1
|
Silva FA, Dos Santos RL, Barão CE, de Medeiros VPB, Silva TO, da Costa Sassi CF, Feihrmann AC, Dos Santos Lima M, Pimentel TC, Magnani M. Freshwater microalgae biomasses are a source of bioaccessible bioactive compounds and have antioxidant, antihypertensive, and antidiabetic activity. Food Res Int 2025; 208:116259. [PMID: 40263856 DOI: 10.1016/j.foodres.2025.116259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 02/24/2025] [Accepted: 03/11/2025] [Indexed: 04/24/2025]
Abstract
Due to their sustainable production, freshwater microalgae have received attention as an alternative food rich in nutrients and bioactive compounds. This work assessed the composition and bioaccessibility of amino acids (AA), fatty acids (FA), and phenolic compounds (PC) present in the Chlorella vulgaris, Spirulina platensis, Scenedesmus acuminatus, Desmodesmus maximus, and Tetraselmis sp. biomass, and their antioxidant, antihypertensive and antidiabetic in vitro activities. The microalgae had a similar profile of compounds, but the concentration varied significantly between species. Lysine was the most abundant essential AA and palmitic and oleic (ω9) acids were the main FA detected in all microalgae. Moreover, the bioaccessibility was higher than 70 % for most FA, while the bioaccessibility of PC was generally low (<20 %). All microalgae showed significant antidiabetic (∼20-54 % ⍺-amylase inhibition and ∼ 91 % to ∼96 % ⍺-glucosidase inhibition), antihypertensive (∼13-53 % ACE inhibition) and antioxidant (1313.10-1821.60 μM eq Trolox/g) potential. C. vulgaris showed a higher concentration and bioaccessibility of phenolic compounds, resulting in an increased antidiabetic activity (higher α-glucosidase inhibition). S. platensis showed higher concentrations of fatty acids (palmitic, palmitoleic, and linoleic). D. maximus was characterized by higher concentrations and bioaccessibility of amino acids and an increased antioxidant and antidiabetic activities. Finally, Tetraselmis sp. presented improved concentration of tyrosine and increased antihypertensive activity. Therefore, the results can support the application of microalgae biomass in new functional foods for delivering bioactive compounds, primarily essential AA and FA, targeting specific niches that benefit from their potential health advantages. Findings underscore the commercial applicability of microalgae-based products.
Collapse
Affiliation(s)
- Francyeli Araújo Silva
- Laboratory of Microbial Processes in Foods, Federal University of Paraíba, João Pessoa, Brazil
| | - Renally Lima Dos Santos
- Laboratory of Microbial Processes in Foods, Federal University of Paraíba, João Pessoa, Brazil
| | | | | | - Thiago Okagawa Silva
- Department of Food Science and Technology, State University of Londrina, Londrina, Paraná, Brazil
| | - Cristiane Francisca da Costa Sassi
- Laboratory of Reef Environments and Biotechnology with Microalgae - Exact and Natural Sciences Center, Federal University of Paraíba, João Pessoa, Paraíba, Brazil
| | | | - Marcos Dos Santos Lima
- Department of Food Technology, Federal Institute of Sertão of Pernambuco, Petrolina, Brazil
| | - Tatiana Colombo Pimentel
- Laboratory of Microbial Processes in Foods, Federal University of Paraíba, João Pessoa, Brazil; Federal Institute of Paraná, Campus Paranavaí, Paranavaí, Paraná, Brazil; Department of Food Science and Technology, State University of Londrina, Londrina, Paraná, Brazil
| | - Marciane Magnani
- Laboratory of Microbial Processes in Foods, Federal University of Paraíba, João Pessoa, Brazil.
| |
Collapse
|
2
|
de Freitas Oliveira T, Barbosa Vaz da Costa MF, Alessandra Costa Santos T, Dos Santos Wisniewski MJ, Andrade-Vieira LF. Toxicity potential of a pyraclostrobin-based fungicide in plant and green microalgae models. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2024; 87:973-987. [PMID: 39298181 DOI: 10.1080/15287394.2024.2403131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/02/2024]
Abstract
Pyraclostrobin-based fungicides play an effective role in controlling fungal diseases and are extensively used in agriculture. However, there is concern regarding the potential adverse effects attributed to exposure to these fungicides on non-target organisms and consequent influence exerted on ecosystem functioning. Thus, it is essential to conduct studies with model organisms to determine the impacts of these fungicides on different groups of living organisms. The aim of this study was to examine the ecotoxicity associated with exposure to commercial fungicides containing pyraclostrobin. The focus of the analysis involved germination and initial development of seedlings of 4 plant models (Lactuca sativa, Raphanus sativus, Pennisetum glaucum and Triticum aestivum), in addition to determining the population growth rate and total carbohydrate content in microalga Raphidocelis subcapitata. The fungicide pyraclostrobin adversely influenced growth and development of the tested plants, indicating a toxic effect. The fungicide exerted a significant impact on the initial development of seedlings of all model species examined with T. aestivum plants displaying the greatest susceptibility to pyraclostrobin. Plants of this species exhibited inhibitory effects on both aerial parts and roots when treated with a concentration of 4.75 mg/L pyraclostrobin. In addition, the green microalga R. subcapitata was also significantly affected by the fungicide, especially at relatively high concentrations as evidenced by a reduction in total carbohydrate content. This commercial fungicide demonstrated potential phytotoxicity for the tested plant models and was also considered toxic to the selected microalgae, indicating an ecotoxic effect that might affect other organisms in aquatic environments.
