1
|
Xia R, Qiao Y, Xu H, Ren H, Hou Z, Yan M, Li Y, Wang Y, Pan S, Xin G. 4D-label free based comparative proteomics revealed the responsive mechanisms of quality deterioration driven by spore release in shiitake mushrooms. Food Chem 2025; 464:141903. [PMID: 39515164 DOI: 10.1016/j.foodchem.2024.141903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 10/17/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024]
Abstract
Label-free quantitative proteomics profiles combined with biochemical analysis were applied in three spore release stages to investigate the proteome responses related to spore release inducing the quality loss of mushrooms. During the spore release, the mushrooms softened, and malondialdehyde (MDA) and total free amino acids accumulated, especially bitter amino acids. Among the 2720 identified proteins, aminoacyl-tRNA biosynthesis, oxidative phosphorylation, and other glycan degradation pathways were primarily implicated. ATP-binding cassette (ABC) transporters and purine metabolism stimulated energy consumption in the second stage, which could be responsible for the spore release. Moreover, aminoacyl-tRNA ligase and ribosomal proteins were identified as hub proteins, actively expressed, and significantly associated with quality traits. The hub proteins might play a dominant role in mediating the quality deterioration triggered by the spore release in shiitake mushrooms. The results expand the understanding of the molecular mechanisms underlying the response to spore release in shiitake mushrooms.
Collapse
Affiliation(s)
- Rongrong Xia
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Yitong Qiao
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Heran Xu
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Hongli Ren
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Zhenshan Hou
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Miao Yan
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Yunting Li
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Yafei Wang
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Song Pan
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Guang Xin
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China.
| |
Collapse
|
2
|
Shi J, Jin Q, Zhao J, Yu J, Yu X, Sun G, Yao L. Integrative transcriptomics and proteomics analysis provide a deep insight into goose astrovirus-host interactions during GAstV infection. Poult Sci 2024; 103:104287. [PMID: 39306951 PMCID: PMC11447406 DOI: 10.1016/j.psj.2024.104287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/17/2024] [Accepted: 08/28/2024] [Indexed: 10/06/2024] Open
Abstract
Goose astrovirus (GAstV) is a newly discovered astrovirus. GAstV causes gout and death in 4- to -16-day-old goslings. For the past few years, fatal gout, the cardinal clinical symptom of gosling infected with GAstV, has been spreading rapidly in some goose Chinese farms, which caused continuous economic losses to the goose breeding industry in China. Currently, several underlying mechanisms involved in viral replication, inflammatory reaction, virions release, and viral pathogenesis of GAstV remain to be elucidated. In this study, we explored the mechanisms of GAstV-host interactions, the transcriptome and proteome profiles of GAstV-infected LMH cells were sequenced by RNA-seq and data-independent acquisition (DIA) techniques, respectively, and followed using an integrative analysis. Compared with uninfected LMH cells, a total of 322 differentially expressed genes (DEG) (195 up-regulated, 127 down-regulated) and 36 differentially expressed proteins (DEP) (31 up-regulated, 5 down-regulated) were detected. Nine DEGs were randomly selected for further validation by quantitative real-time polymerase chain reaction (qPCR). Through GO and KEGG enrichment analysis, DEG and DEP were significantly enriched in several important cellular signaling pathways, including MAPK, PI3K-Akt, cAMP, chemokine, calcium, phospholipase D, Ras, TNF, IL-17, Rap1, NF-kappa B signaling pathways, indicating that GAstV affects cell growth and immune signaling. This study provided an overview of changes in transcriptome and proteome profiles of GAstV-infected LMH cells, therefore, providing a crucial basis to further explore the mechanisms of GAstV-host interactions.
Collapse
Affiliation(s)
- Jianzhou Shi
- School of Life Science, Nanyang Normal University, Nanyang, Henan 473061, China; The Shennong Laboratory, Zhengzhou, Henan 450046, China
| | - Qianyue Jin
- Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
| | - Jinbing Zhao
- School of Life Science, Nanyang Normal University, Nanyang, Henan 473061, China
| | - Jinran Yu
- School of Life Science, Nanyang Normal University, Nanyang, Henan 473061, China
| | - Xianyi Yu
- School of Life Science, Nanyang Normal University, Nanyang, Henan 473061, China
| | - Guirong Sun
- The Shennong Laboratory, Zhengzhou, Henan 450046, China; Animal Science and Technology, Henan Agricultural University, Zhengzhou, Henan 450046, China
| | - Lunguang Yao
- School of Life Science, Nanyang Normal University, Nanyang, Henan 473061, China; Henan Field Observation and Research Station of Headwork Wetland Ecosystem of the Central Route of South-to-North Water Diversion Project, Nanyang, Henan 473061, China; Henan Provincial Engineering and Technology Center of Health Products for Livestock and Poultry, Nanyang, Henan 473061, China.
| |
Collapse
|
3
|
Su J, Yao B, Huang R, Liu X, Zhang Z, Zhang Y. Cross-Kingdom Pathogenesis of Pantoea alfalfae CQ10: Insights from Transcriptome and Proteome Analyses. Microorganisms 2024; 12:2197. [PMID: 39597586 PMCID: PMC11596184 DOI: 10.3390/microorganisms12112197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/27/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024] Open
Abstract
In grassland agroecosystems, some plant pathogenic bacteria can cause disease in animals. These strains are known as plant and animal cross-kingdom pathogenic bacteria. In this study, we established an alfalfa root infection model and a mouse model via the gavage administration of the Pantoea alfalfae CQ10 (CQ10) bacterial suspension. It was confirmed that the CQ10 strain caused bacterial leaf blight of alfalfa. Mice inoculated with 0.4 mL of 109 cfu/mL bacterial suspension developed clinical symptoms 48 h later, such as diminished vitality, tendencies to huddle, and lack of appetite, including severe lesions in stomach, liver, kidney, and spleen tissues. CQ10 strains were isolated from mouse feces at different time points of inoculation. Thus, CQ10 is a plant and animal cross-kingdom pathogenic bacterium. Transcriptome and proteome analyses showed that biofilm and iron uptake are important virulence factors of the pathogen CQ10, among which Bap and Lpp regulating biofilm are the key cross-kingdom virulence genes of CQ10. From an evolutionary perspective, insights gained from this dual animal-plant pathogen system may help to elucidate the molecular basis underlying the host specificity of bacterial pathogens. The result provides a theoretical basis for the risk assessment, prevention, and control strategies of new pathogenic bacteria entering a new region.
