1
|
Taiti C, Vivaldo G, Mancuso S, Comparini D, Pandolfi C. Volatile organic compounds (VOCs) fingerprinting combined with complex network analysis as a forecasting tool for tracing the origin and genetic lineage of Arabica specialty coffees. Sci Rep 2025; 15:13709. [PMID: 40258936 PMCID: PMC12012085 DOI: 10.1038/s41598-025-97162-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Accepted: 04/02/2025] [Indexed: 04/23/2025] Open
Abstract
Due to the globalization of coffee trade, ensuring the safety and traceability of coffee has become a critical challenge, prompting global authorities to implement new traceability systems to enhance quality identification and protect consumers from fraud. Aroma is a crucial parameter in the evaluation and differentiation of coffees, influenced by factors such as genetics, origin, post harvesting process, roast level, and brewing method. This paper provides, for the first time, a comprehensive overview of the volatile fingerprints of specialty coffees, categorized by their respective quality levels. In particular, this study aimed to evaluate the potential of volatile compounds monitored through Proton Transfer Reaction-Time of Flight-Mass Spectrometry (PTR-ToF-MS) as objective, fast, reliable and repeatable tool for tracking the quality and genetic lineage of Arabica specialty coffees. The spectra of volatile organic compounds (VOCs) were acquired from 1132 coffee samples (both specialty and non-specialty) from various varieties, origins, and processing methods. Results clearly indicate that the volatile composition of specialty coffee is predominantly influenced by its genetic lineage. Arabica coffee species belonging to Bourbon, Typica, and Ethiopian landraces showed higher total VOCs emission, while varieties related to Robusta, which are related to the Canephora one, emit less. Finally, by employing a complex network analysis approach based on headspace VOC analysis, it was possible to accurately distinguish between different categories of specialty Arabica coffee. Notably, our analysis shows that the quality of specialty coffee is not linked to the number of VOCs emitted, but rather to the level emission of some pleasant aroma compounds. These findings open new perspectives for the development of aroma profiling techniques and demonstrate the unique aroma release characteristics of specialty coffees.
Collapse
Affiliation(s)
- Cosimo Taiti
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Viale Delle Idee 30, 50019, Sesto Fiorentino, Firenze, Italy
| | - Gianna Vivaldo
- Institute of Geosciences and Earth Resources (IGG), National Research Council of Italy (CNR), Via Moruzzi 1, 56124, Pisa, Italy.
- National Biodiversity Future Center, Piazza Marina, 61, 90133, Palermo, Italy.
| | - Stefano Mancuso
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Viale Delle Idee 30, 50019, Sesto Fiorentino, Firenze, Italy
- Fondazione per il Futuro delle Città, Via Boccaccio 50, 50133, Firenze, Italy
| | - Diego Comparini
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Viale Delle Idee 30, 50019, Sesto Fiorentino, Firenze, Italy
| | - Camilla Pandolfi
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Viale Delle Idee 30, 50019, Sesto Fiorentino, Firenze, Italy
| |
Collapse
|
2
|
Wang Y, Wang X, Quan C, Al-Romaima A, Hu G, Peng X, Qiu M. Optimizing commercial Arabica coffee quality by integrating flavor precursors with anaerobic germination strategy. Food Chem X 2024; 23:101684. [PMID: 39157661 PMCID: PMC11327483 DOI: 10.1016/j.fochx.2024.101684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/03/2024] [Accepted: 07/20/2024] [Indexed: 08/20/2024] Open
Abstract
This study attempted to improve commercial Arabica coffee quality by integrating flavor precursors with anaerobic germination. Using raw coffee beans as materials, anaerobic germination was conducted with 5 g/100 g of flavor precursors (sucrose, glucose, fructose). The chemical composition and sensory quality of roasted coffee beans were analyzed. Results showed that adding flavor precursors facilitated the harmonization of water-soluble chemical components and altered aroma characteristics. Specifically, the inclusion of flavor precursors significantly increased the levels of 5-Hydroxymethylfurfural and volatile aldehydes. Principal component analysis (PCA) on chemical composition dataset revealed 48.7% variability. Sensory analysis, employing the Specialty Coffee Association (SCA) cupping protocol, demonstrated that combining flavor precursors with anaerobic germination transformed coffee flavor properties, enhanced quality, and substantially increased sensory scores (p < 0.05). Sucrose supplementation produced the highest sensory score and intensified fruity flavor attributes. Therefore, adding different flavor precursors forms distinct flavor characteristics, conducive to further improving the quality of germinated coffee.