Collapse
|
3
|
Rojas-Villalta D, Rojas-Rodríguez D, Villanueva-Ilama M, Guillén-Watson R, Murillo-Vega F, Gómez-Espinoza O, Núñez-Montero K. Exploring Extremotolerant and Extremophilic Microalgae: New Frontiers in Sustainable Biotechnological Applications. BIOLOGY 2024; 13:712. [PMID: 39336139 PMCID: PMC11428398 DOI: 10.3390/biology13090712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/03/2024] [Accepted: 09/08/2024] [Indexed: 09/30/2024]
Abstract
Exploring extremotolerant and extremophilic microalgae opens new frontiers in sustainable biotechnological applications. These microorganisms thrive in extreme environments and exhibit specialized metabolic pathways, making them valuable for various industries. The study focuses on the ecological adaptation and biotechnological potential of these microalgae, highlighting their ability to produce bioactive compounds under stress conditions. The literature reveals that extremophilic microalgae can significantly enhance biomass production, reduce contamination risks in large-scale systems, and produce valuable biomolecules such as carotenoids, lipids, and proteins. These insights suggest that extremophilic microalgae have promising applications in food, pharmaceutical, cosmetic, and biofuel industries, offering sustainable and efficient alternatives to traditional resources. The review concludes that further exploration and utilization of these unique microorganisms can lead to innovative and environmentally friendly solutions in biotechnology.
Collapse
Affiliation(s)
- Dorian Rojas-Villalta
- Biotechnology Research Center, Department of Biology, Instituto Tecnológico de Costa Rica, Cartago 159-7050, Costa Rica
| | - David Rojas-Rodríguez
- Biotechnology Research Center, Department of Biology, Instituto Tecnológico de Costa Rica, Cartago 159-7050, Costa Rica
| | - Melany Villanueva-Ilama
- Biotechnology Research Center, Department of Biology, Instituto Tecnológico de Costa Rica, Cartago 159-7050, Costa Rica
| | - Rossy Guillén-Watson
- Biotechnology Research Center, Department of Biology, Instituto Tecnológico de Costa Rica, Cartago 159-7050, Costa Rica
- Facultad de Ingeniería, Universidad Autónoma de Chile, Temuco 4810101, Chile
| | - Francinie Murillo-Vega
- Biotechnology Research Center, Department of Biology, Instituto Tecnológico de Costa Rica, Cartago 159-7050, Costa Rica
| | - Olman Gómez-Espinoza
- Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco 4811230, Chile
| | - Kattia Núñez-Montero
- Facultad Ciencias de la Salud, Instituto de Ciencias Aplicadas, Universidad Autónoma de Chile, Temuco 4810101, Chile
| |
Collapse
|
4
|
Maciel F, Madureira L, Geada P, Teixeira JA, Silva J, Vicente AA. The potential of Pavlovophyceae species as a source of valuable carotenoids and polyunsaturated fatty acids for human consumption. Biotechnol Adv 2024; 74:108381. [PMID: 38777244 DOI: 10.1016/j.biotechadv.2024.108381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 05/17/2024] [Accepted: 05/17/2024] [Indexed: 05/25/2024]
Abstract
Microalgae are a group of microorganisms, mostly photoautotrophs with high CO2 fixation capacity, that have gained increased attention in the last decades due to their ability to produce a wide range of valuable metabolites, such as carotenoids and polyunsaturated fatty acids, for application in food/feed, pharmaceutical, and cosmeceutical industries. Their increasing relevance has highlighted the importance of identifying and culturing new bioactive-rich microalgae species, as well as of a thorough understanding of the growth conditions to optimize the biomass production and master the biochemical composition according to the desired application. Thus, this review intends to describe the main cell processes behind the production of carotenoids and polyunsaturated fatty acids, in order to understand the possible main triggers responsible for the accumulation of those biocompounds. Their economic value and the biological relevance for human consumption are also summarized. In addition, an extensive review of the impact of culture conditions on microalgae growth performance and their biochemical composition is presented, focusing mainly on the studies involving Pavlovophyceae species. A complementary description of the biochemical composition of these microalgae is also presented, highlighting their potential applications as a promising bioresource of compounds for large-scale production and human and animal consumption.