Collapse
Affiliation(s)
- Jing Su
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China;
| | - Bo Yao
- Key Laboratory of Grassland Ecosystem, Ministry of Education, Pratacultural College, Gansu Agricultural University, Lanzhou 730070, China; (B.Y.); (R.H.); (X.L.)
| | - Rong Huang
- Key Laboratory of Grassland Ecosystem, Ministry of Education, Pratacultural College, Gansu Agricultural University, Lanzhou 730070, China; (B.Y.); (R.H.); (X.L.)
| | - Xiaoni Liu
- Key Laboratory of Grassland Ecosystem, Ministry of Education, Pratacultural College, Gansu Agricultural University, Lanzhou 730070, China; (B.Y.); (R.H.); (X.L.)
| | - Zhenfen Zhang
- Key Laboratory of Grassland Ecosystem, Ministry of Education, Pratacultural College, Gansu Agricultural University, Lanzhou 730070, China; (B.Y.); (R.H.); (X.L.)
| | - Yong Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China;
| |
Collapse
|
4
|
Liu H, Li J, Xu C, Liu H, Zhao Z. Unravelling the molecular regulation network of carbon metabolism and lipid metabolism during seed development in Akebia trifoliata via integrated multi-omics analysis. Sci Rep 2024; 14:22893. [PMID: 39358430 PMCID: PMC11446908 DOI: 10.1038/s41598-024-74075-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 09/23/2024] [Indexed: 10/04/2024] Open
Abstract
Akebia trifoliata is a medicinal plant with high oil content and broad pharmacological effects. To investigate the regulatory mechanisms of key metabolic pathways during seed development, we conducted an integrated multi-omics analysis, including transcriptomics, proteomics, and metabolomics, exploring the dynamic changes in carbon and lipid metabolism. Metabolomics analysis revealded that glucose and sucrose levels decreased, while glycolytic intermediate phosphoenolpyruvate and fatty acids increased with seed development, indicating a shift in carbon flux towards fatty acid synthesis. Integrated transcriptomic and proteomic analyses showed that 70 days after flowering, the expression levels of genes and proteins associated with carbon and fatty acid metabolism were upregulated, suggesting an increased energy demand. Additionally, LEC2, LEC1, WRI1, FUS3, and ABI3 were identified as vital regulators of lipid synthesis. By constructing a multi-omics co-expression network, we identified hub genes such as aroE, GAPDH, KCS, TPS, and hub proteins like PGM, PDH, ENO, PFK, PK, ACCase, SAD, PLC, and OGDH that play critical regulatory roles in seed lipid synthesis. This study provides new ideas for the molecular basis of lipid synthesis in Akebia trifoliata seeds and can facilitate future research on the genetic improvement through molecular-assisted breeding.
Collapse
Affiliation(s)
- Huijuan Liu
- College of Life Sciences, Guizhou University, Guiyang, 550025, China
- Guizhou Key Laboratory of Propagation and Cultivation of Medicinal Plants, Guizhou University, Guiyang, 550025, China
| | - Jinling Li
- Guizhou Key Laboratory of Propagation and Cultivation of Medicinal Plants, Guizhou University, Guiyang, 550025, China
| | - Cunbin Xu
- Guizhou Key Laboratory of Propagation and Cultivation of Medicinal Plants, Guizhou University, Guiyang, 550025, China
| | - Hongchang Liu
- Guizhou Key Laboratory of Propagation and Cultivation of Medicinal Plants, Guizhou University, Guiyang, 550025, China
| | - Zhi Zhao
- Guizhou Key Laboratory of Propagation and Cultivation of Medicinal Plants, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
5
|
Wang S, Sun S, Du Z, Gao F, Li Y, Han W, Wu R, Yu X. Characterization of CsUGT73AC15 as a Multifunctional Glycosyltransferase Impacting Flavonol Triglycoside Biosynthesis in Tea Plants. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:13328-13340. [PMID: 38805380 DOI: 10.1021/acs.jafc.4c03824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Flavonol glycosides, contributing to the health benefits and distinctive flavors of tea (Camellia sinensis), accumulate predominantly as diglycosides and triglycosides in tea leaves. However, the UDP-glycosyltransferases (UGTs) mediating flavonol multiglycosylation remain largely uncharacterized. In this study, we employed an integrated proteomic and metabolomic strategy to identify and characterize key UGTs involved in flavonol triglycoside biosynthesis. The recombinant rCsUGT75AJ1 exhibited flavonoid 4'-O-glucosyltransferase activity, while rCsUGT75L72 preferentially catalyzed 3-OH glucosylation. Notably, rCsUGT73AC15 displayed substrate promiscuity and regioselectivity, enabling glucosylation of rutin at multiple sites and kaempferol 3-O-rutinoside (K3R) at the 7-OH position. Kinetic analysis revealed rCsUGT73AC15's high affinity for rutin (Km = 9.64 μM). Across cultivars, CsUGT73AC15 expression inversely correlated with rutin levels. Moreover, transient CsUGT73AC15 silencing increased rutin and K3R accumulation while decreasing their respective triglycosides in tea plants. This study offers new mechanistic insights into the key roles of UGTs in regulating flavonol triglycosylation in tea plants.
Collapse
Affiliation(s)
- Shuyan Wang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Center for Plant Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shuai Sun
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Center for Plant Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhenghua Du
- Center for Plant Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Fuquan Gao
- Center for Plant Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yeye Li
- Center for Plant Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wenbo Han
- Center for Plant Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ruimei Wu
- Center for Plant Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiaomin Yu
- Center for Plant Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
6
|
Li R, Rosado-Souza L, Sampathkumar A, Fernie AR. The relationship between cell wall and postharvest physiological deterioration of fresh produce. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 210:108568. [PMID: 38581806 DOI: 10.1016/j.plaphy.2024.108568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/08/2024] [Accepted: 03/25/2024] [Indexed: 04/08/2024]
Abstract
Postharvest physiological deterioration (PPD) reduces the availability and economic value of fresh produces, resulting in the waste of agricultural products and becoming a worldwide problem. Therefore, many studies have been carried out at the anatomical structural, physiological and biochemical levels and molecular levels of PPD of fresh produces to seek ways to manage the postharvest quality of fresh produce. The cell wall is the outermost structure of a plant cell and as such represents the first barrier to prevent external microorganisms and other injuries. Many studies on postharvest quality of crop storage organs relate to changes in plant cell wall-related components. Indeed, these studies evidence the non-negligible role of the plant cell wall in postharvest storage ability. However, the relationship between cell wall metabolism and postharvest deterioration of fresh produces has not been well summarized. In this review, we summarize the structural changes of cell walls in different types of PPD, metabolic changes, and the possible molecular mechanism regulating cell wall metabolism in PPD of fresh produce. This review provides a basis for further research on delaying the occurrence of PPD of fresh produce.