Collapse
Affiliation(s)
- Yanbing Wang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, PR China
- College of Agriculture, Guangxi University, Nanning 530004, Guangxi, PR China
- Dehong Tropical Agriculture Research Institute of Yunnan, Ruili 678600, Yunnan, PR China
| | - Xiaoyuan Wang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, PR China
- College of Agriculture, Guangxi University, Nanning 530004, Guangxi, PR China
- Dehong Tropical Agriculture Research Institute of Yunnan, Ruili 678600, Yunnan, PR China
| | - Chenxi Quan
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, PR China
| | - Abdulbaset Al-Romaima
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, PR China
| | - Guilin Hu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, PR China
| | - Xingrong Peng
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, PR China
| | - Minghua Qiu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, PR China
| |
Collapse
|
3
|
Zaman S, Shan Z. Literature Review of Proteomics Approach Associated with Coffee. Foods 2024; 13:1670. [PMID: 38890899 PMCID: PMC11172319 DOI: 10.3390/foods13111670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/23/2024] [Accepted: 05/25/2024] [Indexed: 06/20/2024] Open
Abstract
As a significant crop growing all across the world, coffee is mostly produced in the bean belt of our global atlas. Worldwide variations in environmental conditions are causing a decline in the yield and quality of coffee varieties. Coffee production is the main emphasis of several traditional breeding techniques. But conventional breeding methods are not sufficient to tackle the problems related to coffee. The field of genomics, which includes transcriptomics, proteomics, and metabolomics, has made great paces in the last ten years. Proteomics is a well-known technique used to enhance the growth, yield, breeding, and quality of different plants under stable and shifting environments. The regulation of specific enzymes, genes, protein expression, modification, translation, and other features played an important role in the enhancement of important plants. However, relatively less research on the proteomics approach for coffee has been published in the last few years. For this reason, some of the most important aspects of proteome profiling for coffee plants have been covered in this review, including growth, the somatic embryo technique, altitude, environmental adoption, drought, and the role that proteins and important enzymes play in the flavor and taste of coffee. This review can aid in the breeding of new cultivars and improve coffee attributes. Furthermore, the present literature can pave the way for proteomics research on coffee.
Collapse
Affiliation(s)
| | - Zhiguo Shan
- School of Tea & Coffee, Pu’er University, Pu’er 665000, China;
| |
Collapse
|
4
|
Marie L, Breitler JC, Bamogo PKA, Bordeaux M, Lacombe S, Rios M, Lebrun M, Boulanger R, Lefort E, Nakamura S, Motoyoshi Y, Mieulet D, Campa C, Legendre L, Bertrand B. Combined sensory, volatilome and transcriptome analyses identify a limonene terpene synthase as a major contributor to the characteristic aroma of a Coffea arabica L. specialty coffee. BMC PLANT BIOLOGY 2024; 24:238. [PMID: 38566027 PMCID: PMC10988958 DOI: 10.1186/s12870-024-04890-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 03/07/2024] [Indexed: 04/04/2024]
Abstract
BACKGROUND The fruity aromatic bouquet of coffee has attracted recent interest to differentiate high value market produce as specialty coffee. Although the volatile compounds present in green and roasted coffee beans have been extensively described, no study has yet linked varietal molecular differences to the greater abundance of specific substances and support the aroma specificity of specialty coffees. RESULTS This study compared four Arabica genotypes including one, Geisha Especial, suggested to generate specialty coffee. Formal sensory evaluations of coffee beverages stressed the importance of coffee genotype in aroma perception and that Geisha Especial-made coffee stood out by having fine fruity, and floral, aromas and a more balanced acidity. Comparative SPME-GC-MS analyses of green and roasted bean volatile compounds indicated that those of Geisha Especial differed by having greater amounts of limonene and 3-methylbutanoic acid in agreement with the coffee cup aroma perception. A search for gene ontology differences of ripening beans transcriptomes of the four varieties revealed that they differed by metabolic processes linked to terpene biosynthesis due to the greater gene expression of prenyl-pyrophosphate biosynthetic genes and terpene synthases. Only one terpene synthase (CaTPS10-like) had an expression pattern that paralleled limonene loss during the final stage of berry ripening and limonene content in the studied four varieties beans. Its functional expression in tobacco leaves confirmed its functioning as a limonene synthase. CONCLUSIONS Taken together, these data indicate that coffee variety genotypic specificities may influence ripe berry chemotype and final coffee aroma unicity. For the specialty coffee variety Geisha Especial, greater expression of terpene biosynthetic genes including CaTPS10-like, a limonene synthase, resulted in the greater abundance of limonene in green beans, roasted beans and a unique citrus note of the coffee drink.