Collapse
Affiliation(s)
- Filipe Maciel
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga, Portugal; LABBELS -Associate Laboratory, Braga/Guimarães, Portugal.
| | - Leandro Madureira
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga, Portugal.
| | - Pedro Geada
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga, Portugal; LABBELS -Associate Laboratory, Braga/Guimarães, Portugal.
| | - José António Teixeira
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga, Portugal; LABBELS -Associate Laboratory, Braga/Guimarães, Portugal.
| | - Joana Silva
- ALLMICROALGAE, Natural Products S.A., R&D Department, Rua 25 de Abril 19, 2445-287 Pataias, Portugal.
| | - António Augusto Vicente
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga, Portugal; LABBELS -Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
5
|
Peña-Vázquez GI, Arredondo-Arenillas A, Serrano-Sandoval SN, Antunes-Ricardo M. Functional foods lipids: unraveling their role in the immune response in obesity. Crit Rev Food Sci Nutr 2024:1-22. [PMID: 39073763 DOI: 10.1080/10408398.2024.2382942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Functional lipids are lipids that are found in food matrices and play an important role in influencing human health as their role goes beyond energy storage and structural components. Ongoing research into functional lipids has highlighted their potential to modulate immune responses and other mechanisms associated with obesity, along with its comorbidities. These lipids represent a new field that may offer new therapeutic and preventive strategies for these diseases by understanding their contribution to health. In this review, we discussed in-depth the potential food sources of functional lipids and their reported potential benefit of the major lipid classification: based on their composition such as simple, compound, and derived lipids, and based on their function such as storage and structural, by investigating the intricate mechanisms through which these lipids interact in the human body. We summarize the key insights into the bioaccessibility and bioavailability of the most studied functional lipids. Furthermore, we review the main immunomodulatory mechanisms reported in the literature in the past years. Finally, we discuss the perspectives and challenges faced in the food industry related to functional lipids.
Collapse
Affiliation(s)
- Gloria Itzel Peña-Vázquez
- Tecnologico de Monterrey, Centro de Biotecnología FEMSA, Escuela de Ingeniería y Ciencias, Monterrey, NL, México
- Tecnologico de Monterrey, Institute for Obesity Research, Monterrey, Monterrey, NL, México
| | - Ana Arredondo-Arenillas
- Tecnologico de Monterrey, Centro de Biotecnología FEMSA, Escuela de Ingeniería y Ciencias, Monterrey, NL, México
| | - Sayra N Serrano-Sandoval
- Tecnologico de Monterrey, Centro de Biotecnología FEMSA, Escuela de Ingeniería y Ciencias, Monterrey, NL, México
- Tecnologico de Monterrey, Institute for Obesity Research, Monterrey, Monterrey, NL, México
| | - Marilena Antunes-Ricardo
- Tecnologico de Monterrey, Centro de Biotecnología FEMSA, Escuela de Ingeniería y Ciencias, Monterrey, NL, México
- Tecnologico de Monterrey, Institute for Obesity Research, Monterrey, Monterrey, NL, México
| |
Collapse
|
6
|
Liu Y, Ma L, Zhang Q, Liu Y, Li D. Construction of fatty acid-ovalbumin binary complexes to improve the water dispersibility, thermal/digestive stability and bioaccessibility of lutein: A comparative study of different fatty acids. Int J Biol Macromol 2024; 273:133010. [PMID: 38852735 DOI: 10.1016/j.ijbiomac.2024.133010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/30/2024] [Accepted: 06/06/2024] [Indexed: 06/11/2024]
Abstract
Lipids are increasingly being incorporated into delivery systems due to their ability to facilitate intestinal absorption of lipid-soluble nutrients through molecular solubilization and micellization. In this work, self-assembled complexes of ovalbumin (OVA) and nine dietary fatty acids (FAs) were constructed to improve the processability and absorbability of lutein (LUT). Results showed that all FAs could form stable hydrophilic particles with OVA under the optimized ultrasound-coupled pH conditions. Fourier infrared spectroscopy and transmission electron microscopy analysis showed that these binary complexes effectively encapsulated LUT with an encapsulation rate > 90.0 %. Stability experiments showed that these complexes protected LUT well, which could improve thermal stability and in vitro digestive stability by 1.66-3.58-fold and 1.27-2.74-fold, respectively. Besides, the bioaccessibility of LUT was also enhanced by 7.16-24.99-fold. The chain length and saturation of FAs affected the stability and absorption of LUT. Therefore, these results provided some reference for the selection of FAs for efficient delivery of lipid-soluble nutrients.
Collapse
Affiliation(s)
- Yunjun Liu
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian 361021, People's Republic of China
| | - Liyuan Ma
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian 361021, People's Republic of China
| | - Qian Zhang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian 361021, People's Republic of China
| | - Yixiang Liu
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian 361021, People's Republic of China.
