | - John A Carver
- Research School of Chemistry, The Australian National University, Acton, ACT, 2601, Australia
| |
Collapse
|
11
|
In situ SAXS study of non-fat milk model systems during heat treatment and acidification. Food Res Int 2022; 157:111292. [DOI: 10.1016/j.foodres.2022.111292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/20/2022] [Accepted: 04/21/2022] [Indexed: 11/20/2022]
|