Collapse
Affiliation(s)
- Lison Marie
- CIRAD (Centre de coopération internationale en recherche agronomique pour le développement), UMR DIADE, Montpellier, F-34398, France.
- DIADE (Diversity, Adaptation, Development of Plants), University of Montpellier, CIRAD, IRD, Montpellier, F-34398, France.
| | - Jean-Christophe Breitler
- CIRAD (Centre de coopération internationale en recherche agronomique pour le développement), UMR DIADE, Montpellier, F-34398, France
- DIADE (Diversity, Adaptation, Development of Plants), University of Montpellier, CIRAD, IRD, Montpellier, F-34398, France
| | - Pingdwende Kader Aziz Bamogo
- PHIM (Plant Health Institute of Montpellier), University of Montpellier, CIRAD, IRD, INRAE, Institut Agro, Montpellier, F-34398, France
| | | | - Séverine Lacombe
- PHIM (Plant Health Institute of Montpellier), University of Montpellier, CIRAD, IRD, INRAE, Institut Agro, Montpellier, F-34398, France
| | - Maëlle Rios
- PHIM (Plant Health Institute of Montpellier), University of Montpellier, CIRAD, IRD, INRAE, Institut Agro, Montpellier, F-34398, France
| | - Marc Lebrun
- CIRAD, UMR QualiSud, Montpellier, F-34398, France
- QualiSud, University of Montpellier, CIRAD, IRD, INRAE, Institut Agro, University of La Réunion, University of Avignon, Montpellier, F-34398, France
| | - Renaud Boulanger
- CIRAD, UMR QualiSud, Montpellier, F-34398, France
- QualiSud, University of Montpellier, CIRAD, IRD, INRAE, Institut Agro, University of La Réunion, University of Avignon, Montpellier, F-34398, France
| | - Eveline Lefort
- CIRAD (Centre de coopération internationale en recherche agronomique pour le développement), UMR DIADE, Montpellier, F-34398, France
- DIADE (Diversity, Adaptation, Development of Plants), University of Montpellier, CIRAD, IRD, Montpellier, F-34398, France
| | - Sunao Nakamura
- Research Institute, Suntory Global Innovation Center Limited, 8-1-1, Seika-dai, Seika-cho, Soraku-gun, Kyoto, 619-0284, Japan
| | - Yudai Motoyoshi
- Research Institute, Suntory Global Innovation Center Limited, 8-1-1, Seika-dai, Seika-cho, Soraku-gun, Kyoto, 619-0284, Japan
| | - Delphine Mieulet
- CIRAD (Centre de coopération internationale en recherche agronomique pour le développement), UMR DIADE, Montpellier, F-34398, France
- DIADE (Diversity, Adaptation, Development of Plants), University of Montpellier, CIRAD, IRD, Montpellier, F-34398, France
| | - Claudine Campa
- DIADE (Diversity, Adaptation, Development of Plants), University of Montpellier, CIRAD, IRD, Montpellier, F-34398, France
| | - Laurent Legendre
- INRAE, UR 1115 Plantes et Systèmes de Culture Horticoles, Site Agroparc, Avignon, 84914, France
| | - Benoît Bertrand
- CIRAD (Centre de coopération internationale en recherche agronomique pour le développement), UMR DIADE, Montpellier, F-34398, France
- DIADE (Diversity, Adaptation, Development of Plants), University of Montpellier, CIRAD, IRD, Montpellier, F-34398, France
| |
Collapse
|
5
|
Wang Y, Wang X, Hu G, Zhang Z, Al-Romaima A, Bai X, Li J, Zhou L, Li Z, Qiu M. Comparative studies of fermented coffee fruits post-treatments on chemical and sensory properties of roasted beans in Yunnan, China. Food Chem 2023; 423:136332. [PMID: 37182497 DOI: 10.1016/j.foodchem.2023.136332] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 04/24/2023] [Accepted: 05/05/2023] [Indexed: 05/16/2023]
Abstract
In this study, medium roasted coffee with four different fermented coffee fruits post-treatments (dry, wet, semi-dry and hot air dry) was used as the material. Chemical profile and sensorial analysis were used to comprehensively analyze the effects of post-treatments on coffee flavor characteristics from multiple dimensions. A total of 31 water-soluble chemical components and 39 volatile compounds were identified in roasted coffee, and distinct post-treatments based on chemical orientation make coffee highly differentiated. In addition, the principal component analysis (PCA) of the chemical composition integrated data set showed that the first two principal components could explain 54.9% of the sample variability. All four post-treatments can be classified as "specialty coffees" according to the Specialty Coffee Association (SCA) protocol, with various organoleptic characteristics and flavor attributes. As a result, the fermented coffee fruits post-treatment method further determines the quality characteristics of coffee, thus meeting the needs of different niche markets.