| | - Dan Li
- Navy Medical Center, Naval Medical University, Shanghai 200433, People's Republic of China
| |
Collapse
|
7
|
Morón-Ortiz Á, Mapelli-Brahm P, León-Vaz A, Benitez-González AM, León R, Meléndez-Martínez AJ. Ultrasound-assisted extraction of carotenoids from phytoene-accumulating Chlorella sorokiniana microalgae: Effect of milling and performance of the green biosolvents 2-methyltetrahydrofuran and ethyl lactate. Food Chem 2024; 434:137437. [PMID: 37716142 DOI: 10.1016/j.foodchem.2023.137437] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/24/2023] [Accepted: 09/07/2023] [Indexed: 09/18/2023]
Abstract
This study aimed at optimizing the accumulation of phytoene in Chlorella sorokiniana by using norflurazon and investigating the capacity of green and traditional solvents to extract carotenoids by ultrasound-assisted extraction with and without previous milling. Phytoene-rich first described C. sorokiniana biomass was used, both fresh, freeze-dried, and encapsulated. The ideal dose of norflurazon (1 µg/mL) was selected to block the carotenoid pathway at the level of phytoene desaturase and induce the accumulation of phytoene in C. sorokiniana. A mill pre-treatment allowed a higher recovery of carotenoids compared to non-milled samples, in both the freeze-dried and encapsulated matrices. 2-Methyloxolane provided a higher total carotenoid content (4.75-5546.96 µg/g) compared to the other solvents tested in all the matrices, proving a promising bio-based solvent to replace traditional organic ones for the extraction of microalgal carotenoids.
Collapse
Affiliation(s)
- Ángeles Morón-Ortiz
- Food Colour and Quality Laboratory, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain
| | - Paula Mapelli-Brahm
- Food Colour and Quality Laboratory, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain
| | - Antonio León-Vaz
- Laboratory of Biochemistry, Faculty of Experimental Sciences, Marine International Campus of Excellence and RENSMA, University of Huelva, 21071 Huelva, Spain
| | - Ana M Benitez-González
- Food Colour and Quality Laboratory, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain
| | - Rosa León
- Laboratory of Biochemistry, Faculty of Experimental Sciences, Marine International Campus of Excellence and RENSMA, University of Huelva, 21071 Huelva, Spain
| | | |
Collapse
|
8
|
Dos Santos GS, de Souza TL, Teixeira TR, Brandão JPC, Santana KA, Barreto LHS, Cunha SDS, Dos Santos DCMB, Caffrey CR, Pereira NS, de Freitas Santos Júnior A. Seaweeds and Corals from the Brazilian Coast: Review on Biotechnological Potential and Environmental Aspects. Molecules 2023; 28:molecules28114285. [PMID: 37298760 DOI: 10.3390/molecules28114285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/14/2023] [Accepted: 05/18/2023] [Indexed: 06/12/2023] Open
Abstract
Brazil has a megadiversity that includes marine species that are distributed along 800 km of shoreline. This biodiversity status holds promising biotechnological potential. Marine organisms are important sources of novel chemical species, with applications in the pharmaceutical, cosmetic, chemical, and nutraceutical fields. However, ecological pressures derived from anthropogenic actions, including the bioaccumulation of potentially toxic elements and microplastics, impact promising species. This review describes the current status of the biotechnological and environmental aspects of seaweeds and corals from the Brazilian coast, including publications from the last 5 years (from January 2018 to December 2022). The search was conducted in the main public databases (PubChem, PubMed, Science Direct, and Google Scholar) and in the Espacenet database (European Patent Office-EPO) and the Brazilian National Property Institute (INPI). Bioprospecting studies were reported for seventy-one seaweed species and fifteen corals, but few targeted the isolation of compounds. The antioxidant potential was the most investigated biological activity. Despite being potential sources of macro- and microelements, there is a literature gap regarding the presence of potentially toxic elements and other emergent contaminants, such as microplastics, in seaweeds and corals from the Brazilian coast.
Collapse
Affiliation(s)
| | - Thais Luz de Souza
- Department of Analytical Chemistry, Chemistry Institute, Federal University of Bahia, Salvador 40170-115, BA, Brazil
| | - Thaiz Rodrigues Teixeira
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | | | - Keila Almeida Santana
- Department of Life Sciences, State University of Bahia, Salvador 41150-000, BA, Brazil
| | | | - Samantha de Souza Cunha
- Department of Exact and Earths Sciences, State University of Bahia, Salvador 41150-000, BA, Brazil
| | | | - Conor R Caffrey
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Natan Silva Pereira
- Department of Exact and Earths Sciences, State University of Bahia, Salvador 41150-000, BA, Brazil
| | - Aníbal de Freitas Santos Júnior
- Department of Life Sciences, State University of Bahia, Salvador 41150-000, BA, Brazil
- Department of Exact and Earths Sciences, State University of Bahia, Salvador 41150-000, BA, Brazil
| |
Collapse
|
9
|
Ávila-Román J, Gómez-Villegas P, de Carvalho CCCR, Vigara J, Motilva V, León R, Talero E. Up-Regulation of the Nrf2/HO-1 Antioxidant Pathway in Macrophages by an Extract from a New Halophilic Archaea Isolated in Odiel Saltworks. Antioxidants (Basel) 2023; 12:antiox12051080. [PMID: 37237946 DOI: 10.3390/antiox12051080] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/04/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
The production of reactive oxygen species (ROS) plays an important role in the progression of many inflammatory diseases. The search for antioxidants with the ability for scavenging free radicals from the body cells that reduce oxidative damage is essential to prevent and treat these pathologies. Haloarchaea are extremely halophilic microorganisms that inhabit hypersaline environments, such as saltworks or salt lakes, where they have to tolerate high salinity, and elevated ultraviolet (UV) and infrared radiations. To cope with these extreme conditions, haloarchaea have developed singular mechanisms to maintain an osmotic balance with the medium, and are endowed with unique compounds, not found in other species, with bioactive properties that have not been fully explored. This study aims to assess the potential of haloarchaea as a new source of natural antioxidant and anti-inflammatory agents. A carotenoid-producing haloarchaea was isolated from Odiel Saltworks (OS) and identified on the basis of its 16S rRNA coding gene sequence as a new strain belonging to the genus Haloarcula. The Haloarcula sp. OS acetone extract (HAE) obtained from the biomass contained bacterioruberin and mainly C18 fatty acids, and showed potent antioxidant capacity using ABTS assay. This study further demonstrates, for the first time, that pretreatment with HAE of lipopolysaccharide (LPS)-stimulated macrophages results in a reduction in ROS production, a decrease in the pro-inflammatory cytokines TNF-α and IL-6 levels, and up-regulation of the factor Nrf2 and its target gene heme oxygenase-1 (HO-1), supporting the potential of the HAE as a therapeutic agent in the treatment of oxidative stress-related inflammatory diseases.