Collapse
Affiliation(s)
- Ruimei Li
- National Key Laboratory for Tropical Crop Breeding, Sanya Research Institute/Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Sanya, China; Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Laise Rosado-Souza
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Arun Sampathkumar
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany.
| |
Collapse
|
7
|
Jia X, Xu M, Tan W, Wang Z, Guo Z, Yang X, Liu C. Proteomic and Transcriptomic Analyses Provide New Insights into the Mechanism Underlying Lipid Deterioration in Pecan Kernels during Storage. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:10127-10137. [PMID: 38651754 DOI: 10.1021/acs.jafc.4c00121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Pecan nuts are rich in lipids that tend to deteriorate during storage. Tandem mass-tag-based quantitative proteomics and transcriptomics were used to investigate the changes in the protein and gene profiles of stored pecan kernels for the first time. Our previous lipidomic data were jointly analyzed to elucidate the coordinated changes in lipid molecules and related proteins/genes. The mechanism underlying lipid deterioration in pecan kernels during storage was revealed by multiomics analyses. Lipid metabolism-related pathways were activated during pecan storage. Phospholipases, triacylglycerol lipases, lipoxygenases, and oil body-related proteins/genes were highly expressed during storage, revealing their involvement in lipid deterioration. These data provide rich information and will be valuable for future genetic or chemical research to alleviate lipid deterioration in pecans.
Collapse
Affiliation(s)
- Xiaodong Jia
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden, Mem. Sun Yat-Sen), Xuanwu District, Nanjing 210014, Jiangsu, China
| | - Mengyang Xu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden, Mem. Sun Yat-Sen), Xuanwu District, Nanjing 210014, Jiangsu, China
| | - Wenyue Tan
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden, Mem. Sun Yat-Sen), Xuanwu District, Nanjing 210014, Jiangsu, China
- Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, China
| | - Ziyan Wang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden, Mem. Sun Yat-Sen), Xuanwu District, Nanjing 210014, Jiangsu, China
- Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, China
| | - Zhongren Guo
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden, Mem. Sun Yat-Sen), Xuanwu District, Nanjing 210014, Jiangsu, China
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Ürümqi 830011, Xinjiang, China
- Yili Botanical Garden, Xinjiang Institute of Ecology and Geography, Xinyuan 835800, Xinjiang, China
| | - Xufeng Yang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden, Mem. Sun Yat-Sen), Xuanwu District, Nanjing 210014, Jiangsu, China
| | - Chenghang Liu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden, Mem. Sun Yat-Sen), Xuanwu District, Nanjing 210014, Jiangsu, China
| |
Collapse
|
8
|
Wu J, Lv YH, Sun D, Zhou JH, Wu J, He RL, Liu DF, Song H, Li WW. Phthalates Boost Natural Transformation of Extracellular Antibiotic Resistance Genes through Enhancing Bacterial Motility and DNA Environmental Persistence. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:7291-7301. [PMID: 38623940 DOI: 10.1021/acs.est.4c02751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
The environmental dissemination of extracellular antibiotic resistance genes (eARGs) in wastewater and natural water bodies has aroused growing ecological concerns. The coexisting chemical pollutants in water are known to markedly affect the eARGs transfer behaviors of the environmental microbial community, but the detailed interactions and specific impacts remain elusive so far. Here, we revealed a concentration-dependent impact of dimethyl phthalate (DMP) and several other types of phthalate esters (common water pollutants released from plastics) on the natural transformation of eARGs. The DMP exposure at an environmentally relevant concentration (10 μg/L) resulted in a 4.8-times raised transformation frequency of Acinetobacter baylyi but severely suppressed the transformation at a high concentration (1000 μg/L). The promotion by low-concentration DMP was attributed to multiple mechanisms, including increased bacterial mobility and membrane permeability to facilitate eARGs uptake and improved resistance of the DMP-bounded eARGs (via noncovalent interaction) to enzymatic degradation (with suppressed DNase activity). Similar promoting effects of DMP on the eARGs transformation were also found in real wastewater and biofilm systems. In contrast, higher-concentration DMP suppressed the eARGs transformation by disrupting the DNA structure. Our findings highlight a potentially underestimated eARGs spreading in aquatic environments due to the impacts of coexisting chemical pollutants and deepen our understanding of the risks of biological-chemical combined pollution in wastewater and environmental water bodies.