Collapse
Affiliation(s)
- Yanbing Wang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, PR China; Dehong Tropical Agriculture Research Institute of Yunnan, Ruili 678600, Yunnan, PR China; College of Agriculture, Guangxi University, Nanning 530004, Guangxi, PR China
| | - Xiaoyuan Wang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, PR China; Dehong Tropical Agriculture Research Institute of Yunnan, Ruili 678600, Yunnan, PR China; College of Agriculture, Guangxi University, Nanning 530004, Guangxi, PR China.
| | - Guilin Hu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, PR China
| | - Zhirun Zhang
- Dehong Tropical Agriculture Research Institute of Yunnan, Ruili 678600, Yunnan, PR China
| | - Abdulbaset Al-Romaima
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, PR China
| | - Xuehui Bai
- Dehong Tropical Agriculture Research Institute of Yunnan, Ruili 678600, Yunnan, PR China
| | - Jinhong Li
- Dehong Tropical Agriculture Research Institute of Yunnan, Ruili 678600, Yunnan, PR China
| | - Lin Zhou
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, PR China
| | - Zhongrong Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, PR China
| | - Minghua Qiu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, PR China.
| |
Collapse
|
6
|
Li Z, Zhou B, Zheng T, Zhao C, Shen X, Wang X, Qiu M, Fan J. Integrating Metabolomics and Proteomics Technologies Provides Insights into the Flavor Precursor Changes at Different Maturity Stages of Arabica Coffee Cherries. Foods 2023; 12:foods12071432. [PMID: 37048253 PMCID: PMC10094060 DOI: 10.3390/foods12071432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/18/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023] Open
Abstract
The metabolic modulation of major flavor precursors during coffee cherry ripening is critical for the characteristic coffee flavor formation. However, the formation mechanism of flavor precursors during coffee cherry ripening remains unknown. In the present study, a colorimeter was employed to distinguish different maturity stages of coffee cherry based on the coffee cherry skin colors, and proteomics and metabolomics profiles were integrated to comprehensively investigate the flavor precursor dynamics involved in Arabica coffee cherry ripening. The data obtained in the present study provide an integral view of the critical pathways involved in flavor precursor changes during coffee cherry ripening. Moreover, the contributions of critical events in regulating the development of flavor precursors during the four ripening stages of coffee cherries, including the biosynthesis and metabolism pathways of organic acids, amino acids, flavonoids, and sugars, are discussed. Overall, a total of 456 difference express metabolites were selected, and they were identified as being concentrated in the four maturity stages of coffee cherries; furthermore, 76 crucial enzymes from the biosynthesis and metabolism of sugars, organic acids, amino acids, and flavonoids contributed to flavor precursor formation. Among these enzymes, 45 difference express proteins that could regulate 40 primary amino acids and organic acids flavor precursors were confirmed. This confirmation indicates that the metabolic pathways of amino acids and organic acids played a significant role in the flavor formation of Arabica coffee cherries during ripening. These results provide new insights into the protease modulation of flavor precursor changes in Arabica coffee cherry ripening.