Collapse
Affiliation(s)
- Javier Ávila-Román
- Department of Pharmacology, Faculty of Pharmacy, Universidad de Sevilla, Profesor García González Street, 41012 Seville, Spain
| | - Patricia Gómez-Villegas
- Laboratory of Biochemistry, Center for Natural Resources, Health, and Environment, Universidad de Huelva, Avda. de las Fuerzas Armadas s/n, 21071 Huelva, Spain
- iBB-Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Carla C C R de Carvalho
- iBB-Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Javier Vigara
- Laboratory of Biochemistry, Center for Natural Resources, Health, and Environment, Universidad de Huelva, Avda. de las Fuerzas Armadas s/n, 21071 Huelva, Spain
| | - Virginia Motilva
- Department of Pharmacology, Faculty of Pharmacy, Universidad de Sevilla, Profesor García González Street, 41012 Seville, Spain
| | - Rosa León
- Laboratory of Biochemistry, Center for Natural Resources, Health, and Environment, Universidad de Huelva, Avda. de las Fuerzas Armadas s/n, 21071 Huelva, Spain
| | - Elena Talero
- Department of Pharmacology, Faculty of Pharmacy, Universidad de Sevilla, Profesor García González Street, 41012 Seville, Spain
| |
Collapse
|
10
|
Ummalyma SB, Chiang A, Herojit N, Arumugam M. Sustainable microalgal cultivation in poultry slaughterhouse wastewater for biorefinery products and pollutant removal. BIORESOURCE TECHNOLOGY 2023; 374:128790. [PMID: 36842508 DOI: 10.1016/j.biortech.2023.128790] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/19/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Microalgae's ability to grow in poultry slaughterhouse wastewater (PSHWW) is attracting interest for low-cost biomass production and wastewater treatment. In this study, PSHWW is evaluated by the cultivation of Chlorella sp. andNeochloris sp. for biomass,bioproducts, and nutrient removal. Results showed that Neochloris sp.produced the maximum of 1.4 g L-1 biomass and 38% lipids compared toChlorella sp. (1.3 g L-1 and 36%). The maximum carotenoids, proteins, and carbohydrates obtained from Neochloris sp. are 38 mg/g DW, 41.7%, and 29%, respectively. COD, nitrite, and phosphate removal efficiencies of 96.8%, 95%, and 79%, respectively, by Neochloris sp. and 89%, 93.5%, and 64.5%, respectively, by Chlorella sp. FTIR confirms the role of functional groups in pollutant absorption by microalgae. The predominant fatty acids found were C16, C18, C18:1, C18:2, C18:3, C20:5, and C22:6. The research demonstrated that microalgae can be used for the treatment of wastewater, nutraceuticals, food additives, and biofuels.
Collapse
Affiliation(s)
- Sabeela Beevi Ummalyma
- Institute of Bioresources and Sustainable Development (IBSD), An Autonomous Institute under the Department of Biotechnology, Govt. of India, Takyelpat, Imphal, Manipur- 795001, India.