Collapse
Affiliation(s)
- Jing Wu
- School of Life Sciences, University of Science and Technology of China, Hefei 230026, China
- Sustainable Energy and Environmental Materials Innovation Center, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123,China
| | - Yun-Hui Lv
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Dan Sun
- School of Life Sciences, University of Science and Technology of China, Hefei 230026, China
- Sustainable Energy and Environmental Materials Innovation Center, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123,China
| | - Jun-Hua Zhou
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
- Sustainable Energy and Environmental Materials Innovation Center, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123,China
| | - Jie Wu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
- Sustainable Energy and Environmental Materials Innovation Center, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123,China
| | - Ru-Li He
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
- Sustainable Energy and Environmental Materials Innovation Center, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123,China
| | - Dong-Feng Liu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Hao Song
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Wen-Wei Li
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
- Sustainable Energy and Environmental Materials Innovation Center, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123,China
| |
Collapse
|
9
|
Lin Y, Jiang X, Zhu S, Dun J, Pu J, Liang W. Multi-omics combined with MALDI mass spectroscopy imaging reveals the mechanisms of biosynthesis of characteristic compounds in Tetrastigma hemsleyanum Diels et Gilg. FRONTIERS IN PLANT SCIENCE 2024; 14:1294804. [PMID: 38264025 PMCID: PMC10803607 DOI: 10.3389/fpls.2023.1294804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 12/07/2023] [Indexed: 01/25/2024]
Abstract
Tetrastigma hemsleyanum Diels et Gilg is recognized as a source of extracts with various desirable bioactivities. However, current knowledge regarding the mechanisms of biosynthesis of flavonoids, phenolic compounds, and other bioactive chemicals is limited. We conducted comprehensive tissue distribution studies and biosynthetic analyses of the 26 main bioactive compounds of this plant. The majority of flavonoids exhibited higher concentrations in the cortex (CT) compared to the vascular cylinder (VC). The expression levels of genes and proteins in CT and VC were quantified using mRNA sequencing and isobaric tags for relative and absolute quantification (iTRAQ). A total of 31,700 genes were identified, among which 4921 exhibited differential expression between CT and VC. A total of 13,996 proteins were identified in the proteomes of CT and VC, with 927 showing differential expression. Co-expression network analyses of DEGs and DEPs from multiple sites demonstrated substantial pathway variations linked to flavonoid biosynthesis. Through differential enrichment analysis, a total of 32 genes involved in the flavone biosynthesis pathway were identified, with iTRAQ specifically detecting C3'H, F3H and FLS. Pearson correlation analysis revealed a strong association between the expression levels of C3'H, F3H, and FLS and the concentrations of flavonoids. The validation of multiple genes encoding pivotal enzymes was conducted using real-time fluorescence quantitative PCR (RT-qPCR). The findings provide a foundation for future investigations into the molecular mechanisms and functional characterization of T. hemsleyanum candidate genes associated with characteristic compounds.
Collapse
Affiliation(s)
- Yan Lin
- Department of Pharmacy, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Xuechun Jiang
- Key Laboratory of Research and Development of Chinese Medicine of Zhejiang Province, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, China
| | - Sheng Zhu
- Zhejiang Guangsheng Pharmaceutical Co., Ltd., Quzhou, China
| | - Junling Dun
- Analytical Applications Center, Shimadzu (China) Co., Ltd., Shanghai, China
| | - Jinbao Pu
- Key Laboratory of Research and Development of Chinese Medicine of Zhejiang Province, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, China
| | - Weiqing Liang
- Key Laboratory of Research and Development of Chinese Medicine of Zhejiang Province, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, China
| |
Collapse
|
10
|
Li X, Xi D, Gao L, Zhu H, Yang X, Song X, Zhang C, Miao L, Zhang D, Zhang Z, Hou X, Zhu Y, Wei M. Integrated Transcriptome and Proteome Analysis Revealed the Regulatory Mechanism of Hypocotyl Elongation in Pakchoi. Int J Mol Sci 2023; 24:13808. [PMID: 37762111 PMCID: PMC10531338 DOI: 10.3390/ijms241813808] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 09/02/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
Hypocotyl length is a critical determinant for the efficiency of mechanical harvesting in pakchoi production, but the knowledge on the molecular regulation of hypocotyl growth is very limited. Here, we report a spontaneous mutant of pakchoi, lhy7.1, and identified its characteristics. We found that it has an elongated hypocotyl phenotype compared to the wild type caused by the longitudinal growth of hypocotyl cells. Different light quality treatments, transcriptome, and proteomic analyses were performed to reveal the molecular mechanisms of hypocotyl elongation. The data showed that the hypocotyl length of lhy7.1 was significantly longer than that of WT under red, blue, and white lights but there was no significant difference under dark conditions. Furthermore, we used transcriptome and label-free proteome analyses to investigate differences in gene and protein expression levels between lhy7.1 and WT. At the transcript level, 4568 differentially expressed genes (DEGs) were identified, which were mainly enriched in "plant hormone signal transduction", "photosynthesis", "photosynthesis-antenna proteins", and "carbon fixation in photosynthetic organisms" pathways. At the protein level, 1007 differentially expressed proteins (DEPs) were identified and were mainly enriched in photosynthesis-related pathways. The comprehensive transcriptome and proteome analyses revealed a regulatory network of hypocotyl elongation involving plant hormone signal transduction and photosynthesis-related pathways. The findings of this study help elucidate the regulatory mechanisms of hypocotyl elongation in lhy7.1.
Collapse
Affiliation(s)
- Xiaofeng Li
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, China;
- Shanghai Key Laboratory of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (D.X.); (L.G.); (H.Z.); (X.Y.); (L.M.); (D.Z.); (Z.Z.)
| | - Dandan Xi
- Shanghai Key Laboratory of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (D.X.); (L.G.); (H.Z.); (X.Y.); (L.M.); (D.Z.); (Z.Z.)
| | - Lu Gao
- Shanghai Key Laboratory of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (D.X.); (L.G.); (H.Z.); (X.Y.); (L.M.); (D.Z.); (Z.Z.)
| | - Hongfang Zhu
- Shanghai Key Laboratory of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (D.X.); (L.G.); (H.Z.); (X.Y.); (L.M.); (D.Z.); (Z.Z.)
| | - Xiuke Yang
- Shanghai Key Laboratory of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (D.X.); (L.G.); (H.Z.); (X.Y.); (L.M.); (D.Z.); (Z.Z.)
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (C.Z.); (X.H.)
| | - Xiaoming Song
- College of Life Sciences, North China University of Science and Technology, Tangshan 063210, China;
| | - Changwei Zhang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (C.Z.); (X.H.)
| | - Liming Miao
- Shanghai Key Laboratory of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (D.X.); (L.G.); (H.Z.); (X.Y.); (L.M.); (D.Z.); (Z.Z.)
| | - Dingyu Zhang
- Shanghai Key Laboratory of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (D.X.); (L.G.); (H.Z.); (X.Y.); (L.M.); (D.Z.); (Z.Z.)
| | - Zhaohui Zhang
- Shanghai Key Laboratory of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (D.X.); (L.G.); (H.Z.); (X.Y.); (L.M.); (D.Z.); (Z.Z.)
| | - Xilin Hou
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (C.Z.); (X.H.)
| | - Yuying Zhu
- Shanghai Key Laboratory of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (D.X.); (L.G.); (H.Z.); (X.Y.); (L.M.); (D.Z.); (Z.Z.)