Collapse
Affiliation(s)
- Zelin Li
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Bin Zhou
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Tingting Zheng
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Chunyan Zhao
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Xiaojing Shen
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Xuefeng Wang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Minghua Qiu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Jiangping Fan
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| |
Collapse
|
7
|
Wang Y, Wang X, Hu G, Al-Romaima A, Peng X, Li J, Bai X, Li Z, Qiu M. Anaerobic germination of green coffee beans: A novel strategy to improve the quality of commercial Arabica coffee. Curr Res Food Sci 2023; 6:100461. [PMID: 36852384 PMCID: PMC9958430 DOI: 10.1016/j.crfs.2023.100461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/16/2023] [Accepted: 02/10/2023] [Indexed: 02/12/2023] Open
Abstract
This study aimed to improve the brewing quality of commercial Arabica coffee through anaerobic germination. Changes in important compounds and cupping scores of germination roasting coffee with different germination degrees were investigated by 1H NMR, HS-SPME-GC-MS and sensory analysis. Statistical analysis of multivariate analysis results indicated that 6 water-soluble chemical components and 8 volatile chemical components have the potential to be markers of germinated roasting coffee. In addition, germination significantly reduced caffeine content and acrylamide formation in roasted coffee. Sensory analysis according to the Specialty Coffee Association (SCA) cupping protocol demonstrated that anaerobic germination modified flavor attributes, improved the quality, and increased sensory scores. Furthermore, anaerobic sprouting increased fruity descriptors, but over-sprouting did not improve overall attributes while producing both fermentative and vegetable descriptors. Therefore, suitable anaerobic germination of green coffee beans can be used as a new strategy to improve the flavor of commercial Arabica coffee.
Collapse
Affiliation(s)
- Yanbing Wang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, PR China
- Dehong Tropical Agriculture Research Institute of Yunnan, Ruili, 678600, Yunnan, PR China
- College of Agriculture, Guangxi University, Nanning, 530004, Guangxi, PR China
| | - Xiaoyuan Wang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, PR China
- Dehong Tropical Agriculture Research Institute of Yunnan, Ruili, 678600, Yunnan, PR China
- College of Agriculture, Guangxi University, Nanning, 530004, Guangxi, PR China
| | - Guilin Hu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, PR China
| | - Abdulbaset Al-Romaima
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, PR China
| | - Xingrong Peng
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, PR China
| | - Jinhong Li
- Dehong Tropical Agriculture Research Institute of Yunnan, Ruili, 678600, Yunnan, PR China
| | - Xuehui Bai
- Dehong Tropical Agriculture Research Institute of Yunnan, Ruili, 678600, Yunnan, PR China
| | - Zhongrong Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, PR China
| | - Minghua Qiu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, PR China
| |
Collapse
|
8
|
Jiménez-Mendoza JA, Santos-Sánchez NF, Pérez-Santiago AD, Sánchez-Medina MA, Matías-Pérez D, García-Montalvo IA. Preliminary Analysis of Unsaturated Fatty Acid Profiles of Coffea arabica L., in Samples with a Denomination of Origin and Speciality of Oaxaca, Mexico. J Oleo Sci 2023; 72:153-160. [PMID: 36740249 DOI: 10.5650/jos.ess22254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In February 2020, Coffea arabica L. grown on the coast and in the Southern Sierra Madre of the state of Oaxaca, Mexico obtained the denomination of origin. Which does not have data on color and chemical composition, the first associated with the degree of roasting and the second with lipids (17-18%), as the group of compounds responsible, in part, for flavor, consistency, and may contribute to health benefits. In the present work, color was determined on the CIE L*a*b* scale and the unsaturated fatty acids by Nuclear Magnetic Resonance (NMR) of 1H and 13C in samples of medium roasted specialty coffee from the "Pluma" coffee-growing region, Oaxaca, Mexico. The average value of L* luminosity in ground coffee was 42.1 ± 0.1 reported for a light roast. Unsaturated fatty acids were quantified from the lipid fraction of the gr1 ound grain by NMR 1H and 13C, obtaining on average the highest abundance of linoleic (41.7 ± 0.5 by 1 H and 41.24 ± 0.5 by 13C), followed by oleic (9.2 ± 0.2 by 1H and 7.4 ± 0.2 by 13C) and linolenic (1.5 ± 0.1 by H and 1.1 ± 0.2 by 13C). This study indicates that 1H and 13C NMR spectroscopy is a useful tool for the quantification of linolenic, linoleic, and oleic fatty acids by the method of key signal shifts of these acids found in lipid samples in roasted coffee grains.