| | - Albert Chiang
- Institute of Bioresources and Sustainable Development (IBSD), An Autonomous Institute under the Department of Biotechnology, Govt. of India, Takyelpat, Imphal, Manipur- 795001, India; Meghalaya Basin Development Authority (MBDA), Govt. of Meghalaya, Shillong- 793003, India
| | - Ningthoujam Herojit
- Institute of Bioresources and Sustainable Development (IBSD), An Autonomous Institute under the Department of Biotechnology, Govt. of India, Takyelpat, Imphal, Manipur- 795001, India
| | - Muthu Arumugam
- Microbial Processes Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Trivandrum- 695019, India; Academy of Scientific and Innovative Research (AcSIR), Gaziabad- 201002, India
| |
Collapse
|
11
|
Duan X, Xie C, Hill DRA, Barrow CJ, Dunshea FR, Martin GJO, Suleria HA. Bioaccessibility, Bioavailability and Bioactivities of Carotenoids in Microalgae: A Review. FOOD REVIEWS INTERNATIONAL 2023. [DOI: 10.1080/87559129.2023.2165095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Xinyu Duan
- School of Agriculture and Food, Faculty of Science, The University of Melbourne, Parkville, VIC, Australia
| | - Cundong Xie
- School of Agriculture and Food, Faculty of Science, The University of Melbourne, Parkville, VIC, Australia
| | - David R. A. Hill
- Algal Processing Group, Department of Chemical Engineering, The University of Melbourne, Parkville, VIC, Australia
| | - Colin J. Barrow
- Centre for Chemistry and Biotechnology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC, Australia
| | - Frank R. Dunshea
- School of Agriculture and Food, Faculty of Science, The University of Melbourne, Parkville, VIC, Australia
- Faculty of Biological Sciences, The University of Leeds, Leeds, UK
| | - Gregory J. O. Martin
- Algal Processing Group, Department of Chemical Engineering, The University of Melbourne, Parkville, VIC, Australia
| | - Hafiz A.R. Suleria
- School of Agriculture and Food, Faculty of Science, The University of Melbourne, Parkville, VIC, Australia
- Centre for Chemistry and Biotechnology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC, Australia
| |
Collapse
|
12
|
Konaré MA, Condurache NN, Togola I, Păcularu-Burada B, Diarra N, Stănciuc N, Râpeanu G. Valorization of Bioactive Compounds from Two Underutilized Wild Fruits by Microencapsulation in Order to Formulate Value-Added Food Products. PLANTS (BASEL, SWITZERLAND) 2023; 12:267. [PMID: 36678980 PMCID: PMC9861597 DOI: 10.3390/plants12020267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/26/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
Currently, microencapsulation has become a viable method of nutrient delivery for the food industry. This work microencapsulated the bioactive compounds extracted from two neglected species (Balanites aegyptiaca and Ziziphus mauritiana) by freeze-drying. A combination of wall materials (whey protein and pectin; soy protein and maltodextrin) was chosen to prepare the microcapsules. The phytochemical and physicochemical characterization of the microcapsules was then carried out. The encapsulation yield ranged from 82.77% to 96.05% for Balanites and Ziziphus, respectively, whereas the efficiency was 76.18 ± 1.39% and 80.93 ± 1.71%. The stimulated in vitro gastrointestinal test showed that encapsulation increased the bioavailability of the bioactive compounds. The total carotenoids were the most bioavailable compounds with 85.89 ± 0.06% for Ziziphus and 70.46 ± 1.10% for Balanites, followed by total flavonoids for Zizyphus with 63.27 ± 1.56%. Furthermore, regardless of species or wavelengths, the HPLC analysis resulted in the identification of 17 bioactive metabolites. The predominant one was epicatechin, whose level ranged from 231.52 ± 5.06 to 250.99 ± 3.72 mg/100 g DW in Ziziphus and 91.80 ± 3.85 to 116.40 ± 4.09 mg/100 g DW in Balanites. In estimating the enzyme inhibition and antioxidant power, both studied fruits showed antidiabetic, inflammatory, and antioxidant effects. These findings suggest that natural bioactive compounds are abundant in the fruits of Z. mauritiana and B. aegyptiaca and could be a valuable source for the food and pharmaceutical industries.
Collapse
Affiliation(s)
- Mamadou Abdoulaye Konaré
- Laboratory of Plant and Food Biochemistry, Faculty of Sciences and Techniques (FST), University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako, Mali
| | - Nina Nicoleta Condurache
- Integrated Center for Research, Expertise and Technological Transfer, Faculty of Food Science and Engineering, Dunărea de Jos University of Galati, 800201 Galati, Romania
| | - Issiaka Togola
- Laboratory of Plant and Food Biochemistry, Faculty of Sciences and Techniques (FST), University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako, Mali
| | - Bogdan Păcularu-Burada
- Integrated Center for Research, Expertise and Technological Transfer, Faculty of Food Science and Engineering, Dunărea de Jos University of Galati, 800201 Galati, Romania
| | - Nouhoum Diarra
- Laboratory of Plant and Food Biochemistry, Faculty of Sciences and Techniques (FST), University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako, Mali
| | - Nicoleta Stănciuc
- Integrated Center for Research, Expertise and Technological Transfer, Faculty of Food Science and Engineering, Dunărea de Jos University of Galati, 800201 Galati, Romania
| | - Gabriela Râpeanu
- Integrated Center for Research, Expertise and Technological Transfer, Faculty of Food Science and Engineering, Dunărea de Jos University of Galati, 800201 Galati, Romania
| |
Collapse
|
13
|
Je S, Yamaoka Y. Biotechnological Approaches for Biomass and Lipid Production Using Microalgae Chlorella and Its Future Perspectives. J Microbiol Biotechnol 2022; 32:1357-1372. [PMID: 36310359 PMCID: PMC9720082 DOI: 10.4014/jmb.2209.09012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/12/2022] [Accepted: 10/17/2022] [Indexed: 11/05/2022]
Abstract
Heavy reliance on fossil fuels has been associated with increased climate disasters. As an alternative, microalgae have been proposed as an effective agent for biomass production. Several advantages of microalgae include faster growth, usage of non-arable land, recovery of nutrients from wastewater, efficient CO2 capture, and high amount of biomolecules that are valuable for humans. Microalgae Chlorella spp. are a large group of eukaryotic, photosynthetic, unicellular microorganisms with high adaptability to environmental variations. Over the past decades, Chlorella has been used for the large-scale production of biomass. In addition, Chlorella has been actively used in various food industries for improving human health because of its antioxidant, antidiabetic, and immunomodulatory functions. However, the major restrictions in microalgal biofuel technology are the cost-consuming cultivation, processing, and lipid extraction processes. Therefore, various trials have been performed to enhance the biomass productivity and the lipid contents of Chlorella cells. This study provides a comprehensive review of lipid enhancement strategies mainly published in the last five years and aimed at regulating carbon sources, nutrients, stresses, and expression of exogenous genes to improve biomass production and lipid synthesis.