| | - Min Wei
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, China;
| |
Collapse
|
11
|
Miao X, Ma J, Miu X, Zhang H, Geng Y, Hu W, Deng Y, Li N. Integrated transcriptome and proteome analysis the molecular mechanisms of nutritional quality in 'Chenggu-32' and 'Koroneiki' olives fruits (Olea europaea L.). JOURNAL OF PLANT PHYSIOLOGY 2023; 288:154072. [PMID: 37634413 DOI: 10.1016/j.jplph.2023.154072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 08/02/2023] [Accepted: 08/10/2023] [Indexed: 08/29/2023]
Abstract
In this work, integrated transcriptome and proteome to offer a new insight of the molecular mechanisms linked to the nutritional quality of Koroneiki and Chenggu-32 by RNA sequencing and 4D Label-free quantitative proteomics technology. Physical and chemical properties studies showed that the main nutrient content of Koroneiki was significantly higher than Chenggu-32, proved the quality of Koroneiki was better. Compared to Koroneiki, there were differences in expression levels of 10,115 genes and 723 proteins in Chenggu-32, mainly related to enzymes in lipid metabolism and lipid biosynthesis. Through the joint analysis of transcriptome and proteome, it was found that the differentially expressed genes and differentially expressed proteins on the association were mainly enriched in starch and sucrose metabolism and α-linolenic acid metabolism pathways, indicated that the nutritional quality of olive fruits was related to the two metabolic pathways. The results of this study identified key genes and proteins related to nutrient metabolism and accumulation in olive fruits, provided transcriptomic and proteomic information for the molecular mechanism of nutritional changes in olive fruit, it helps to develop higher quality olive trees.
Collapse
Affiliation(s)
- Xin Miao
- College of Life Science, Northwest Normal University, Lanzhou, 730070, China
| | - Junyi Ma
- College of Life Science, Northwest Normal University, Lanzhou, 730070, China.
| | - Xin Miu
- College of Life Science, Northwest Normal University, Lanzhou, 730070, China
| | - Hongjie Zhang
- College of Life Science, Northwest Normal University, Lanzhou, 730070, China
| | - Yinxin Geng
- College of Life Science, Northwest Normal University, Lanzhou, 730070, China
| | - Wei Hu
- College of Life Science, Northwest Normal University, Lanzhou, 730070, China
| | - Yu Deng
- Institute of Olive, Longnan Academy of Economic Forestry, Wudu, 746000, China
| | - Na Li
- Wudu Olive Industry Development Office of Longnan, Wudu, 746000, China.
| |
Collapse
|
12
|
Gao H, Ye S, Liu Y, Fan X, Yin C, Liu Y, Liu J, Qiao Y, Chen X, Yao F, Shi D. Transcriptome analysis provides insight into gamma irradiation delaying quality deterioration of postharvest Lentinula edodes during cold storage. FOOD CHEMISTRY. MOLECULAR SCIENCES 2023; 6:100172. [PMID: 37213208 PMCID: PMC10199187 DOI: 10.1016/j.fochms.2023.100172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 04/27/2023] [Accepted: 05/06/2023] [Indexed: 05/23/2023]
Abstract
To better determine how gamma irradiation (GI) improves abiotic stress resistance, a transcriptome analysis of postharvest L. edodes in response to 1.0 kGy GI was conducted, and further the underlying mechanism of GI in delaying quality deterioration over 20 d of cold storage was explored. The results suggested that GI was involved in multiple metabolic processes in irradiated postharvest L. edodes. In comparison with the control group, the GI group contained 430 differentially expressed genes, including 151 upregulated genes and 279 downregulated genes, which unveiled characteristic expression profiles and pathways. The genes involved in the pentose phosphate pathway were mainly upregulated and the expression level of the gene encoding deoxy-D-gluconate 3-dehydrogenase was 9.151-fold higher. In contrast, the genes related to other energy metabolism pathways were downregulated. Concurrently, GI inhibited the expression of genes associated with delta 9-fatty acid desaturase, ribosomes, and HSP20; thus, GI helped postpone the degradation of lipid components, suppress transcriptional metabolism and regulate the stress response. Additionally, the metabolic behavior of DNA repair induced by GI intensified by noticeable upregulation. These regulatory effects could play a potential and nonnegligible role in delaying the deterioration of L. edodes quality. The results provide new information on the regulatory mechanism of postharvest L. edodes when subjected to 1.0 kGy GI during cold storage.
Collapse
Affiliation(s)
- Hong Gao
- Key Laboratory of Cold Chain Logistics Technology for Agro-product, Ministry of Agriculture and Rural Affairs, Research Institute of Agricultural Products Processing and Nuclear-Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Shuang Ye
- School of Food and Biological Engineering, Hubei University of Technology, 28 Nanli Road, Wuhan 430068, China
| | - Yani Liu
- School of Food and Biological Engineering, Hubei University of Technology, 28 Nanli Road, Wuhan 430068, China
| | - Xiuzhi Fan
- Key Laboratory of Cold Chain Logistics Technology for Agro-product, Ministry of Agriculture and Rural Affairs, Research Institute of Agricultural Products Processing and Nuclear-Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Chaomin Yin
- Key Laboratory of Cold Chain Logistics Technology for Agro-product, Ministry of Agriculture and Rural Affairs, Research Institute of Agricultural Products Processing and Nuclear-Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Ying Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jingyu Liu
- Shanxi Key Laboratory of Edible Fungi for Loess Plateau, Shanxi Agricultural University, Taigu 030801, Shanxi, China
| | - Yu Qiao
- Key Laboratory of Cold Chain Logistics Technology for Agro-product, Ministry of Agriculture and Rural Affairs, Research Institute of Agricultural Products Processing and Nuclear-Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Xueling Chen
- Key Laboratory of Cold Chain Logistics Technology for Agro-product, Ministry of Agriculture and Rural Affairs, Research Institute of Agricultural Products Processing and Nuclear-Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Fen Yao
- Key Laboratory of Cold Chain Logistics Technology for Agro-product, Ministry of Agriculture and Rural Affairs, Research Institute of Agricultural Products Processing and Nuclear-Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Defang Shi
- Key Laboratory of Cold Chain Logistics Technology for Agro-product, Ministry of Agriculture and Rural Affairs, Research Institute of Agricultural Products Processing and Nuclear-Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| |
Collapse
|
13
|
Xia R, Hou Z, Xu H, Li Y, Sun Y, Wang Y, Zhu J, Wang Z, Pan S, Xin G. Emerging technologies for preservation and quality evaluation of postharvest edible mushrooms: A review. Crit Rev Food Sci Nutr 2023; 64:8445-8463. [PMID: 37083462 DOI: 10.1080/10408398.2023.2200482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
Edible mushrooms are the highly demanded foods of which production and consumption have been steadily increasing globally. Owing to the quality loss and short shelf-life in harvested mushrooms, it is necessary for the implementation of effective preservation and intelligent evaluation technologies to alleviate this issue. The aim of this review was to analyze the development and innovation thematic lines, topics, and trends by bibliometric analysis and review of the literature methods. The challenges faced in researching these topics were proposed and the mechanisms of quality loss in mushrooms during storage were updated. This review summarized the effects of chemical processing (antioxidants, ozone, and coatings), physical treatments (non-thermal plasma, packaging and latent thermal storage) and other emerging application on the quality of fresh mushrooms while discussing the efficiency in extending the shelf-life. It also discussed the emerging evaluation techniques based on the various chemometric methods and computer vision system in monitoring the freshness and predicting the shelf-life of mushrooms which have been developed. Preservation technology optimization and dynamic quality evaluation are vital for achieving mushroom quality control. This review can provide a comprehensive research reference for reducing mushroom quality loss and extending shelf-life, along with optimizing efficiency of storage and transportation operations.