Collapse
Affiliation(s)
- Jesica Ariadna Jiménez-Mendoza
- Bioactive Principles Laboratory, Institute of Agroindustry. Technological University of the Mixteca.,Graduate Studies and Research Division, National Technological Institute of Mexico/Technological Institute of Oaxaca
| | | | - Alma Dolores Pérez-Santiago
- Graduate Studies and Research Division, National Technological Institute of Mexico/Technological Institute of Oaxaca
| | - Marco Antonio Sánchez-Medina
- Graduate Studies and Research Division, National Technological Institute of Mexico/Technological Institute of Oaxaca
| | - Diana Matías-Pérez
- Graduate Studies and Research Division, National Technological Institute of Mexico/Technological Institute of Oaxaca
| | - Iván Antonio García-Montalvo
- Graduate Studies and Research Division, National Technological Institute of Mexico/Technological Institute of Oaxaca
| |
Collapse
|
9
|
Effect of green coffee oil as a natural active emulsifying agent on the properties of corn starch-based films. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
10
|
Pua A, Goh RMV, Huang Y, Tang VCY, Ee KH, Cornuz M, Liu SQ, Lassabliere B, Yu B. Recent advances in analytical strategies for coffee volatile studies: Opportunities and challenges. Food Chem 2022; 388:132971. [PMID: 35462220 DOI: 10.1016/j.foodchem.2022.132971] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/08/2022] [Accepted: 04/10/2022] [Indexed: 11/29/2022]
Abstract
Coffee has attracted significant research interest owing to its complex volatile composition and aroma, which imparts a pleasant sensorial experience that remains challenging to analyse and interpret. This review summarises analytical challenges associated with coffee's volatile and matrix complexity, and recent developments in instrumental techniques to resolve them. The benefits of state-of-the-art analytical techniques applied to coffee volatile analysis from experimental design to sample preparation, separation, detection, and data analysis are evaluated. Complementary method selection coupled with progressive experimental design and data analysis are vital to unravel the increasing comprehensiveness of coffee volatile datasets. Considering this, analytical workflows for conventional, targeted, and untargeted coffee volatile analyses are thus proposed considering the trends towards sorptive extraction, multidimensional gas chromatography, and high-resolution mass spectrometry. In conclusion, no single analytical method addresses coffee's complexity in its entirely, and volatile analysis must be tailored to the key objectives and concerns of the analyst.
Collapse
Affiliation(s)
- Aileen Pua
- Mane SEA Pte Ltd, 3 Biopolis Drive, #07-17/18/19 Synapse, Singapore 138623, Sigapore; Department of Food Science and Technology, National University of Singapore, S14 Level 5, Science Drive 2, Singapore 117542, Sigapore
| | - Rui Min Vivian Goh
- Mane SEA Pte Ltd, 3 Biopolis Drive, #07-17/18/19 Synapse, Singapore 138623, Sigapore
| | - Yunle Huang
- Mane SEA Pte Ltd, 3 Biopolis Drive, #07-17/18/19 Synapse, Singapore 138623, Sigapore; Department of Food Science and Technology, National University of Singapore, S14 Level 5, Science Drive 2, Singapore 117542, Sigapore
| | - Vivien Chia Yen Tang
- Mane SEA Pte Ltd, 3 Biopolis Drive, #07-17/18/19 Synapse, Singapore 138623, Sigapore
| | - Kim-Huey Ee
- Mane SEA Pte Ltd, 3 Biopolis Drive, #07-17/18/19 Synapse, Singapore 138623, Sigapore
| | - Maurin Cornuz
- Mane SEA Pte Ltd, 3 Biopolis Drive, #07-17/18/19 Synapse, Singapore 138623, Sigapore
| | - Shao Quan Liu
- Department of Food Science and Technology, National University of Singapore, S14 Level 5, Science Drive 2, Singapore 117542, Sigapore.
| | - Benjamin Lassabliere
- Mane SEA Pte Ltd, 3 Biopolis Drive, #07-17/18/19 Synapse, Singapore 138623, Sigapore
| | - Bin Yu
- Mane SEA Pte Ltd, 3 Biopolis Drive, #07-17/18/19 Synapse, Singapore 138623, Sigapore.