Collapse
Affiliation(s)
- Sujeong Je
- Division of Biotechnology, The Catholic University of Korea, Bucheon 14662, Republic of Korea
| | - Yasuyo Yamaoka
- Division of Biotechnology, The Catholic University of Korea, Bucheon 14662, Republic of Korea,Corresponding author Phone: +82-2-2164-4034 Fax: +82-2-2164-4778 E-mail:
| |
Collapse
|
14
|
Wang M, Morón-Ortiz Á, Zhou J, Benítez-González A, Mapelli-Brahm P, Meléndez-Martínez AJ, Barba FJ. Effects of Pressurized Liquid Extraction with dimethyl sulfoxide on the recovery of carotenoids and other dietary valuable compounds from the microalgae Spirulina, Chlorella and Phaeodactylum tricornutum. Food Chem 2022; 405:134885. [DOI: 10.1016/j.foodchem.2022.134885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/21/2022] [Accepted: 11/04/2022] [Indexed: 11/10/2022]
|
15
|
Vendruscolo RG, Deprá MC, Pinheiro PN, Furlan VJM, Barin JS, Cichoski AJ, de Menezes CR, Zepka LQ, Jacob-Lopes E, Wagner R. Food potential of Scenedesmus obliquus biomasses obtained from photosynthetic cultivations associated with carbon dioxide mitigation. Food Res Int 2022; 160:111590. [DOI: 10.1016/j.foodres.2022.111590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/22/2022] [Accepted: 06/27/2022] [Indexed: 11/04/2022]
|
16
|
Microalgae-derived polysaccharides: Potential building blocks for biomedical applications. World J Microbiol Biotechnol 2022; 38:150. [PMID: 35776270 DOI: 10.1007/s11274-022-03342-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 06/20/2022] [Indexed: 10/17/2022]
Abstract
In recent years, the increasing concern about human health well-being has strongly boosted the search for natural alternatives that can be used in different fields, especially in biomedicine. This has put microalgae-based products in evidence since they contain many bioactive compounds, of which polysaccharides are attractive due to the diverse physicochemical properties and new or improved biological roles they play. Polysaccharides from microalgae, specially exopolysaccharides, are critically important for market purposes because they can be used as anti-inflammatory, immunomodulatory, anti-glycemic, antitumor, antioxidant, anticoagulant, antilipidemic, antiviral, antibacterial, and antifungal agents. Therefore, to obtain higher productivity and competitiveness of these naturally available compounds, the cultivation parameters and the extraction/purification processes must be better optimized in order to bring perspectives for the exploitation of products in commercial and clinical practice. In this sense, the objective of the present review is to elucidate the potential biomedical applications of microalgae-derived polysaccharides. A closer look is taken at the main polysaccharides produced by microalgae, methods of extraction, purification and structural determination, biological activities and their applications, and current status.
Collapse
|
17
|
Guidance for formulating ingredients/products from Chlorella vulgaris and Arthrospira platensis considering carotenoid and chlorophyll bioaccessibility and cellular uptake. Food Res Int 2022; 157:111469. [DOI: 10.1016/j.foodres.2022.111469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 05/27/2022] [Accepted: 06/02/2022] [Indexed: 11/18/2022]
|
18
|
do Nascimento TC, Pinheiro PN, Fernandes AS, Caetano PA, Jacob-Lopes E, Zepka LQ. Insights on the Bioaccessibility of Natural Pigments from Diatom Chaetoceros calcitrans. Molecules 2022; 27:3305. [PMID: 35630782 PMCID: PMC9147772 DOI: 10.3390/molecules27103305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/05/2022] [Accepted: 03/09/2022] [Indexed: 02/04/2023] Open
Abstract
This study aimed to investigate the bioaccessibility of carotenoids and chlorophylls from the biomass of microalgae Chaetoceros calcitrans. The samples were submitted to an in vitro digestion protocol, and the compounds were determined by HPLC-PDA-MS/MS. A total of 13 compounds were identified in all tests. After in vitro digestion, the relative bioaccessibility of carotenoids and chlorophylls ranged from 4 to 58%. The qualitative profile of carotenoids reflected the initial sample, with all-E-zeaxanthin (57.2%) being the most bioaccessible compound, followed by all-E-neochrome (31.26%), the latter being reported for the first time in the micellar fraction. On the other hand, among the chlorophylls only pheophytin a (15.01%) was bioaccessible. Furthermore, a chlorophyll derivative (Hydroxypheophytin a’) was formed after in vitro digestion. Considering all compounds, xanthophylls (12.03%) and chlorophylls (12.22%) were significantly (p < 0.05) more bioaccessible than carotenes (11.22%). Finally, the considerable individual bioaccessibilities found, especially for zeaxanthin, demonstrate the bioactive potential of this bioresource. However, the large reduction in the totality of compounds after in vitro digestion suggests that additional technological strategies should be explored in the future to increase the efficiency of micellarization and enhance its bioactive effects.