Collapse
Affiliation(s)
- Rongrong Xia
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Zhenshan Hou
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Heran Xu
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Yunting Li
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Yong Sun
- Beijing Academy of Food Sciences, Beijing, China
| | - Yafei Wang
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Jiayi Zhu
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Zijian Wang
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Song Pan
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Guang Xin
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
14
|
Hu X, Tang X, Zhou Y, Ahmad B, Zhang D, Zeng Y, Wei J, Deng L, Chen S, Pan Y. Bioinformatics Analysis, Expression Profiling, and Functional Characterization of Heat Shock Proteins in Wolfi-poria cocos. Bioengineering (Basel) 2023; 10:bioengineering10030390. [PMID: 36978781 PMCID: PMC10045903 DOI: 10.3390/bioengineering10030390] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 02/26/2023] [Accepted: 03/01/2023] [Indexed: 03/30/2023] Open
Abstract
Heat shock proteins (HSPs) play critical roles in regulating different mechanisms under high-temperature conditions. HSPs have been identified and well-studied in different plants. However, there is a lack of information about their genomic organization and roles in medicinal plants and fungi, especially in Wolfi-poria cocos (W. cocos). We identified sixteen heat shock proteins (HSPs) in W. cocos and analyzed in terms of phylogenetic analysis, gene structure, motif distribution patterns, physiochemical properties, and expression comparison in different strains. Based on phylogenetic analysis, HSPs were divided into five subgroups (WcHSP100, WcHSP90, WcHSP70, WcHSP60, and WcsHSP). Subgroups WcHSP100s, WcHSP90s, WcHSP70s, WcHSP60, and WcsHSPs were further divided into 3, 2, 3, 1, and 6 subfamilies, respectively. Moreover, the expression profiling of all HSP genes in five strains of W. cocos under different temperature extremes revealed that expression of most HSPs were induced by high temperature. However, every subfamily showed different expression suggesting distinctive role in heat stress tolerance. WcHSP70-4, WcHSP90-1, and WcHSP100-1 showed the highest response to high temperature stress. Heterologous expression of WcHSP70-4, WcHSP90-1, and WcHSP100-1 genes in Escherichia coli enhanced survival rate of E. coli during heat stress. These findings suggest the role of W. cocos heat shock genes in the high temperature stress tolerance.
Collapse
Affiliation(s)
- Xin Hu
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Chongqing 400715, China
| | - Xue Tang
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Chongqing 400715, China
| | - Yumei Zhou
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Chongqing 400715, China
| | - Bilal Ahmad
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Deli Zhang
- Chongqing Academy of Chinese Materia Medica, Chongqing 400062, China
| | - Yue Zeng
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Chongqing 400715, China
| | - Jingyi Wei
- Chongqing Academy of Agricultural Sciences, Chongqing 401329, China
| | - Liling Deng
- Chongqing Institute of Biotechnology Co., Ltd., Chongqing 401121, China
| | - Shijiang Chen
- Chongqing Academy of Chinese Materia Medica, Chongqing 400062, China
| | - Yu Pan
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Chongqing 400715, China
| |
Collapse
|
15
|
Guo Y, Chen X, Gong P, Long H, Wang J, Deng Z, Wang R, Han A, Qi Z, Yao W, Yang W, Wang J, Li N, Chen F. Characterization of an active film prepared with Lentinus edodes (shiitake) polysaccharide and its effect on post-harvest quality and storage of shiitake. Int J Biol Macromol 2023; 238:123973. [PMID: 36921827 DOI: 10.1016/j.ijbiomac.2023.123973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/26/2023] [Accepted: 03/04/2023] [Indexed: 03/14/2023]
Abstract
The aim of this study was to prepare a film based on shiitake (Lentinus edodes) stalk polysaccharides (LEP) for mushroom preservation. The effects of different LEP concentrations on physical, mechanical, antioxidant, and antimicrobial properties of the prepared film were evaluated. Using scanning electron microscopy, it was revealed that the addition of 1.5 % LEP resulted in homogeneous distribution in the prepared film, as well as greatly improved its antimicrobial properties. Moreover, LEP film resulted in superior mushroom preservation by regulating enzyme activities related to mushroom browning and softening, thereby decaying these processes. In addition, the prepared film maintained mushroom quality by reducing the accumulation of H2O2 and activating the regulatory system against oxidative stress. Collectively, the findings of the present study highlight the potential benefits of LEP films as a strategy to improve mushroom quality and prevent post-harvest spoilage, hence constituting a novel prospect for the development of shiitake by-products.