| |
Collapse
|
11
|
Mahingsapun R, Tantayotai P, Panyachanakul T, Samosorn S, Dolsophon K, Jiamjariyatam R, Lorliam W, Srisuk N, Krajangsang S. Enhancement of Arabica coffee quality with selected potential microbial starter culture under controlled fermentation in wet process. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101819] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
12
|
Wang X, Wang Y, Hu G, Hong D, Guo T, Li J, Li Z, Qiu M. Review on factors affecting coffee volatiles: from seed to cup. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:1341-1352. [PMID: 34778973 DOI: 10.1002/jsfa.11647] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 10/20/2021] [Accepted: 11/15/2021] [Indexed: 05/05/2023]
Abstract
The objective of this review is to evaluate the influence of six factors on coffee volatiles. At present, the poor aroma from robusta or low-quality arabica coffee can be significantly improved by advanced technology, and this subject will continue to be further studied. On the other hand, inoculating various starter cultures in green coffee beans has become a popular research direction for promoting coffee aroma and flavor. Several surveys have indicated that shade and altitude can affect the content of coffee aroma precursors and volatile organic compounds (VOCs), which remain to be fully elucidated. The emergence of the new roasting process has greatly enriched the aroma composition of coffee. Cold-brew coffee is one of the most popular trends in coffee extraction currently, and its influence on coffee aroma is worthy of in-depth and detailed study. Omics technology will be one of the most important means to analyze coffee aroma components and their quality formation mechanism. A better understanding of the effect of each parameter on VOCs would assist coffee researchers and producers in the optimal selection of post-harvest parameters that favor the continuous production of flavorful and top-class coffee beans and beverages. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiaoyuan Wang
- College of Agriculture, Guangxi University, Nanning, PR China
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, PR China
- Dehong Tropical Agriculture Research Institute of Yunnan, Ruili, PR China
| | - Yanbing Wang
- College of Agriculture, Guangxi University, Nanning, PR China
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, PR China
- Dehong Tropical Agriculture Research Institute of Yunnan, Ruili, PR China
| | - Guilin Hu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, PR China
| | - Defu Hong
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, PR China
| | - Tieying Guo
- Dehong Tropical Agriculture Research Institute of Yunnan, Ruili, PR China
| | - Jinhong Li
- Dehong Tropical Agriculture Research Institute of Yunnan, Ruili, PR China
| | - Zhongrong Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, PR China
| | - Minghua Qiu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, PR China
| |
Collapse
|
13
|
Evaluation of the physiochemical and metabolite of different region coffee beans by using UHPLC-QE-MS untargeted-metabonomics approaches. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101561] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
14
|
Machado JL, Tomaz MA, da Luz JMR, Osório VM, Costa AV, Colodetti TV, Debona DG, Pereira LL. Evaluation of genetic divergence of coffee genotypes using the volatile compounds and sensory attributes profile. J Food Sci 2021; 87:383-395. [PMID: 34907528 DOI: 10.1111/1750-3841.15986] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 10/09/2021] [Accepted: 10/25/2021] [Indexed: 12/30/2022]
Abstract
The quality of the coffee beverage is related to the chemical, physical, and sensory attributes of the coffee beans that vary with the geographic location of the crop, genetic factors, and post-harvest processing. So, the objective of this study was to evaluate the genetic divergence of 27 genotypes of Coffea canephora using the volatile compounds and sensory attributes profile to select genotypes that produce a coffee beverage with high sensory quality. This genetic diversity was estimated from the Euclidean distance matrix using non-standard data and the Unweighted Pair-Group Method Using Arithmetic Averages (UPGMA). The 2-furyl-methanol, 4-ethenyl-2-methoxyphenol, furfural, 5-methylfurfural, methylpyrazine, and 2,6-dimethylpyrazine were predominating volatile compounds in the genotypes. The sensory attributes had a positive Pearson's correlation with the total score. The volatile compounds had a different relative contribution to the genetic divergence between the genotypes of C. canephora. The 4-ethenyl-2-methoxyphenol, 2-furyl-methanol, and furfural were volatile compounds that most contributed to the formation of the groups in the UPGMA dendrogram. The relative contribution of sensory attributes to dissimilarity among genotypes was 6.42% to 20.20%. Therefore, this study verified the relative contribution of volatile compounds, in specially 4-ethenyl-2-methoxyphenol, 2-furyl-methanol, and furfural, and sensory attributes (flavor, mouthfeel, and bitterness/sweetness) to the genetic divergence between the genotypes of the three clonal varieties. Thus, this work points out compounds that positively contribute to the sensory quality of the Conilon coffee beverage.