Collapse
Affiliation(s)
| | | | | | | | | | - Leila Q. Zepka
- Department of Food Technology and Science, Federal University of Santa Maria (UFSM), Santa Maria 97105-900, RS, Brazil; (T.C.d.N.); (P.N.P.); (A.S.F.); (P.A.C.); (E.J.-L.)
| |
Collapse
|
19
|
Ummalyma SB, Singh A. Biomass production and phycoremediation of microalgae cultivated in polluted river water. BIORESOURCE TECHNOLOGY 2022; 351:126948. [PMID: 35257884 DOI: 10.1016/j.biortech.2022.126948] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/28/2022] [Accepted: 03/01/2022] [Indexed: 06/14/2023]
Abstract
The present study evaluated polluted river water as a medium for the growth of oleaginous microalgae under mixotrophic conditions. Microalgae grow in the medium and produce biomass, pigments, and lipids with the removal of pollution loads from wastewater. Selenastrum sp. SL7 produced maximum biomass and lipids of 660 mg L-1 and 194.5 mg L-1, respectively. Fatty acid profiling data showed that elevated saturated fatty acid production and major fatty acids found in lipid from these algae were palmitic acids, oleic acid, stearic acid, linolenic acid, and linoleic acid. The low percentage of polyunsaturated fatty acids of EPA was also detected. Water quality in terms of pH, DO, TDS, COD, and BOD was significantly improved. The use of this medium for microalgae cultivation not only improves the biomass and lipid yields but also serves as an excellent means of phycoremediation of pollutants in waste streams with value addition and environmental benefits.
Collapse
Affiliation(s)
- Sabeela Beevi Ummalyma
- Institute of Bioresources and Sustainable Development (IBSD), An Autonomous Institute Under the Department of Biotechnology, Govt. of India, Takyelpat, Imphal 795001, Manipur, India.
| | - Anamika Singh
- Institute of Bioresources and Sustainable Development (IBSD), An Autonomous Institute Under the Department of Biotechnology, Govt. of India, Takyelpat, Imphal 795001, Manipur, India
| |
Collapse
|
20
|
Rajput A, Singh DP, Khattar JS, Swatch GK, Singh Y. Evaluation of growth and carotenoid production by a green microalga Scenedesmus quadricauda PUMCC 4.1.40. under optimized culture conditions. J Basic Microbiol 2021; 62:1156-1166. [PMID: 34491598 DOI: 10.1002/jobm.202100285] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/24/2021] [Accepted: 08/28/2021] [Indexed: 01/03/2023]
Abstract
Microalgae are a potential source of a wide range of food and novel value-added products. The versatility of microalgae to produce different kind of pigments is gaining interest as a sustainable source of natural carotenoids. Currently, commercial production of carotenoids from selected microalgae requires special culture conditions which are difficult to maintain. The present study has been undertaken to optimize culture conditions for growth and carotenoid production by a new isolate Scenedesmus quadricauda PUMCC 4.1.40. The results revealed that test organism produced 1.54 mg dry biomass/ml with a content of 40 μg carotenoids/mg dry biomass during stationary phase. The growth and carotenoid production was increased by 2.4-fold under combined optimized culture conditions. The optimized conditions were growth medium, Chu-10; pH 8.5; temperature, 30°C; nitrogen, 20 mM nitrate; phosphate, 0.22 mM; NaCl, 0.42 mM and blue light. Separation and identification of four important carotenoids through high-performance thin-layer chromatography (HPTLC) followed by purification using flash chromatography and quantification by HPLC revealed 23.8, 19.0, 6.5, and 4.0 μg astaxanthin, β-carotene, lutein, and canthaxanthin /mg dry biomass, respectively. The amount of total carotenoids (98 μg/mg dry biomass) containing 40% valuable astaxanthin and β-carotene produced under optimized conditions was significantly higher than control cultures. This justifies that S. quadricauda is a promising candidate for scale-up production of carotenoid.
Collapse
Affiliation(s)
- Alka Rajput
- Department of Botany, Punjabi University, Patiala, Punjab, India
| | - Davinder P Singh
- Department of Botany, Punjabi University, Patiala, Punjab, India
| | | | - Gurdeep K Swatch
- Department of Botany, Punjabi University, Patiala, Punjab, India
| | - Yadvinder Singh
- Department of Botany and Environmental Science, Sri Guru Granth Sahib World University, Fatehgarh Sahib, Punjab, India
| |
Collapse
|