Collapse
Affiliation(s)
- Yuxi Guo
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Xuefeng Chen
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Pin Gong
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Hui Long
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Jiating Wang
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Zhenfang Deng
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Ruotong Wang
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Aoyang Han
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Zhuoya Qi
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Wenbo Yao
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Wenjuan Yang
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Jing Wang
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Nan Li
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Fuxin Chen
- School of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, China
| |
Collapse
|
16
|
New insights on low-temperature storage regulating garlic greening and the accumulation of pigment precursors via glutathione metabolism and energy cycles. Food Chem 2023; 417:135848. [PMID: 36913871 DOI: 10.1016/j.foodchem.2023.135848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 02/08/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023]
Abstract
To explore regulation mechanism of temperature on garlic greening and pigment precursors' accumulation, greening capacities, pigment precursors and critical metabolites, enzyme and genes involved in glutathione and NADPH metabolism of garlic stored at five temperatures (4, 8, 16, 24 and 30 ℃) were analyzed. Results showed that garlic pre-stored at 4, 8 and 16 ℃ were more likely to green than ones at 24 and 30 ℃ after pickling. After 25 days, more S-1-propenyl-l-cysteine sulfoxide (1-PeCSO) were detected in garlic stored at 4, 8 and 16 ℃ (753.60, 921.85 and 756.75 mAU, respectively) than that at 24 and 30 ℃ (394.35 and 290.70 mAU). Pigment precursors' accumulation in garlic was mainly realized by glutathione and NADPH metabolism under low-temperature storage, through enhancements of activities or expressions for GR (GSR), GST (GST), γ-GT (GGT1, GGT2), 6PGDH (PGD) and ICDHc (IDH1). This study enriched the mechanism of garlic greening.
Collapse
|
17
|
Xia R, Zhao X, Xin G, Sun L, Xu H, Hou Z, Li Y, Wang Y. Energy status regulated umami compound metabolism in harvested shiitake mushrooms (Lentinus edodes) with spores triggered to release. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2022.07.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
18
|
Li R, Yuan S, Zhou Y, Wang S, Zhou Q, Ding Z, Wang Y, Yao Y, Liu J, Guo J. Comparative Transcriptome Profiling of Cassava Tuberous Roots in Response to Postharvest Physiological Deterioration. Int J Mol Sci 2022; 24:ijms24010246. [PMID: 36613690 PMCID: PMC9820078 DOI: 10.3390/ijms24010246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/15/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
Cassava is one of the most versatile tuberous-root crops on Earth. However, the postharvest storage properties of cassava tuberous root mean that it is perishable through a process known as postharvest physiological deterioration (PPD), which seriously affects its starch quality. Therefore, a comprehensive understanding of the transcriptional regulatory activity of cassava against the PPD response is necessary in order to extract key molecular mechanisms related to PPD tolerance. In this study, we found that RYG1 tuberous roots showed delayed PPD compared to those of SC8. In addition, RYG1 roots maintained a more stable cell wall structure after storage than those of SC8. The transcriptome changes in tuberous roots were analyzed for both RYG1 and SC8 after 21 days of storage (SR and SS) compared to fresh (FR and FS) by the RNA-Seq method. The total number of differentially expressed genes (DEGs) in the various comparisons of these four samples ranged from 68 to 3847. Of these, a total of 2008 co-DEGs in SR vs. SS were shared by either SR vs. FR or SS vs. FS. GO and KEGG enrichment analysis revealed that upregulated co-DEGs in SR vs. SS were mainly enriched in photosynthesis, protein processing, hormone and cutin, suberine and wax biosynthesis. By contrast, the downregulated co-DEGs were mainly related to cell wall organization, starch and sucrose metabolism, galactose metabolism, phenylpropanoid biosynthesis, diterpenoid biosynthesis, cysteine and methionine metabolism and flavonoid biosynthesis. The protein-protein interaction (PPI) networks of the co-DEGs showed a complex interaction of genes in different pathways, and 16 hub genes were characterized to have a degree in excess of 15, among which eight genes were associated with photosynthesis. These results provide new information for the study of cassava resistance to PPD and lay a foundation for the further molecular breeding of storage-tolerant cassava varieties.
Collapse
Affiliation(s)
- Ruimei Li
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Haikou 571101, China
- College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Shuai Yuan
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Haikou 571101, China
- College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Yangjiao Zhou
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Haikou 571101, China
- College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Shijia Wang
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Haikou 571101, China
- College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Qin Zhou
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Haikou 571101, China
- College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Zhongping Ding
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Haikou 571101, China
- College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Yajie Wang
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Haikou 571101, China
- College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Yuan Yao
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Haikou 571101, China
- College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Jiao Liu
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Haikou 571101, China
- College of Tropical Crops, Hainan University, Haikou 570228, China
- Correspondence: (J.L.); (J.G.); Tel.: +86-898-6698-6031 (J.L.); +86-898-6696-2953 (J.G.)
| | - Jianchun Guo
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Haikou 571101, China
- College of Tropical Crops, Hainan University, Haikou 570228, China
- Correspondence: (J.L.); (J.G.); Tel.: +86-898-6698-6031 (J.L.); +86-898-6696-2953 (J.G.)
| |
Collapse
|
19
|
De Novo Assembly Transcriptome Analysis Reveals the Preliminary Molecular Mechanism of Primordium Formation in Pleurotus tuoliensis. Genes (Basel) 2022; 13:genes13101747. [PMID: 36292631 PMCID: PMC9601356 DOI: 10.3390/genes13101747] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/21/2022] [Accepted: 09/22/2022] [Indexed: 11/16/2022] Open
Abstract
Primordium formation is extremely important for yield of Pleurotus tuoliensis. However, the molecular mechanism underlying primordium formation is largely unknown. This study investigated the transcriptional properties during primordium formation of P. tuoliensis by comparing transcriptome. Clean reads were assembled into 57,075 transcripts and 6874 unigenes. A total of 1397 differentially expressed genes were identified (26 DEGs altered in all stages). GO and KEGG enrichment analysis showed that these DEGs were involved in “oxidoreductase activity”, “glycolysis/gluconeogenesis”, “MAPK signaling pathways”, and “ribosomes”. Our results support further understanding of the transcriptional changes and molecular processes underlying primordium formation and differentiation of P. tuoliensis.