Collapse
Affiliation(s)
- Jéssica Louzada Machado
- Graduate Program in Agrochemistry, Federal University of Espírito Santo/UFES, Alegre, Espírito Santo, Brazil
| | - Marcelo Antonio Tomaz
- Agronomy Department, Federal University of Espírito Santo/UFES, Alegre, Espírito Santo, Brazil
| | | | - Vanessa Moreira Osório
- Chemistry and Physical Department, Federal University of Espírito Santo/UFES, Alegre, Espírito Santo, Brazil
| | - Adilson Vidal Costa
- Chemistry and Physical Department, Federal University of Espírito Santo/UFES, Alegre, Espírito Santo, Brazil
| | | | - Danieli Grancieri Debona
- Department of Coffee Research Analysis Laboratory, Federal Institute of Espírito Santo, Venda Nova do Imigrante, Espírito Santo, Brazil
| | - Lucas Louzada Pereira
- Department of Coffee Research Analysis Laboratory, Federal Institute of Espírito Santo, Venda Nova do Imigrante, Espírito Santo, Brazil
| |
Collapse
|
15
|
Phenotyping Green and Roasted Beans of Nicaraguan Coffea Arabica Varieties Processed with Different Post-Harvest Practices. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app112411779] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Metabolomic tecniques have already been used to characterize two of the most common coffee species, C. arabica and C. canephora, but no studies have focused on the characterization of green and roasted coffee varieties of a certain species. We aim to provide, using NMR-based metabolomics, detailed and comprehensive information regarding the compositional differences of seven coffee varieties (C. arabica) of green and roasted coffee bean batches from Nicaragua. We also evaluated how different varieties react to the same post-harvest procedures such as fermentation time, type of drying and roasting. The characterization of the metabolomic profile of seven different Arabica varieties (Bourbon-typica), allowed us also to assess the possible use of an NMR spectra of bean aqueous extracts to recognize the farm of origin, even considering different farms from the same geographical area (Nueva Segovia). Here, we also evaluated the effect of post-harvest procedures such as fermentation time and type of drying on green and roasted coffee, suggesting that post-harvest procedures can be responsible for different flavours. This study provides proof of concept for the ability of NMR to phenotype coffee, helping to authenticate and optimise the best way of processing coffee.
Collapse
|
16
|
da Silva Oliveira EC, da Luz JMR, de Castro MG, Filgueiras PR, Guarçoni RC, de Castro EVR, da Silva MDCS, Pereira LL. Chemical and sensory discrimination of coffee: impacts of the planting altitude and fermentation. Eur Food Res Technol 2021. [DOI: 10.1007/s00217-021-03912-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
17
|
Morphological Changes and Component Characterization of Coffee Silverskin. Molecules 2021; 26:molecules26164914. [PMID: 34443501 PMCID: PMC8400691 DOI: 10.3390/molecules26164914] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/07/2021] [Accepted: 08/11/2021] [Indexed: 01/08/2023] Open
Abstract
Nuclear magnetic resonance (NMR) spectroscopy was used for the qualitative and quantitative analysis of aqueous extracts of unroasted and roasted coffee silverskin (CS). Twenty compounds were identified from 1D and 2D NMR spectra, including caffeine, chlorogenic acid (CGA), trigonelline, fructose, glucose, sucrose, etc. For the first time, the presence of trigonelline was detected in CS. Results of the quantitative analysis showed that the total amount of the main components after roasting was reduced by 45.6% compared with values before roasting. Sugars in the water extracts were the main components in CS, and fructose was the most abundant sugar, its relative content accounting for 38.7% and 38.4% in unroasted and roasted CS, respectively. Moreover, 1D NMR combined with 2D NMR technology shows application prospects in the rapid, non-destructive detection of CS. In addition, it was observed by optical microscopy and scanning electron microscopy (SEM) that the morphology of CS changed obviously before and after roasting.
Collapse
|