Collapse
|
20
|
Li Z, Xu X, Yang K, Zhu C, Liu Y, Gao Z. Multifaceted analyses reveal carbohydrate metabolism mainly affecting the quality of postharvest bamboo shoots. FRONTIERS IN PLANT SCIENCE 2022; 13:1021161. [PMID: 36212302 PMCID: PMC9535365 DOI: 10.3389/fpls.2022.1021161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 08/31/2022] [Indexed: 06/16/2023]
Abstract
Bamboo shoot is one of nutritious vegetables in China. However, the edible quality of fresh bamboo shoots deteriorates easily after harvest. Here, morphological, physiological, transcriptomic and microRNA sequencing analyses were conducted to investigate the postharvest characteristics of moso bamboo (Phyllostachys edulis) shoots. Rapid decreases of soluble sugars, structural polysaccharides and hydrolyzed tannins, and increases of lignin and condensed tannins were observed in the postharvest bamboo shoots. Differentially expressed genes (DEGs) and miRNAs with opposite trends were mainly enriched in structural polysaccharide metabolism, starch and sucrose metabolism and glycolysis pathways, which were consistent with the changes of carbohydrates. A co-expression network of carbohydrate metabolism was constructed, which was verified by qPCR and yeast one-hybrid (Y1H) assay. Furthermore, the function of one hub glycosyltransferase gene was validated in Arabidopsis, which confirmed that it was involved in xylan biosynthesis. These results are of great significance for revealing the carbohydrate metabolism mechanisms of postharvest bamboo shoots and provide a potential candidate gene for molecular breeding related to xylan in the future.
Collapse
Affiliation(s)
- Zhen Li
- International Centre for Bamboo and Rattan, Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, Beijing, China
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo and Rattan Science and Technology, Beijing, China
| | - Xiurong Xu
- International Centre for Bamboo and Rattan, Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, Beijing, China
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo and Rattan Science and Technology, Beijing, China
- Zhejiang Academy of Forestry, Hangzhou, China
| | - Kebin Yang
- International Centre for Bamboo and Rattan, Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, Beijing, China
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo and Rattan Science and Technology, Beijing, China
| | - Chenglei Zhu
- International Centre for Bamboo and Rattan, Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, Beijing, China
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo and Rattan Science and Technology, Beijing, China
| | - Yan Liu
- International Centre for Bamboo and Rattan, Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, Beijing, China
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo and Rattan Science and Technology, Beijing, China
| | - Zhimin Gao
- International Centre for Bamboo and Rattan, Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, Beijing, China
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo and Rattan Science and Technology, Beijing, China
| |
Collapse
|
21
|
Li X, An Q, Qu SS, Ren JN, Fan G, Zhang LL, Pan SY. Differential proteomic analysis of citrus flavor (+)-valencene biotransformation to (+)-nootkatone by Yarrowia lipolytica. Int J Biol Macromol 2022; 220:1031-1048. [PMID: 35961559 DOI: 10.1016/j.ijbiomac.2022.08.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/17/2022] [Accepted: 08/02/2022] [Indexed: 11/05/2022]
Abstract
Natural products (+)-nootkatone is an important sesquiterpene compound and is widely used in pharmaceutical, cosmetic, agricultural and food industries. The aim of this study was to analyze the differentially expressed proteins (DEPs) during citrus aroma compound (+)-valencene biotransformation to (+)-nootkatone by Yarrowia lipolyticaby with high-throughput LC-MS/MS. A total of 778 proteins were differentially expressed, 385 DEPs were significantly up-regulated and 393 DEPs were markedly down-regulated. It was found that the enzymes transformed (+)-valencene to (+)-nootkatone were mainly existed in yeast intracellular and precipitated under the condition of 30-40 % ammonium sulfate. Most DEPs involved in amino acid and fatty acid metabolism were down-regulated during (+)-valencene biotransformation. The DEPs related to the carbohydrate metabolism, energy metabolism and most of transporter proteins were significantly up-regulated. Furthermore, the key enzymes involved in (+)-valencene transformation might be related to cytochrome P450s (gene2215 and gene2911) and dehydrogenases (gene6493). This is the first time that proteomics was used to investigate the metabolism mechanism of Yarrowia lipolytica during (+)-valencene biotransformation. The proteomic analysis of Yarrowia lipolytica provided a foundation for the molecular regulatory mechanism in the biotransformation to (+)-nootkatone from (+)-valencene.
Collapse
Affiliation(s)
- Xiao Li
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Qi An
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Sha-Sha Qu
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jing-Nan Ren
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Gang Fan
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Lu-Lu Zhang
- College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, PR China
| | - Si-Yi Pan
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
22
|
Lu R, Wang X, Zhao W, Wang P, Zhao S, Zhao X, Wang D. Comparative transcriptome and proteome profiles reveal the regulation mechanism of low temperature on garlic greening. Food Res Int 2022; 161:111823. [DOI: 10.1016/j.foodres.2022.111823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 08/03/2022] [Accepted: 08/19/2022] [Indexed: 11/04/2022]
|
23
|
Zhang Y, Chen Y, Guo Y, Ma Y, Yang M, Fu R, Sun Y. Proteomics study on the changes in amino acid metabolism during broccoli senescence induced by elevated O2 storage. Food Res Int 2022; 157:111418. [DOI: 10.1016/j.foodres.2022.111418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/08/2022] [Accepted: 05/24/2022] [Indexed: 11/25/2022]
|
24
|
Yang H, Zheng Z, Zhou H, Qu H, Gao H. Proteomics Reveals the Mechanism Underlying the Autolysis of Postharvest Coprinus comatus Fruiting Bodies. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:1346-1357. [PMID: 35076245 DOI: 10.1021/acs.jafc.1c07007] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Autolysis occurs widely in edible mushroom fruiting bodies after harvest, but the mechanism is still unclear. In this study, quantitative proteomics and bioinformatics analyses have been applied for revealing the autolysis mechanism of postharvest Coprinus comatus fruiting bodies. The results indicated that the autolysis mechanism of postharvest C. comatus was complicated. Before pileus opening, the carbohydrate metabolism including cell wall hydrolysis and energy biosynthesis, which were probably regulated by the ribosome, was involved in mushroom autolysis, whereas after pileus opening, the autolysis mechanism was related to the accumulated reactive oxygen species (ROS) and activated mitogen-activated protein kinase (MAPK) signaling pathway based on the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. Furthermore, the changes in cell wall components and hydrolases, along with the production of ROS and the activities of oxidoreductase in C. comatus, were also verified to confirm the proteomic analysis results.
Collapse
Affiliation(s)
- Hailong Yang
- School of Life & Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Zhihan Zheng
- School of Life & Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Huabin Zhou
- School of Life & Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Hang Qu
- School of Life & Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Haiyan Gao
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| |
Collapse
|